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Abstract— Recent manufacturing advances have allowed for
the creation of gram and sub-gram insect-scale flapping robots.
Most dynamic models of such robots to date have either
assumed stroke-averaged forces or did not account for body
motion. In order to design more robust and capable control
methods, this paper incorporates blade element theory with a
rigid-body dynamic model to calculate instantaneous aerody-
namic forces during each wing stroke. As a result, the model
accurately predicts body motions during flight.

I. INTRODUCTION

Recent advances in manufacturing technologies have
paved the way for the creation of gram and sub-gram
insect-scale flapping robots [1]. Due to their small size
and light weight, these robots are potentially capable of
exploring small spaces and maneuvering in confined spaces
or narrow passages. These robots also benefit from increased
survivability through force-scaling effects [2].

Many approaches to designing Micro-Aerial Vehicles
(MAVs) begin to break down at the centimeter-scale. For
instance, the motors used in quadrotor designs become less
efficient at smaller sizes as friction forces begin to dominate
the desired torque generated by the motor [1]. Flapping wing
designs using piezoelectric actuators do not suffer from the
same scaling issues, and thus have wide ranging future ap-
plications. Their size allows them to maneuver through tight
spaces, as in search and rescue applications, where rubble
or other obstructions can make it difficult to reach a target.
Also, a swarm of smaller robots can be deployed as cheaply
as a single larger robot and have a greater likelihood of
detecting a target while surviving a hazardous environment.
Other potential uses include sensing and surveillance, where
their small size can make them inherently difficult to track.

The RoboBee, shown in Fig. 1, is an insect-scale robot
that can hover, follow commanded trajectories, perch, and
even travel underwater [3], [4]. It is a dynamically complex
system that reacts quickly to subtle changes in control inputs
or disturbances. If not controlled properly, the robot can
become unstable within half a second. This complicates
controller design, as a slight change in controller calibration
or robot configuration can quickly destabilize the system.
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Fig. 1: A model of the RoboBee.

The sensitive dynamics present additional challenges, as the
closed-loop system is highly sensitive to any time delay
between sensing and control inputs. Biological flying insects
are capable of completing 90◦ turns in less than 50ms
[5]. The current RoboBee design flaps its wings at 120Hz,
corresponding to 8.3ms per wing-beat. A time delay of
even 15ms in a robotic system would correspond to a
delay of almost two full wing-beats, and would significantly
complicate any attempts to maintain stability during rapid
maneuvers.

To date, the RoboBee has been modeled using stroke-
averaged forces [6], [7] for simulation and controller design.
Additional models have been presented for the RoboBee
using blade element theory to calculate instantaneous aero-
dynamic forces due to flapping wings, but have been limited
to fixed platforms [8], [9]. In order to accurately predict
aerodynamic force generation during flight, including how
these forces vary as the robot rotates and translates through
the air, this paper presents a model that combines blade
element theory [10], [11] with rigid body dynamics to
calculate the motion of the robot in flight. The approach
in this paper is inspired by models that have been presented
for modeling insect flight [12], [13]. A primary difference is
that the RoboBee cannot actively control wing pitch, whereas
most insects have control over all three wing degrees of
freedom. In order to compare the model with flight test
data, the controller presented in [1] is recreated and used to
control the simulated model. The closed-loop dynamics are
validated against real world flight test data to determine its



Fig. 2: Free body diagram for the RoboBee

effectiveness at predicting the motion of the robot in flight.

II. MODEL DESCRIPTION

As shown in Fig. 2, the RoboBee is modeled as three
rigid, linked components: a left wing, right wing, and the
body. Any warping that occurs in the wings during flight
is ignored, as is any deformation of the components within
the body. The wings are driven by piezoelectric actuators
through independent transmission mechanisms as described
in [14]. The signal is sent to the actuators through a tether
connecting the robot to an external computer, which also
provides power to the robot.

The design of the actuators plays an important role in the
overall performance of the robot. The wings are designed
to flap near their resonant frequency to maximize lift gen-
eration. Various components of the system, including the
piezoelectric actuators and wing hinges, have recently been
studied to increase the efficiency of the robot [9], [15]. In this
paper, the actuators are assumed to be sufficiently powerful to
drive the wings at the desired amplitude and frequency, and
their dynamics are neglected. Various on board sensors have
been developed recently for the application of untethered
flight [6], [7]. Test flights are currently conducted in a lab
environment with a Vicon system providing position sensing
to the external computer.

Aerodynamic forces on the wings are computed using
blade element theory as described in [10], [11], [16]. Blade
element theory provides advantages over more complex
models by providing a simple analytical model for the
aerodynamic forces. Although blade element theory does not
account for all aerodynamic forces acting on flapping wings,
it has been shown to accurately model the dynamics of many
different insect species in hovering flight [5], [16]. Previous
RoboBee studies have shown relatively good agreement
between blade-element wing models and test data [8].

A. Rigid Body Dynamics

The RoboBee body and both wings were assumed to
be rigid. Although the wings flex slightly during flight,
making this assumption greatly simplifies the calculation of
both aerodynamic forces and resulting wing motions. The

Fig. 3: The Euler Angle convention used to rotate from the
fixed frame F (̂ı, ȷ̂, k̂) to the body frame B (x̂, ŷ, ẑ).

actuators oscillate within the body in the real robot, but
since their movements oppose each other, changes to key
parameters such as moment of inertia and center of gravity
should be negligible. After constraining the wings to be
attached at the top of the body, the state of each wing can be
described entirely in terms of attitude and rotational velocity.

The entire system has 8 degrees of freedom in its con-
figuration, comprised of 6 degrees of freedom for the body
and 1 rotational degree of freedom for each wing. A free
body diagram showing the forces and moments acting on the
RoboBee is shown in Fig. 2. The coordinate frame shown
in Fig. 2 is used throughout the following sections. The
constraints on the degrees of freedom for the wings are
described below. The rotation of each body is specified using
the z-x-y Euler angle convention, with successive rotations
measured by ϕ, θ, and ψ as shown in Fig. 3. This convention
is used for both wings and the robot frame. The body frame
B is defined with respect to the fixed frame F as shown in
Fig. 3. Frames for the left wing L (x̂L, ŷL, ẑL) and right
wing R (x̂R, ŷR, ẑR) are defined similarly, but with respect
to the body frame B.

The desired stroke angle ϕ of each wing is calculated by
the control law and used as an input to the actuators. How-
ever, the actuators are not able to perfectly follow an arbitrary
control signal. Since the system is being driven at resonance,
any change in frequency will cause a corresponding drop
in the peak-to-peak amplitude ϕ0. Some test data on these
effects can be found in [9], although no data is available for
the step response to changes in mean amplitude (ϕ̄) and other
flapping parameters. To account for these effects, the desired
wing stroke signal ϕ(t) is filtered through a second-order
transfer function tuned to represent the actuator dynamics.
By fixing the resonant frequency of the transfer function
to 120Hz, the remaining parameters of the function can
be adjusted to control additional key parameters including
settling time and rise time.

The stroke plane deviation angle θ of each wing is held
at 0, as in the physical robot. The pitch angle ψ of each
wing is free to change according to the dynamics of the
system, and is affected by aerodynamic forces, the restoring
moment of the spring, and the acceleration of the body. The



motion of the system can be described by taking angular
momentum balance of the entire system about the frame’s
center of gravity in (1), angular momentum balance of each
wing about the hinge axis in (2), and linear momentum
balance of the entire system in (3).

The angular momentum balance for the system is sim-
plified by splitting up the contribution of each of the three
components to both the total moment acting on the system
and the change in angular momentum of the system. The
total moment acting on the system is the sum of all moments
contributed by the right wing

∑
MR

G and left wing
∑

ML
G.

The moment contributed by each wing is dominated by
aerodynamic rotational damping (ML

rd and MR
rd) and the

moment caused by the total aerodynamic forces FL
aero and

FR
aero. No moments are contributed by the body, since the

angular momentum balance is taken about the body’s center
of gravity. The angular momentum balance about the body
center of gravity G is,∑

ML
G +

∑
MR

G = ḢB
G + ḢL

G + ḢR
G (1)

where the individual moments can be expanded as:∑
ML

G = ML
rd + rCPL/G × FL

aero + rL/G ×mLg∑
MR

G = MR
rd + rCPR/G × FR

aero + rR/G ×mRg

The change in angular momentum for each of the three
components is then expressed in terms of their inertia,
angular rates, and the acceleration of the center of gravity
for each component

ḢB
G = IBGω̇B + ωB × IBGωB

ḢL
G = ILGω̇L + ωL × ILGωL + rL/G ×mLaL

ḢR
G = IRG ω̇R + ωR × IRGωR + rR/G ×mRaR

In the above equations, rCPL/G is the vector from the center
of gravity of the frame G to the center of pressure of the left
wing, rL/G is the vector from the center of gravity of the
body G to the center of gravity of the left wing L, mL is
the mass of the left wing, and g is the gravity vector. In all
cases, L denotes left wing. The equivalent expressions for
the right wing are denoted by R.

The moments of inertia of the body, left, and right wings,
respectively, are given by IBG, ILG, and IRG . The angular rate
of rotation is denoted as ω and the angular acceleration is ω̇,
with subscripts B, L, and R denoting the frame. The mass of
each wing is denoted by mL and mR, and the acceleration
of the center of gravity in the fixed frame is denoted by aL
and aR for each wing.

In addition to (1), the angular momentum balance of each
wing is taken about A, the point where the wing attaches to
the frame of the RoboBee, as shown in Fig. 4.∑

ŷW ·MA = ŷW · ḢA (2)

where∑
MA = MW

rd + (rCPW /A × FW
aero) + (rW/A ×mWg)

+Mk

ḢA = IWG ω̇W + ωW × IWG ω + rW/A ×mWaW

Fig. 4: Free body diagram for the right wing.

FW
aero denotes the total aerodynamic force on the wing and

Mk is the rotational moment caused by the wing hinge. The
W subscript or superscript on the variables is replaced with
L or R for the left wing or right wing, respectively.

The linear momentum balance for the entire system is used
to compute the translational acceleration of the body,∑

F =
∑

ma (3)

where,∑
F = FR

aero + FL
aero +mRg +mLg +mBg∑

ma = mBaG +mRaR +mLaL

mB is the mass of the body and aG is the acceleration of
the body center of gravity G with respect to the fixed frame.

B. Aerodynamic Forces

The calculation of aerodynamic forces used in this model
follows the approach presented in [8], where blade element
theory is used to compute forces and moments on a wing
mounted to a fixed plate, and the model is successfully
validated with experimental data. In this paper, however, the
motion of the wings is coupled with the motion of the robot
body. Including body motion in the aerodynamic force calcu-
lations can have a significant impact on the forces generated
during flight. Simulations of open-loop flight have shown that
peak instantaneous aerodynamic forces are approximately
50% larger with body velocity |vB| ≈ 1m/s and angular
velocity |ωB| ≈ 30rad/s, both of which are in the range
of values typically observed during flight. The dependence
of aerodynamic force generation on angular velocity, ωB, in
particular makes stabilizing the robot challenging, as angular
velocities can increase rapidly during flight, dramatically
changing instantaneous forces on the robot.

The general form for all aerodynamic forces and moments
computed here is,

dFaero = CF (α)dSq (4)

where dF is the magnitude of the force or moment on a
differential wing element, CF (α) is the force coefficient, α
is the angle of attack, q = 1

2ρVδw · Vδw is the dynamic
pressure at the wing element, and dS is a reference area.
The dynamic pressure is a function of the local velocity of
the wing element i.e., Vδw = VG +VA/G +Vδw/A. Also,
ρ is the density of the ambient air, VG is the velocity of the
center of mass of the robot body G, VA/G is the velocity



of the point A (as shown in Fig. 4) with respect to G, and
Vδw/A is the velocity at the leading edge of the differential
element with respect to point A (Fig. 4).

Using blade-element theory, each wing is decomposed into
a number of chord-wise elements. An aerodynamic force is
then computed for each element as a function of the local
angle of attack and wing velocity relative to the free stream.
These aerodynamic forces can be integrated along the length
of the wing, yielding a total aerodynamic force for each
wing (FR

aero and FL
aero) acting at an instantaneous center

of pressure (CPR and CPL). These forces are translational
aerodynamic forces, and can be broken up into lift and drag
components that are orthogonal to and parallel with the free
stream velocity, respectively. Integrating (4) along the wing
span yields,

Faero = CF (α)
1

2
ρc̄R

∫ 1

0

Vδw ·Vδw ĉ(r̂)dr̂ (5)

where c̄ is the mean chord length, R is the wing length,
ĉ(r̂) = c(r)/c̄(r) is the non-dimensionalized chord length,
and r̂ = r/R is the non-dimensionalized span-wise coordi-
nate. The expressions for lift and drag coefficients presented
in [17] are adopted here.

The span-wise location of the center of pressure (yCP ) is
a function of the wing shape and remains mostly constant
during flight [18] . The chord-wise location however (zCP ),
is a function of the angle of attack (α) and thus varies during
flight. The non-dimensionalized distance from the leading
edge of the wing (d̂CP ) is a convenient metric for computing
the location of the center of pressure. Experimental data for
Drosophila, obtained in [18] is used to determine the location
for this model as well:

d̂CP =
0.82

π
|α|+ 0.05 (6)

In addition to the translational aerodynamic forces, a ro-
tational damping term for each wing (MR

rd and ML
rd) is

included in the model. Experiments on passively rotating
wings showed that neglecting this term results in predictions
that are severely under-damped. This damping term creates
a moment about the hinge axis of each wing.

The rotational damping moment is computed by using
a modified version of (4), considering a moment as the
generalized force and using a dynamic pressure q based
on the rotational velocity of the wing about the hinge axis.
This approach yields the damping moment for a differential
element of height dz and width dy:

dMrd = −Crd
1

2
ρ(ωyz)

2|z|dydz (7)

where ωy is the rotational velocity about the hinge axis
and z is the distance from the hinge axis to the differential
element. Integrating in the z and y directions yields the final
expression for the rotational damping moment,

Mrd = −1

2
Crdρω

2
y

∫ R

0

∫ zle

z0

|z3|dzdy (8)

where zle is the z-coordinate of the leading edge of the wing
and z0 is the z-coordinate of the trailing edge.

Signal

Altitude

Lateral Attitude Plant

Fig. 5: Simplified block diagram of the system.

III. CONTROLLER

Accurately modeling the controller used in flight testing
is an important part of the complete RoboBee model. In
the absence of feedback control, the robot is unstable and
tumbles rapidly just after takeoff. Any amount of flight
data substantial enough to be used to validate a simulation
must therefore come from controlled flights. To facilitate the
comparison with flight data, the controller used to validate
the model must match the controller used during flight tests
as closely as possible. The flight test controller is described
in [1], and consists of several distinct components, shown
in Fig. 5. The altitude and lateral controllers generate a
desired lift force and torque (fL,des and τ des), which are then
converted into flapping parameters p by the Signal block.
The flapping parameters are used to generate input signals
to control the trajectory of each wing.

The desired thrust fL,des is calculated by the altitude
controller. The altitude controller consists of a PID controller
with an additional feedforward component to offset the
weight of the RoboBee. The controller used in testing also
includes several low pass filters and additional switching
components to enable smooth transitions between control
inputs.

The desired torque is computed from a series of two con-
trollers: a lateral controller followed by an attitude controller.
The lateral controller is a PID controller that computes a
desired body orientation ẑdes based on the error in the
ı̂ and ȷ̂ directions. The attitude controller is another PID
controller that computes desired torque values based on the
error between the desired body orientation and the current
body orientation. Similarly to the altitude controller, both the
lateral and attitude control blocks contain several components
designed to smooth the transitions between abrupt changes
in commanded control inputs.

The flapping parameters generated by the Signal block in
Fig. 5 adjust the motion of the wings to accomplish different
maneuvers as shown in Fig. 6. A pitch offset ϕp adjusts the
mean stroke angle ϕ̄ of both wings, a roll offset ϕr adjusts
the relative stroke amplitude ϕ0 of one wing relative to the
other. The controller used for the flight tests shown in this
paper did not actively control yaw, instead relying on the
passive yaw damping of the robot.

The control structure used in the model is designed to
closely mimic the structure and parameters used in the flight
tests. The parameters used in the control blocks shown in
Fig. 5 are identical to the parameters used in the flight tests.
For simplicity, the controller used in the model omitted many
of the low pass filters and other smoothing blocks used in
flight tests. Many of the parameters used in those components



Fig. 6: Effects of various flapping parameters on wing
trajectories

were not recorded in the flight data and the design of these
components could therefore not be guaranteed to be identical
between the flight data and the model. The desired effect of
these blocks to mitigate abrupt changes to control inputs can
be incorporated into the second-order transfer function used
to model the actuator dynamics.

IV. MODEL VALIDATION

Validating the model against experimental flight data is
complicated by a number of factors. The dynamics of the
RoboBee are sensitive to small variations in parameters that
occur during manufacturing. It is not practical to obtain
precise measurements for the exact values of all important
parameters (such as mass, inertia, wing and body lengths,
and actuator response) for every flight. The sensitivity of the
response to slight variations in these parameters makes it
impossible to exactly recreate a previously observed flight.

An additional complication is the natural instability of the
RoboBee in flight. Any reasonable amount of flight data can
be obtained only during a controlled flight of the robot.
Validating a simulated flight against flight data obtained
from experiments thus involves, in addition to the physical
parameters of the robot, the parameters used in the controller
for the flight test.

These complications have lead to an attempt to qual-
itatively validate the flight path taken by the simulated
RoboBee. Additionally, an uncontrolled flight is simulated, in
which instability was observed that matches the description
in [7].

A. Forced Response

An important first step in validating the model involves
examining the forced pitching response observed during any
flight. A key observation is that the body pitches as the wings
flap, as shown in Fig. 7. As the wings flap, the body pitch
angle ψ oscillates at the same frequency. The mean peak-to-
peak amplitude of this periodic response in flight tests was
approximately 2.2◦. In the simulation, the same amplitude
averaged approximately 2.5◦, which is 14% different than
the experimentally recorded values. The drift observable in
the experimental data in Fig. 7 is due to imperfect hovering,

0 0.2
t(s)

-3°

3 °
Test Data Simulated

Fig. 7: Wing flapping causes oscillations in body pitch angle.

in which the stroke-averaged body pitch varied throughout
the hovering test.

The additional pitching motion predicted by the model
could correspond to an overestimate of instantaneous aero-
dynamic forces on the wings. Some of the discrepancy can
be accounted for by the low sampling rate relative to the
frequency of oscillation. This can be observed in Fig. 7 by
comparing the test data and the simulated data from the
model. The test data is frequently sampled away from the
peak amplitudes, causing the lower average peak-to-peak
value. The data shown in Fig. 7 is a small sample from
similar regions in the test data and the simulated data after
the robot has approached steady hovering flight. The data
shown is representative of the good agreement between the
model and the test data in comparable regions of flight.

B. Uncontrolled Flight

Previous studies have noted that the RoboBee is unstable
in uncontrolled flight, in part due to aerodynamic drag on
the wings. As the robot tips forwards, the net lift force tips
in approximately the same direction, accelerating the body
laterally. This increases drag on the wings, which tips the
body in the reverse direction. In the current robot configu-
ration, the aerodynamic drag tips the robot in the reverse
direction before stopping its forward motion, resulting in
growing oscillations that result in tumbling [7], [19].

This behavior was observed in the simulated flight paths
generated by the model when using an open-loop flight
controller. Figure 8 shows a time lapse of the trajectory of
an uncontrolled flight for both an actual flight test (top) and
the simulation (bottom). The oscillations described earlier
can be clearly observed as the robot pitches forward and
accelerates before the drag on the wings flips the body in
the other direction. Although the simulation exhibits similar
behavior to the flight test, the robot transitioned to tumbling
motion more quickly than the simulation predicted, as can
be seen by the red body-axis lines (spaced at even intervals
of time) shown in each image.



Fig. 8: Comparison of tested (top) and simulated (bottom)
uncontrolled flight.

C. Controlled Flight

The simulations of actively controlled flight were per-
formed using a controller design that closely mirrored the
controller used during the flight tests as described in Section
III. In the robot, the commanded torques and subsequent
flapping parameter commands are attenuated, because the
actuator dynamics act as a low-pass filter. The actuator
dynamics were modeled as a linear second-order transfer
function, the parameters of which were set to mimic the
physical system, with a resonant peak at 120Hz and the
damping ratio ζ used as a tuning parameter. Ultimately,
choosing an underdamped system with ζ ≈ 0.14 showed
good agreement with experimental data.

Figure 9 shows the trajectory from a RoboBee test flight.
Using the same starting point and target waypoint, Fig. 10
shows the trajectory from a simulated flight using the model.
A static pitch bias ϕp = 2◦ and roll bias ϕr = 2◦ were
chosen for the simulation. Biases such as these are com-
monly observed in the physical robots due to manufacturing
imperfections. The simulated model shows a smaller steady
state error compared to the test flight, and approaches the
waypoint more directly.

V. CONCLUSION

The approach presented here is generally applicable to
insect-scale flapping robots, and captures much of the im-
portant behaviors observed in experimental RoboBee flights.
It incorporates an accurate aerodynamic model with rigid-
body dynamics to provide a good starting point for assessing
potential controllers and possible physical design changes. It
has been shown to agree reasonably well with the general
flight characteristics of the robot, and is capable of modeling
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Fig. 9: RoboBee flight test data.
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Fig. 10: Simulated flight with a 2◦ roll and pitch bias.

imperfections in manufactured units which existing models
do not account for.

ACKNOWLEDGMENT

This research was funded by the National Science Foun-
dation grants ECCS-1545574 and the Wyss Institute for
Biologically Inspired Engineering.

REFERENCES

[1] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood,
“Controlled flight of a biologically inspired, insect-scale robot,”
Science, vol. 340, no. 6132, pp. 603–607, 2013. [Online]. Available:
http://science.sciencemag.org/content/340/6132/603

[2] A. T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, and R. J. Wood, “High
speed locomotion for a quadrupedal microrobot,” The International
Journal of Robotics Research, p. 0278364914521473, 2014.

[3] M. Graule, P. Chirarattananon, S. Fuller, N. Jafferis, K. Ma,
M. Spenko, R. Kornbluh, and R. Wood, “Perching and takeoff of a
robotic insect on overhangs using switchable electrostatic adhesion,”
Science, vol. 352, no. 6288, pp. 978–982, 2016.

[4] Y. Chen, E. F. Helbling, N. Gravish, K. Ma, and R. J. Wood,
“Hybrid aerial and aquatic locomotion in an at-scale robotic insect,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 331–338.



[5] S. N. Fry, R. Sayaman, and M. H. Dickinson, “The aerodynamics of
free-flight maneuvers in drosophila,” Science, vol. 300, no. 5618, pp.
495–498, 2003.

[6] S. B. Fuller, E. F. Helbling, P. Chirarattananon, and R. J. Wood, “Using
a mems gyroscope to stabilize the attitude of a fly-sized hovering
robot,” in IMAV 2014: International Micro Air Vehicle Conference
and Competition 2014, Delft, The Netherlands, August 12-15, 2014.
Delft University of Technology, 2014.

[7] S. B. Fuller, M. Karpelson, A. Censi, K. Y. Ma, and R. J. Wood,
“Controlling free flight of a robotic fly using an onboard vision sensor
inspired by insect ocelli,” Journal of the Royal Society Interface,
vol. 11, 2014.

[8] J. Whitney and R. Wood, “Aeromechanics of passive rotation in
flapping flight,” Journal of Fluid Mechanics, vol. 660, pp. 197–220,
2010.

[9] N. T. Jafferis, M. A. Graule, and R. J. Wood, “Non-linear resonance
modeling and system design improvements for underactuated flapping-
wing vehicles,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 3234–3241.

[10] C. Ellington, “The aerodynamics of hovering insect flight. i. the quasi-
steady analysis,” Philosophical Transactions of the Royal Society of
London B: Biological Sciences, vol. 305, no. 1122, pp. 1–15, 1984.

[11] Z. J. Wang, “Dissecting insect flight,” Annu. Rev. Fluid Mech., vol. 37,
pp. 183–210, 2005.

[12] S. Chang and Z. J. Wang, “Predicting fruit flys sensing rate with insect
flight simulations,” Proceedings of the National Academy of Sciences,

vol. 111, no. 31, pp. 11 246–11 251, 2014.
[13] W. B. Dickson, A. D. Straw, and M. H. Dickinson, “Integrative model

of drosophila flight,” AIAA journal, vol. 46, no. 9, pp. 2150–2164,
2008.

[14] K. Y. Ma, S. M. Felton, and R. J. Wood, “Design, fabrication, and
modeling of the split actuator microrobotic bee,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 1133–1140.

[15] N. T. Jafferis, M. J. Smith, and R. J. Wood, “Design and manufacturing
rules for maximizing the performance of polycrystalline piezoelectric
bending actuators,” Smart Materials and Structures, vol. 24, no. 6, p.
065023, 2015.

[16] S. P. Sane and M. H. Dickinson, “The control of flight force by
a flapping wing: lift and drag production,” Journal of experimental
biology, vol. 204, no. 15, pp. 2607–2626, 2001.

[17] Z. J. Wang, J. M. Birch, and M. H. Dickinson, “Unsteady forces
and flows in low reynolds number hovering flight: two-dimensional
computations vs robotic wing experiments,” Journal of Experimental
Biology, vol. 207, no. 3, pp. 449–460, 2004.

[18] W. B. Dickson, A. D. Straw, C. Poelma, and M. H. Dickinson, “An
integrative model of insect flight control,” in Proceedings of the 44th
AIAA Aerospace Sciences Meeting and Exhibit, 2006, pp. 31–38.

[19] L. Ristroph, G. Ristroph, S. Morozova, A. J. Bergou, S. Chang,
J. Guckenheimer, Z. J. Wang, and I. Cohen, “Active and passive
stabilization of body pitch in insect flight,” Journal of The Royal
Society Interface, vol. 10, no. 85, p. 20130237, 2013.


