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1.1 INTRODUCTION

The ability of preserving prior knowledge in an artificial neural network (ANN)
while incrementally learning new information is important to many fields, including
approximate dynamic programming (ADP), feedback control, and function approx­
imation. Although ANNs exhibit excellent performance and generalization abilities
when trained in batch mode, when they are trained incrementally with new data they
tend to forget previous information due to a phenomenon known as interference.
McCloskey and Cohen [26] and [32] were the first to suggest that a fundamental
limitation of ANNs is that the process of learning a new set of patterns may suddenly
and completely erase a network’s knowledge of what it had already learned [12]. This
phenomenon, known as catastrophic interference or catastrophic forgetting, seriously
limits the applicability of ANNs to adaptive feedback control, and incremental func­
tion approximation. Natural cognitive systems learn most tasks incrementally, and
need not re­learn prior patterns in order to retain them in their long­term memory
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(LTM) during their lifetime. Catastrophic interference in ANNs is caused by their
very ability to generalize using a single set of shared connection weights, and a
set of interconnected nonlinear basis functions. Therefore, the modular and sparse
architectures that have been proposed so far for suppressing interference also limit
a neural network’s ability to approximate and generalize highly nonlinear functions.
This chapter describes how constrained backpropagation (CPROP) can be used to
preserves prior knowledge while training ANNs incrementally through ADP, and to
solve differential equations, or approximate smooth nonlinear functions online.

1.2 BACKGROUND

Some of the most significant advances on preserving memories in ANNs to date
have been made in the field of self­organizing networks and associative memories
(e.g., [4, 13, 15, 17, 40]). In these networks, the neurons use competitive learning to
recognize groups of similar input vectors and associate them with a particular output
by allowing neurons that are physically near each other to respond to similar inputs.
Interference has also been suppressed successfully in NN classifiers, using Learn++
algorithms that implement a weighted voting procedure to retain long­term episodic
memory [30]. Although these methods are very important to pattern recognition and
classification, they are not applicable to preserving functional knowledge in ANNs,
as may be required for example by feedback control. Although ADP aims to improve
existing ANN approximations of the control law and value function, it can greatly
benefit from the ability to retain control knowledge in the long term, and, generally,
from the elimination of interference. While associative memories in self­organizing
networks resemble declarative memories for recalling episodes or facts, CPROP aims
to establish procedural memories, which refer to cognitive and motor skills, such as
the ability to ride a bike or fly an airplane [6].

The problem of interference in nonlinear differentiable NNs has been addressed
along two main lines of research. One approach presents some LTM data together
with short­term memory (STM) data, and has been proven effective for supervised
radial­basis networks with compact support [16, 30, 38, 39]. While useful, this ap­
proach is not suited to ANN implementations that require LTM to be preserved
reliably (e.g., control systems), nor to implementations that have stringent compu­
tational requirements due, for example, to high­dimensional input­output spaces,
large training sets, or repeated incremental training over time, such as ADP. Another
approach consists of partitioning the weights into two subsets, one that is used to
preserve LTM by holding the weights’ values constant, and one that is updated using
the new STM data [18, 24]. Although effective in some applications, this approach
cannot guarantee LTM preservation and may not suppress interference in nonlinear
neural networks with global support (Section 1.3.3). Similarly to [18, 24], CPROP
partitions the weights into STM and LTM subsets. But, in CPROP, both subsets
updated based on new STM data at every epoch of the training algorithm as follows.
While STM weights are updated to learn new STMs, the LTM weights are updated
to preserve LTMs subject to the STM­weight changes.
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1.3 CONSTRAINED BACKPROPAGATION (CPROP) APPROACH

Neural network training is typically formulated as an unconstrained optimization
problem involving a scalar function e : RN → R, with respect to the network
weights w ∈ RN . The scalar function may consist of the the neural network output
error, or of an indirect measure of performance, such as the cost­to­go in an ADP
algorithm. By optimizing e, the training algorithm seeks to obtain a neural network
representation of an unknown vector function y = h(p), with input p ∈ Rr, and
output y ∈ Rm. Assume the long­term memory (LTM) knowledge of the function
to be approximated can be embedded into a functional relationship describing the
network weights such as,

g(wL,wS) = 0 (1.1)

where w has been reorganized into a vector of LTM weights wL ∈ RNL , and a
matrix of STM weights wS ∈ RNS , with NL + NS = N . As shown in Sections
1.3.2, the equality constraint (1.1) can be derived from the neural network equation
and various forms of available prior knowledge. Then, training preserves the LTM
expressed by (1.1) provided it is carried out according to the following constrained
optimization problem:

minimize e(wL,wS) (1.2)
subject to g(wL,wS) = 0

The solution of a constrained optimization problem can be provided by the method
of Lagrange multipliers or by direct elimination. If (1.1) satisfies the implicit function
theorem, then it uniquely implies the function,

wL = C(wS) (1.3)

and the method of direct elimination can be applied by writing the error function as,

E(wS) = e(C(wS),wS) (1.4)

such that the value of wS can be determined independently of wL. In this case, the
solution of (1.2) is an extremum of (1.4) that obeys,

∇wS
E = 0 (1.5)

where, the gradient ∇ is defined as a column vector of partial derivatives taken with
respect to every element of the subscript wS . Once the optimal value of wS is
determined, the optimal value of the weights wL can be obtained from wS using
(1.3). If the equality constraint cannot be written as (1.3), the method of Lagrange
multipliers can be used to solve (1.2).

Hereon, it is assumed that the equality constraint can be written in explicit form
(1.3). Furthermore, since (1.3) can be very involved, its substitution in the error
function is circumvented by seeking the extremum defined by the adjoined error
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gradient, obtained by the chain rule,

∇wS
E :=

{
∂E

∂wSi

}
=

{
∂e

∂wSi

+
∂e

∂C
∂C
∂wSi

}
(1.6)

where wSi is the ith element of wS .
The constrained training approach is applicable to incremental training of neural

networks for smooth function approximation under the following assumptions: (i)
a­priori knowledge of the function is available locally in its domain (e.g., in the form
of a batch training set, or a physical model); (ii) it can be expressed as an equality
constraint on the neural network weights; (iii) it is desirable to preserve this prior
knowledge during future training sessions; (iv) new functional information must be
assimilated incrementally through domain exploration; and, (v) the new information
is consistent with the prior knowledge (i.e., the function to be approximated is
one­to­one and the information is noise­free). Then, constrained training can be
implemented through the following steps: (I) Determine the LTM equality constraint
(1.1) for the chosen ANN architecture; (II) Determine the neural network size, and
label the LTM­STM weightswS andwL; (III) Rewrite (1.1) in the explicit form (1.3);
(IV) Compute the adjoined gradient (1.6) or Jacobian analytically; (V) Implement
adjoined gradient or Jacobian in a chosen backpropagation­based algorithm. The
CPROP equations utilized in steps (I)­(IV) are derived in the following subsections.

1.3.1 Neural Network Architecture and Procedural Memories

A feedforward, one­hidden­layer, sigmoidal architecture is chosen in this chapter
because of its universal function approximation ability, and its broad applicability.
The hidden layer can be represented by a diagonal operator with repeated sigmoids
Φ(n) := [σ(n1) · · ·σ(ns)]

T , where ni denotes the ith component of the input­to­
node vector n ∈ Rs×1. The sigmoidal function σ(ni) : R → R is assumed to be a
bounded measurable function on R for which σ(ni) → 1 as ni → ∞, and σ(ni) → 0
as ni → −∞. In this chapter, the sigmoid of choice is σ(ni) := (eni −1)/(eni +1).
Then, the neural network input­output equation,

ŷ(p) = VΦ(Wp+ d) := VΦ[ν(p)] (1.7)

can be written in terms of linear input­to­node operator, ν : Rr → Rs, which maps
the input space into node space. Where, d ∈ Rs×1, W ∈ Rs×r and V ∈ Rm×s, are
the adjustable bias, and input and output ANN weights, respectively.

The long­term memory (LTM) of the ANN (1.7) is defined as the input­output and
gradient information for the unknown function h : p → y that must be preserved
at all times, during one or more incremental­training session. It is assumed that h
is many­to­one over a domain p ∈ P . The LTM may comprise sampled output
and derivative information, or information about the functional form over a bounded
subset D ⊂ P . The short­term memory (STM) of the ANN (1.7) is defined as the
sequence of skills (e.g. control laws) or information that must be learned through one
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or more training functions {ek(w)}k=1,2,.... For simplicity, it is assumed that the
STM needs not be consolidated into LTM. CPROP utilizes algebraic neural network
training [11], and the adjoined Jacobian described in the next subsection. By this
approach, any backpropagation­based algorithm can be modified to retain the ANN’s
LTM during training, simply by redefining the error gradient.

1.3.2 Derivation of LTM Equality Constraints and Adjoined Error
Gradient

Classical backpropagation­based algorithms minimize the scalar function e using an
unconstrained optimization approach that is based on the gradient of e with respect
to the ANN weights, ∇we ∈ RN . Since e often represents the ANN output error,
they are commonly referred to as error backpropagation (EBP) algorithms. Examples
of unconstrained optimization algorithms that have been utilized for ANN training
are steepest descent, conjugate gradient, and Newton’s method. In every case, the
first­ or second­order derivatives of e with respect to w are utilized to minimize e,
and backpropagation refers to a convenient approach for computing these derivatives
across the ANN hidden layer(s), e.g. Φ in (1.7). Then, the definition of e determines
the training style. In supervised training e is an error function representing the
distance between the ANN output and the output data sampled from h, and organized
in a training set T = {pk,yk}k=1,2,.... Where, every sample satisfies the function
to be approximated, i.e. yk = h(pk), for all k. In reinforcement learning and ADP
e may be an indirect measure of performance, such as the value function, or the
improved policy, in which case the weight update includes the temporal difference
error. In batch training the information is presented all at once, by defining e as
a sum over all training pairs. Whereas in incremental training the information is
presented one sample at­a­time, or one subset at­a­time in batch mode. In every one
of these instances, the chosen backpropagation­based algorithm can be constrained
to preserve LTM by backpropagating a so­called adjoined gradient (or Jacobian,
depending on the algorithm) that can be computed conveniently across the hidden
layer using the approach described in this section.

The approach is illustrated for LTM that can be expressed by a training set of input­
output samples and derivative information denoted by TL = {pℓ,yℓ,χℓ}ℓ=1,...,K ,
where yℓ = h(pℓ), χℓ = ∇ph(pℓ), and pℓ ∈ D for all ℓ. If the functional form of h
overD is known, then it can be sampled to produce TL. Whenever possible, derivative
information should be incorporated in order to improve ANN generalization, and
prevent overfitting. In general, the ANN performance may depend on a vector
function ϵ, such as the ANN output error, or the gradient of the cost­to­go. Then,
the STM scalar function to be minimized during training can be expressed by the
quadratic form,

e(w) =
1

q

q∑
k=1

ϵTk (w)ϵTk (w) (1.8)
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where q is the number of STM samples available during the training session. In this
chapter, the Levenberg­Marquardt (LM) is the EBP algorithm of choice, because of
its excellent convergence and stability properties [21, 25].

In the classical, unconstrained case, the LM algorithm iteratively minimizes ewith
respect to w, based on the ANN unconstrained Jacobian, J = ∂ϵk/∂w [20,37]. An
input­to­node matrix N can be defined by applying ν to every one of the training
samples used to define e in (1.8). For a training set T with q samples, let N :=
[ν(p1) · · ·ν(pq)] = WP + D, where matrices P ∈ Rr×q and D ∈ Rs×q are
defined as,

P := [p1 · · ·pq], and D := [d · · ·d︸ ︷︷ ︸
q

]. (1.9)

The unconstrained higher­order derivatives of e, say of order i, can be computed as
follows,

Ji :=
∂ϵik
∂wi

= [Ji
w | Ji

d | Ji
v]

where,
Ji
w = i SiWi−1

d Vd +PSi+1Wi
dVd (1.10)

Ji
d = Si+1Wi

dVd (1.11)

and
Ji
v = SiWi

d (1.12)

Where, Si(N) ≡ {σi(nij)}, and σi(·) denotes the ith derivative of the sigmoidal
function, evaluated at every element of the input­to­node matrix N.

In order to preserve the LTM, the equality constraints (1.1) are derived from the
training set TL using ANN algebraic training [11]. According to [11], a training set
in the form of TL can be matched exactly by an ANN with equation (1.7) provided
there are sL = K (LTM) nodes in the hidden layer. An additional number of nodes,
denoted by sS , is added to allow the ANN to assimilate additional (STM) information
during incremental training. sS can be chosen by the user, or set equal to q based
on [11], such that s = sL + sS . Subsequently the ANN weights associated with the
LTM nodes, denoted by WL, dL, VL, are used to satisfy the LTM constraints at all
times, and the ANN weights associated with the STM nodes, denoted by WS , dS ,
VS , are used to acquire the STM, via constrained LM. Then, the LTM training set is
satisfied at all times provided the following set of algebraic equations is:

N = WP+D (1.13)
Y = S0VT (1.14)
C = SmVdWd (1.15)

Where P = [p1 · · · pK ], Y = [y1 · · · yK ] and C = [χ1 · · · χK ] are known
and constant matrices containing the LTM input­output and derivative information
obtained fromTL. The above equality constraint, in the form (1.1), can be transformed
into the explicit form (1.3) by re­writing (1.14) and (1.15) in terms of the STM and
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LTM weights,

M :=

[
Y
C

]
=

[
S0
L

S1
L

]
VL +

[
S0
S

S1
S

]
VS := ΨVL +ΩVS (1.16)

where DL,S := [dL,S · · ·dL,S ], and the shorthand notation Si
L,S := Si(WL,SP +

DL,S) is adopted for simplicity. Then, the explicit constraint (1.3) takes the form,

VL = Ψ−1[M−ΩVS ] (1.17)

where Ψ is a known, constant and invertible matrix by design of TL. Now, let V′

and W′ denote sparse, block­diagonal matrices formed from V and W, respectively.
Then, the adjoined gradient is,

∇̆VS
E = ∇VS

e−S0
LΩ

−1

[
PS1

SV
′
S S1

SV
′
S S0

S

(S1
SV

′
S +PS2

SW
′
SV

′
S) S2

SW
′
SV

′
S S1

SW
′
S

]
(1.18)

Where, it can be seen that the adjoined gradient can be obtained by modifying the
unconstrained gradient ∇VS

e by a term that contains distinct contributions from
the LTM and STM weights and, thus, can be easily introduced and updated in any
backpropagation­based algorithm.

By extending (1.6) to the Jacobian utilized by the LM algorithm, the adjoined
Jacobian obtained subject to the LTM constraint (1.17) can be written as,

J̆ =
∂ϵk
∂wS

=
∂

∂wS

[
S0
SVS + S0

LΩ
−1(M−ΨVL)

]
(1.19)

= J− S0
LΩ

−1 [HWS
|HdS

|HVS
] (1.20)

where:

HWS
=

[
PS1

SV
′
S

S1
SV

′
S +PS2W′

SV
′
S

]
HdS

=

[
S1
SV

′
S

S2
SW

′
SV

′
S

]
HVS

=

[
S0
S

S1
SW

′
S

] (1.21)

1.3.3 Example: Incremental Function Approximation

Since the most general interpretation of ANN training is function approximation, in
this section CPROP is illustrated through a simple example, taken from [5], involving
a scalar nonlinear function h : p → y, to be approximated over a bounded domain
p ∈ P by a one­layer sigmoidal neural network (1.7). Consider the nonlinear function
plotted by a dashed line in Fig. 1.1 over a domain P = [0, 3π] ⊂ R. Suppose the
shape of the function over a bounded subset D = [0, π] ⊂ P is known a priori to be a
sine function, and the LTM training set TL is formed using the LTM samples shown in
Fig. 1.1. Then, the LTM training set takes the form TL = {pℓ, yℓ, ∂y/∂p|ℓ}ℓ=1,...,K ,
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with K = 4, and pℓ ∈ P for all ℓ. After learning TL in batch mode, the ANN is re­
trained using new STM data, TS = {pk, yk}k=1,...,q , where in this case yk ∈ {P/D},
even though it is not a requirement for the algorithm. Thus, in this example, two
subsets of sampled data are presented incrementally to the ANN, as could come
about when the two subsets are too large to be presented at once, or when TS
becomes available at a later time, e.g., in on­line learning.

Constant wL

NN w. LTM

NN w. 

LTM

and STM 

Function

y,  ŷ

z

Figure 1.1 Function to be approximated incrementally and performance of existing
algorithms (taken from [5]).

As illustrated in Fig. 1.1, when trained with existing algorithms, the neural
network may forget the LTM while learning the STM data due to interference. Here,
a sigmoidal ANN with 15 hidden nodes is trained to approximate TLTM using the
LM algorithm available from the MATLABr Neural Network Toolbox [1]. At a
later time, 18 new STM samples become available (Fig. 1.1), the NN is re­trained by
the same LM algorithm using TSTM . If training is conducted sequentially, without
re­using the LTM data, the NN starts out with proper LTM (dotted line in Fig. 1.1),
but then experiences catastrophic interference and, although it learns STM well, it
forgets the LTM entirely in the process (dashed­dotted line in Fig. 1.1). Figure 1.1
also shows the performance of a NN that is trained with the incremental training
method proposed by Mandziuk [24]. That is, LTM weights (wL) are held constant
while learning from TSTM . As shown by the dashed line in Fig. 1.1, when the
NN is trained by this method, it still experiences interference and forgets the LTM.
Instead, when the LM algorithm is constrained by implementing the above Jacobian
and memory constraint, the LTM is preserved at every epoch, and the NN learns the
STM without forgetting the LTM, as shown by Fig. 1.2.
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×  LTM samples 

     STM samples 

y, ŷ

z

Figure 1.2 CPROP preserves LTM accurately at every epoch, until it properly learns the
STM at approximately 850 epochs (taken from [5]).

1.4 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS IN
NONSTATIONARY ENVIRONMENTS

Neural networks are often implemented to provide a functional representations of
numerical partial differential equation (PDE) solutions that are amenable to mathe­
matical analysis and data assimilation algorithm. In many applications, a numerical
algorithm, such as finite difference is first utilized to obtain the numerical solution
in discrete form (e.g. look­up table), and then the solution is utilized to train a
neural network using a conventional backpropagation algorithm. Methods have also
been proposed to determine the PDE solution in one step, by training an ANN to
minimize an error function formulate in terms of the differential operator. Different
techniques have been developed to take into account the boundary conditions. One
line of research [19] expresses the solution as the sum of two functions. One function
is problem dependent and is designed by the user to satisfy the boundary conditions
(BCs) with no adjustable parameters. The second function is an ANN trained to
approximate the differential operator. However, this approach only is applicable to
PDEs defined on orthogonal box domains, and cannot be extended to non­stationary
environments in which the BCs change over time because part of the solution must
be designed by the user off­line. A more recent study [19] overcomes some of these
limitations, but adopts radial basis functions to correct the solution on the boundaries,
making difficult to implement this technique in non­stationary environments, when
the shape of the boundaries may change over time.

Another approach consists of embedding the BCs in the cost function [2, 35].
Although this approach has been shown effective in solving linear PDEs, in order to
match BCs with high accuracy, which may be crucial in many engineering applica­
tions, it require many points on the integration domain boundaries, thereby increasing
the computational cost dramatically. Also, it relies on evolutionary algorithms that
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are computationally expensive and, typically, can only be implemented reliably off
line in non­stationary environments. A methodology based on radial basis func­
tions ANNs was developed in [14], by learning the adjustable parameters using a
two­stage gradient­descent strategy. One advantage of this methodology is that the
ANN architecture is adapted over time using a node insertion strategy. However,
because it includes the BCs in the cost function, this methodology suffers from
the same aforemention limitations, as [2]. By incorporating equality constraints of
any form systematically in any nonlinear ANN training process, CPROP overcomes
these existing limitations, and enables to solve the PDE adaptively in nonstationary
environments.

1.4.1 CPROP Solution of Linear and Nonlinear PDEs

Consider the nonlinear PDE,

Dk [u(y)] = f(y) (1.22)

where Dk is a non­linear differential operator of order k, y ∈ I ⊂ Rr, and I ∈ Rr

is a compact set with associated boundary conditions (BCs),

Gj [u(y)] = h(y) (1.23)

G is a linear operator of order j < k. The functions y ∈ ∂I ⊂ Rr and f, h : Rr → R
are assumed to be continuous and known. Without loss of generality, assume that
Dk = Lk1 + Hk2 , where k = max{k1, k2}, Lk1 is a linear differential operator of
order k1, and Hk2 is a nonlinear differential operator of order k2 of the form,

Hk2 =
r∑

m=1

k2∑
l=1

Rl∑
r=1

clmr
∂lu

∂ylm
ur(y)

The solution û(y) is provided by the output of an ANN in the form (1.7), with
scalar output (m = 1), and adjustable parameters W,d,v. Then, the input­to­node
operator is defined as,

ν (y) = W y + d (1.24)

where, W ∈ Rs×r,d ∈ Rs are the input weights and bias, respectively, and the
sigmoidal operator is, as before, defined as the nonlinear mapping Φ(n) : Rs → Rs

across the hidden (nonlinear) layer. Hence, the approximation of the solution of the
PDE (1.22) is given by the ANN output provided it satisfies the relationship,

û(y) = Φ [ν(y)]vT (1.25)

where v ∈ R1×s is a vector of output weights. It is then trivial to extend the approach
to the case of multiple outputs’ network because of their linearity with respect to the
output weights. Substituting (1.25) into (1.22), the differential operator is applied to
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the ANN,
Dk

{
Φ [ν(y)]vT

}
= f(y) (1.26)

Since the aim is to approximate the solution of problem (1.22) on D, the STM set
is formed by input samples TS = {yk ∈ I, k = 1, . . . , q} of the PDE solution that
satisfies (1.22). Then, by applying the input­to­node operator (1.24) to every input
sample, the following input­to­node matrix is obtained,

N = [WY +D]
T (1.27)

where, Y = [y1 · · ·yq] is an r × q matrix of input samples, and N ∈ Rq×s.
As before, the q × s matrix defined as S0 = Φ (N) is utilized to derive the LTM
constraints below, as well as to re­write the output of the ANN for all STM training
samples in matrix form, i.e.:

û(y)|y∈TSTM = S0vT (1.28)

In order to solve (1.22), the ANN output must be differentiated with respect to its
inputs up to the kth­order derivative.

After some manipulations it is possible to extend the scalar equations presented
in [19], adopting the operators previously introduced. The operators,

T =
n∏

i=1

Wmi
i and (1.29)

Rj =

{
W

mj−1
j

∏n
i=1, i ̸=j W

mi
i if mj ≥ 1

0 ∈ Rs×s otherwise
(1.30)

are introduced to obtain a more compact notation. Then, the derivative of the ANN
evaluated at the samples in TSTM is given by,

∂m1

∂ym1
1

· · · ∂mj

∂y
mj

j

· · · ∂mn

∂ymn
n

[û(y)] |y∈TSTM = Sλ T vT (1.31)

where Sλ denotes the λth derivative of the σ function with respect to its scalar
argument evaluated at the input­to­node matrix (1.27), and from hereon will be
referred to as transfer function matrix of the λth order, where λ =

∑n
i=1 mi, and

d0σ/dr0 = σ. r diagonal matrices Wj ∈ Rs×s, with j = 1, 2, ..., r are defined such
that the jth component on the diagonal is given by the jth input weight of the ANN.

We are now ready to compute the Jacobian of the error with respect to the ANN
adjustable parameters required in order to train the ANN by backpropagation. Making
use of equations (1.29)­(1.30), the Jacobian can be written as,

J = [ JW1 | · · · | JWr | Jd | Jv] (1.32)
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where,

JWi = (mi S
λRi +YiS

λ+1T)V i = 1, ..., r (1.33)
Jd = Sλ+1TV (1.34)
Jv = SλT (1.35)

and Yi ∈ Rq×q, i = 1, 2, ..., r are diagonal matrices, defined as: [Yi]
k
l = yki δkl,

where δkl is the Kronecker delta and yki are the ith components of the kth samples’
inputs, with no implied summation over indices. Similarly V ∈ Rs×s refers to a
diagonal matrix assembled with the components of the v vector, or in components
[V]mn = vmδmn m = 1, ..., s, and vm is the mth component of the output weights.
Introducing the vector f := f(y)|y∈TSTM ∈ Rq, the function to be minimized may be
defined as,

e(w) =
1

2
ϵT ϵ (1.36)

where
ϵ := Dk [û(y)] |y∈TSTM − f (1.37)

The above methodology can be extended to nonlinear PDEs by adopting a useful
property of the Hadamard product. The Hadamard product of two matrices A,B ∈
RM×r, also known as entry­wise product, is defined as,

(A ◦B)ij = aijbij (1.38)

As shown in [3], the Hadamard product obeys the following property,

∂ (A ◦B)

∂α
=

∂A

∂α
◦B+A ◦ ∂B

∂α
(1.39)

where, α is a scalar parameter, andA andB are matrices or matrix functions. In order
to derive the Jacobian for the nonlinear part, we extend the property in (1.39) to the
case of differentiation with respect to vectors. After some algebraic manipulations it
may be shown that the following expression holds,

∂ (A ◦B)

∂a
=

∂A

∂a
◦ (B⊗ γ) +

∂B

∂a
◦ (A⊗ γ) (1.40)

where in (1.40) a ∈ Rl andγ ∈ Rl are row­vectors, withγ defined asγ = [1 1 · · · 1].
The symbol ⊗ denotes the Kronecker product between tensors, and (1.40) may then
be used to compute the adjoined Jacobian for a nonlinear PDE.

1.4.2 Example: PDE Solution on a Unit Circle

This example illustrates how an ANN trained via CPROP is capable to adapt and
approximate a changing PDE solution in a non­stationary environment. The nonlinear
PDE is forced by a known term fj(y1, y2) that is subject to change, and must be solved
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over a unit circle centered at the origin,

∇2u+ u
∂u

∂y2
= fj(y1, y2), j = 1, 2, 3. (1.41)

Where, three forcing terms, index by j = 1, 2, 3 are considered in this example. The
above PDE solution must satisfy the boundary conditions (BCs),

u(y1, y2) = 1 (1.42)

on the unit circle defined asI := {y1, y2 | y21+y22 = 1}. Where, in (1.41), the solution
u(y1, y2) is denoted by u for brevity, and the functions fj(y1, y2), j = 1, 2, 3 are
assumed to be continuous and known. Then, by defining a two­dimensional grid over
I, the STM training setTSj

= {yk ∈ I, k = 1, . . . , q} is obtained for every j , and the
values of the present (j) forcing function evaluated, and organized in the q×1 vector
fj := [fj(y1) · · · fj(yq)]

T . The STM training sets are used to adapt the ANN solution
û(y) incrementally, by presenting each one as the forcing function changes from f1
to f2, and then from f2 to f3. These functions are chosen such that the above PDE has
the following analytical solutions: u = y21+y22 when j = 1, u = 1.15(y21+y22)−0.15
when j = 2, and u = exp[−(y21 + y22)] + 1.1(y21 + y22)− e−1 − 0.1 when j = 3.

For the numerical solutions,a 100­points grid was used, with points chosen from
10 concentric circles, equidistant from the center, by dividing each circle into 10
equal sectors. In order to avoid a homogeneous radial distribution of points, which
may lead to singularities, a positive, counter­clockwise θ = π/8­swirl was imposed
between circles during sampling. The ANN was trained with q = 7 STM samples,
and contained sL = 25 LTM nodes to be able to match the BCs on the unit circle
(1.42) at all times. For every forcing term fj , CPROP training is conducted for
approximately 50 epochs, after which it is assumed that the environmental conditions
have changed, and the ANN­PDE solution is adapted to the new term fj+1. The
final training has been run until satisfactory convergence has occurred and no further
improvement seemed possible (after 450 epochs). For validation, the ANN solution
is tested and plotted over a much denser grid obtained using 90 circles subdivided
into twenty sectors. The results plotted in Figs. 1.3 ­ 1.5 show that the ANN
output approximates every one of the three solutions with good accuracy, excellent
generalization, and without any overfitting.

1.5 PRESERVING PRIOR KNOWLEDGE IN EXPLORATORY ADAPTIVE
CRITIC DESIGNS

The advantages brought about by using classical control theory in conjunction with
nonlinear NNs have long been recognized in the literature [6–10,22,23,27–29,31,34].
In particular, using classical controllers to obtain the starting neural control design
has been shown to be a key step in the development of highly­effective adaptive
neural controllers. One reason is that the starting design provides adequate perfor­
mance while the adaptation compensates for nonlinearities and unmodeled dynamics.
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Figure 1.3 Neural Network solution (a) and error surface (b) when j = 1.
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Figure 1.4 Neural Network solution (a) and error surface (b) when j = 2.

û

y2
y1

(a)

û    u 

y2 

y1 

(b)

Figure 1.5 Neural Network solution (a) and error surface (b) when j = 3.



PRESERVING PRIOR KNOWLEDGE IN EXPLORATORY ADAPTIVE CRITIC DESIGNS 15

Another reason is that many popular adaptation schemes, such as, adaptive critics,
improve iteratively upon the existing approximation of the control law. Therefore,
the classical controller provides a performance baseline for the adaptive neural con­
troller. Typically, a classical controller is used to pre­train the neural controller in a
supervised fashion, and the adaptation is carried out by reinforcement learning (RL),
since the ideal control law for nonlinear and unmodeled dynamics is unknown. How­
ever, due to interference, the neural controller may rapidly forget the performance
baseline provided by the classical controller during adaptation.

A popular approach for combining these two styles of learning, recently reviewed
in [33], consists of computing the control as a weighted sum of a supervisor’s control
and an exploratory policy. While the supervisor provides the nominal control signal
to the system to be controlled or plant, the exploratory policy or actor is updated
by linearly interpolating between the RL weight update and a supervised learning
(SL) weight update. Although this approach may not suppress interference, the
supervisor overrides bad control signals from the actor and, in this fashion, guarantees
a minimum performance baseline [33]. The main drawback of this approach is that the
linear superposition of control policies may not lead to any performance improvement
when the plant exhibits highly nonlinear dynamics. Similarly, computing the linear
interpolation between the RL and SL weight updates may prove ineffective for
learning highly nonlinear (and non­convex) control laws.

1.5.1 Derivation of LTM Constraints for Feedback Control

Consider a plant whose dynamics can be approximated by the nonlinear differential
equation and output equation,

ẋ(t) = f [x(t),pm(t),u(t)] (1.43)
y(t) = h[x(t),u(t)] (1.44)

wherex ∈ X ⊂ Rn×1 is the state, andu ∈ U ⊂ Rm×1 is the control. The differential
equation structure and parameters, pm, are not always known a priori, and are subject
to change during the lifetime of the plant. It is assumed that perfect knowledge of
the state x is available at a present time t, based on error­free measurements of the
output y. Under restricted operating conditions the plant operates in a subset of the
state space XLPV ⊂ X , referred to as linear­parameter­varying or LPV regime, in
which plant dynamics can be closely approximated by a linear­time­invariant (LTI)
model near every equilibrium or operating point. Then, a finite set of p equilibria in
XLPV can be selected, and indexed by a corresponding scheduling vector ζ ∈ Rz×1,
which contains time­varying physical parameters that significantly influence plant
dynamics. Let Z = {ζ1, . . . , ζp} ∈ XLPV denote a finite set of scheduling vectors,
such that at every ζj ∈ XLPV the plant can be represented by the transfer function,

Hj(s) :

{
∆ẋ = Aj∆x+Bj∆u
∆y = Cj∆x+Dj∆u

. (1.45)
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Then, the set of transfer functions H = {H1(s), . . . ,Hp(s)} can be used to design a
gain­scheduled controller that interpolates between the LTI controllers derived from
each transfer function in H.

Several gain­scheduling techniques, including multivariable control, µ­synthesis,
and H∞ have been developed to design state­feedback linear control systems that
interpolate among p transfer functions of the form,

Kj(s) :

{
ẋK = AKjxK +BKj∆x
uK := CKjxK +DKj∆x

, (1.46)

to control the plant in the LPV regime. Where, xK ∈ Rκ×1 is the controller state.
Several techniques, including convex interpolation, can be utilized to obtain a gain­
scheduled controller from the set of LTI controllers K = {K1, . . . ,Kp}. In this
chapter, the gain­scheduled controller is obtained by means of a recurrent neural
network,

ANN :

{
ẋK = AK(ζ)xK +BK(ζ)∆x
uN := v Φ(Wxa)

, (1.47)

with input xa := [χT ζT ]T . Where, χ := [∆xT xT
K ]T ∈ Rν×1, and it can

be seen from (1.45) that xK is a function of uN because, once the controller is
implemented, ∆u = uN . Hereon, the control input is assumed to be scalar to
simplify the presentation.

Then, using algebraic training [6], it can be shown that given a set of LTI controllers
K = {K1, . . . ,Kp} there exists an ANN controller (1.47) with l = p sigmoidal
nonlinearities that is input­output equivalent to (1.46) at the equilibria {ζ1, . . . , ζp} ∈
XLPV , i.e., satisfies the closed­loop requirements,

uN (ζj) = uK(ζj), and
∂uN

∂χ̇
(ζj) =

∂uK

∂χ̇
(ζj), for j = 1, . . . , p. (1.48)

provided the ANN weights satisfy the algebraic equations,

N = WζZ
SvT = b
DVWχ = M2

(1.49)

and provided the matrices (I − DjDKj ) are invertible. The ANN inputs weights
are partitioned into W = [Wχ Wζ ] based on the corresponding inputs, V :=

diag(v), and b := b̃ ıp. Where, ıp := 1p×1, b̃ is an arbitrary constant bias, and
Φ′(n) := [σ′(n1) · · ·σ′(nl)]

T . The remaining matrices are defined in the Appendix.
A proof is provided in [6], where the properties of the resulting ANN controller,
including closed­loop stability, are also proven.
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1.5.2 Constrained Adaptive Critic Design

The advantage of the ANN controller (1.47) over other gain­scheduled controllers is
that it is nonlinear and adaptive. Therefore, an approximate dynamic programming
(ADP) algorithm can be used to improve its performance online through incremen­
tal training. This may be necessary when the plant (1.43) operates outside of the
LPV regime, i.e., x ∈ {X/XLPV }, and in the presence of parameter variations or
unmodeled dynamics. In this case, the observed state x̂ differs from that estimated
from the dynamic equation. Also, since the underlying assumptions are violated,
the gain­scheduled controller’s performance ceases to be optimal. However, if the
weights of the ANN controller are updated via ADP using a conventional backprop­
agation algorithm, the algebraic equations in (1.49) may no longer be satisfied due
to interference. Subsequently, when the plant returns to the LPV regime, the neural
network controller will no longer meet the original LPV performance and stability
guarantees. By viewing the algebraic equations (1.49) as the ANN LTM, it is possible
to preserve the same guarantees of closed­loop performance and stability in XLPV ,
while the ANN controller is adapted incrementally online via ADP. In this case, the
ADP policy­improvement routine and value­determination operation provide STMs
to be learned incrementally over time, subject to the LTM constraints in (1.49).

The state­feedback control law is adapted by updating the weights of the recurrent
neural network (1.47) through several iterations of the ADP algorithm that are indexed
by k and take place over time. Then, letting the adaptive control law be defined as,

ck[xa(t)] := v[k ]Φ[W[k ] xa(t)], k = 0, 1, 2, . . . (1.50)

the weights can be determined by a constrained ADP approach that improves per­
formance over time, while preserving the LTM. Where, v[k ] and W[k ] denote the
values of v and W at the kth iteration of the ADP algorithm. The same control
objectives used to specify the LPV performance, such as, H∞ and H2 performance,
and pole placement, are used to express the desired system performance in X . When
the plant dynamics are nonlinear, equivalent control objectives can be formulated by
means of an integral cost function,

J = lim
tf→∞

{
1

tf

∫ tf

t0

q∑
i=1

ξTi (τ)ξi(τ)dτ

}
(1.51)

where each control objective defines a quadratic cost index ξi, which is formulated in
terms of the plant state and control vectors. For example, both H2 performance and
pole placement can be expressed by a cost index ξi(t) = M

1/2
i [xT

a (t) uT (t)]T ,
through a symmetric weighting matrix Mi of design parameters [36, Section 6.3].
Then, the value function,

Vk[xa(t), ck] :=

∫ tf

t

q∑
i=1

[
xT
a (τ) c

T
k [xa(τ)]

]
M

[k ]
i

[
xT
a (τ) c

T
k [xa(τ)]

]T
dτ

(1.52)
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can be updated through the ADP value­determination operation to learn the optimal
cost­to­go for the actual system dynamics. Where M

[k ]
i denotes the value of Mi at

the kth iteration of the ADP algorithm.
In the LPV regime, the values of the design matrices Mi are obtained using classi­

cal control techniques, such as implicit model following and dynamic compensation
[36, Section 6.3], and (1.51) is optimized by the same values of v and W that sat­
isfy (1.49). Therefore, at k = 0 all design parameters are set equal to these initial
LPV values, obtained from (1.49), which hereon are denoted by v[0], W[0], and
M

[0]
i . Subsequently, if the plant leaves XLPV , or experiences parameter variations

or unmodeled dynamics, the controller violates the optimality condition,

∇u(t)L[x(t),u(t)] +∇u(t)Vk[f [x(t),pm(t),u(t)], ck]} = 0 (1.53)

and sets off the ADP adaptation. The ADP adaptation optimizes the neural network
control law (1.50) by cycling between the Policy­Improvement Routine and the
Value­Determination Operation repeatedly over time, as illustrated in Fig. 1.6.

The unconstrained policy­improvement routine can be written as,

ck+1[x(t)] = argmin
u(t)

{L[x(t),u(t)] + Vk[f [x(t),pm(t),u(t)], ck]}(1.54)

=: argmin
u(t)

{ek(w)}, k = 0, 1, 2, . . . . (1.55)

such that Vk[x(t), ck+1] ≤ Vk[x(t), ck], for ∀x(t) ∈ X . In order for the neural
network controller to preserve its optimal performance in XLPV , a set of constraints
obtained from (1.49) are adjoint leading to the following constrained optimization
problem:

minimize Ek(w) :=

q∑
i=1

ξ̂Ti (t)ξ̂i(t) + Vk [f [x̂(t),pm(t), ck[x̂a(t)]] , ck[x̂a(t)]]

subject to g(w) :=

 N−WζZ
SvT − b
DVWχ −M2

 = 0 (1.56)

Where, ξ̂i(t) := M
1/2
i [x̂T

a (t) cTk [x̂a(t)]]
T and x̂a(t) is the actual value of the

augmented state observed at the present time t. The adjustable parameters v and
W are rearranged into w ∈ RN×1, which is the variable of the above constrained
minimization problem. Where, Z, b, M2, and R2 are known constants defined in
Section 1.5.1 the Appendix. The matrices N, S, D, and V are functions of w, as
defined in Section 1.5.1. Finally, the parameters Mi, i = 1, . . . , q, in (1.52) are
updated according to the value­determination operation,

Vk+1[x(t), ck+1] = L[x(t),u(t)] + Vk[f [x(t),pm(t),u(t)], ck+1] (1.57)
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Figure 1.6 Algorithmic diagram of constrained Policy­Improvement Routine applied to the
neural network controller (1.50).

Since in this case the equality constraint (1.56) may not satisfy the implicit function
theorem, the method of Lagrange multipliers can be used to seek the solution of
(1.56)­(1.56). In this method, reviewed in [36, pp. 36­41], the equality constraint
(1.56) is adjoined to the function to be minimized (1.56) by defining an augmented
error function

Eak
(w) ≡ ek(w)− λT g(w) (1.58)

The vector of Lagrange multipliersλ contains as many unknowns as there are equality
constraints. As shown in [36, pp. 36­41], in the vicinity of an extremum of (1.58), λ
takes the value,

λ∗ = −
(
∂g

∂w

)−T

(∇wek)
T (1.59)

where, −T denotes the inverse transpose of a matrix. Then, the optimal values of w
can be determined from,

∇wek − (λ∗)T
∂g

∂w
= 0 (1.60)

using a Newton­Raphson algorithm.

1.6 SUMMARY

Because of their ability to approximate nonlinear functions, and to generalize and
learn from sampled data, adaptive ANNs have been able to solve a broad range of
problems in the sciences and engineering, such as, differential equations, system
identification, and control. But, as demonstrated by natural cognitive systems, it
is only by learning tasks and information incrementally over time that intelligent
systems can reach high levels of complexity and performance. The CPROP approach
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described in this chapter provides a rigorous computational framework for procedural
memory formation in incremental training. As shown through a few sample appli­
cations, CPROP allows ANNs to solve adapt problem solutions repeatedly, through
multiple training sessions, while retaining a desired baseline performance at all times.
CPROP offers a unified view of memory formation and retention in ANNs that does
not rely on presenting the same information to the ANN repeatedly over time. Thus,
similarly to natural cognitive systems, CPROP ANNs are capable of retaining a wide
variety of long­term memories, including memory of input­output patterns (function
approximation), knowledge of a system’s behavior (system ID), boundary conditions
(differential equations), and optimal motor and control skills, while learning new
skills or short­term memories through new training sessions.
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Appendix: Algebraic ANN Control Matrices

M1j := (I −DjDKj )
−1

[
Cj DjCKj

]
(A.1)

M2j :=
[
0 CKj

]
+DKjM1j (A.2)

M2 :=
[
MT

21 · · ·M
T
2p

]T
(A.3)

Z := [ζ1 · · · ζp] (A.4)
N :=

[
n1 · · ·np

]
(A.5)

S :=
[
Φ(n1) · · ·Φ(np)

]T
(A.6)

D :=
[
Φ′(n1) · · ·Φ′(np)

]T
(A.7)


