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Abstract— A path planning and control method based on
adaptive potential functions is presented for a group of un-
manned aerial vehicles (UAVs) equipped with onboard sensors,
and deployed to search and classify multiple targets. The
proposed method plans the motion of the UAVs to support a
primary sensing objective that, in this case, is to maximize
the classification performance of the sensor measurements
gathered by the UAVs over time. An adaptive potential function
approach originally developed for ground robots is modified and
employed as a guidance law for a class of rotary-wing UAVs
that must also avoid obstacles located in a three-dimensional
workspace. The simulation results show that, by this approach,
a single UAV is capable of visiting targets that offer the best
tradeoff between distance and measurement information value.
Furthermore, simulations involving multiple UAVs deployed to
classify the same set of targets show that, by this approach,
there emerge a cooperative behavior by which the UAVs can
react, as a group, to the targets’ classification uncertainties.

I. INTRODUCTION

In many sensor applications, including robotic mine hunt-
ing [1], cleaning [2], and monitoring of urban driving [3],
industrial plants [4] or endangered species [5], unmanned
aerial vehicles (UAVs) equipped with onboard exteroceptive
sensors are deployed to support a primary sensor objec-
tive, such as, target classification, localization, and tracking.
Because most exteroceptive sensors are characterized by
a bounded field-of-view (FOV), or visibility region, target
measurements can be obtained only once the FOV intersects
the target geometry [6], [7], [8], [9], [10], [11], [12], [13].
Typically, the FOV can be modeled as a bounded subset
of a Euclidian space within which the sensor can obtain
measurements. The FOV geometry depends primarily on
the sensor parameters and environmental conditions, while
the FOV position and orientation depends on the position
and orientation of the UAV, also referred to as configuration
vector. Thus, by defining the FOV in terms of a body frame
embedded on the vehicle, the sensor measurements can be
planned by planning the path and control of the UAV.

Because rotary-wing UAVs are capable of vertical take-
off and landing, and of maneuvering near obstacles, such
as buildings or machineries, in order to reach a target, they
are commonly implemented for supporting complex sensor
missions and applications. As a result, their path must also
be planned to avoid collisions with obstacles, and, possibly,
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other UAVs, while decreasing the distance traveled, time,
or fuel consumption. While they can be used for obstacle
avoidance and for shortening distance or fuel consumption,
existing robot path planning techniques cannot take into
account the stochastic sensing objective, or plan the UAV
path based on expected target measurements [2], [14], [15].
Furthermore, they cannot be easily modified to take into
account prior targets information, which typically is available
from past sensor measurements.

Recently, several sensor path planning approaches have
been developed to address sensor planning problems for
ground sensors, in a two-dimensional workspace with multi-
ple obstacles and targets of known geometries and locations
[15], [10], [13], [16]. Cell decomposition and potential field
methods have been developed to address sensor planning
problems in [15], [10], [13]. An information roadmap method
(IRM) inspired by the probabilistic roadmap method (PRM),
but applicable to geometric sensor path planning, was also
recently developed in [12], [21]. The IRM method generates
a roadmap by sampling a probability density function defined
based on the sensor’s FOV, and the target geometries and
information value modeled from prior information, such as
geophysical maps and prior sensor measurements. Relative
entropy was used to manage a position fixed sensor to track
multiple moving targets in [19]. However, in this case, the
sensor FOV, and the geometries of targets and obstacles were
not considered.

Although they can be combined with a feedback control
design via trajectory following, cell decomposition and IRM
algorithms typically assume a free-flying robot and, thus, are
not easily modified to account for more realistic dynamic
constraints, such as those of a rotary-wing UAVs. Artificial
potential function methods have been shown very effective
at planning both the path and control law of robots and
vehicles governed by an accurate dynamic model. Therefore,
this paper extends the potential function approach developed
in [13] for ground robots to rotary-wing UAVs that are
characterized by holonomic dynamic constraints, and more
degrees of freedom. The idea is to employ the potential
function method in order to obtain a reference trajectory by
considering the kinematic model of the aerial vehicle. With
this reference at hand, a low-level tracking controller is then
employed so as to follow the desired path.

The method developed in this paper is applicable to a class
of aerial robots that are deployed in the same workspace to
classify multiple targets. Each aerial robot is characterized
by different sensor capabilities, and must avoid collisions
with other robots, and with fixed or moving obstacles. This
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class of aerial robot can be implemented in a variety of
applications, including quadrotors helicopters equipped with
vision or thermal cameras, and deployed to monitor urban
environments or endangered species [3], [5], or to inspect
chemical plants or manufacturing plants [22]. The main goal
of the UAV path planning law then is to maximize the sensor
classification performance, while minimizing the distance
traveled to conserve time and energy.

The adaptive potential field approach developed in [13]
is demonstrated on a network of cooperative, heteroge-
neous UAV-based sensors, because many centralized plan-
ning methods are known to loose efficiency when the number
of UAVs increases, when moving obstacles are detected
online, or when the sensors are heterogenous. The proposed
approach reduces the centralized control of multiple robots
to multiple problems in which each UAV is controlled
in a decentralized manner, and has complete autonomy
in planning its control law. Each UAV acts as a rational
autonomous intelligent agent, sharing only information about
the uncertainty in target classification, and target/obstacle
position and geometry.

The paper is organized as follows. Section II describes the
mathematical models. The background on adaptive potential
field method is reviewed in section III. Section IV describes
the sensor planner and controller developed in this paper,
and the implementation and simulation results are shown in
section V.

II. MATHEMATICAL MODELS

A. The Aerial Vehicle Dynamics

The dynamics of a large class of rotary-wing aerial vehi-
cles, including quadrotors and helicopters, can be described
by the so called vectored-thrust or thrust-vectoring approxi-
mation (see, among others, [27] and references therein)

Mp̈ = −ufRe3 +Mge3
Ṙ = RS(w)
Jẇ = S(Jw)w + uτ

(1)

where p = [xi yi zi]
T ∈ R3 denotes the position of the center

of gravity of the system expressed in an inertial reference
frame, w = [wx wy wz]T ∈ R3 is the angular speed
expressed in a body frame attached to the vehicle, e3 is a unit
vector defined as e3 := [0 0 1]T , R ∈ SO(3) is the rotation
matrix relating vectors in the body frame to vectors in the
inertial frame, M ∈ R>0 and J ∈ R3×3 are the mass and the
inertia matrix of the system, uf ∈ R≥0 denotes the control
force generated by the aircraft own actuators, uτ ∈ R3 is the
control torque vector and, for a vector x ∈ R3,

S(x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .
To model actuator limitations, the control force and torques
are required to satisfy some constraints, namely |uf | ≤ fU >
0, ‖uτ‖ ≤ τU > 0 with fU , τU modeling respectively the
maximum attainable force and torques of the specific aerial
vehicle.

As pointed out in [27], a number of control strategies
have been proposed in literature to address the problem of
tracking a desired reference signal. In [28], in particular,
a global stabilizing feedback law capable of tracking a
desired position pr ∈ R3 and orientation Rr ∈ SO(3) is
proposed. To satisfy the functional controllability of system
(1), the references are required to satisfy some constraints.
In particular, being the system under-actuated, namely only
four control inputs are available to govern the six degrees-of-
freedom (d.o.f.) rigid body dynamics, the reference attitude
cannot be chosen arbitrarily but a number of constraints
have to be satisfied so as to succeed in the desired position
tracking objective. In practice, only four d.o.f. can be directly
governed, namely the position pr ∈ R3 and the rotation
around the unit vector e3, which in the following will be
parameterized by means of the angle θ ∈ R. Adopted from
[27], the global stabilizing feedback controller is used as
low level controller, in order to regulate the UAV with the
inputs from the sensor planner. A simplified UAV model is
introduced next and is used in the sensor planner.

B. The Planning and Navigation Scenario

This paper considers the problem of integrated navigation
and control for r UAVs equipped with sensors deployed to
classify multiple targets in an environment populated with
obstacles and possibly other robotic sensors. Every UAV is
assumed to have autonomous computing and wireless com-
munication capabilities. Wireless communication is used to
share current knowledge about the targets and the obstacles
between the UAVs and a central station (which could also be
one of the UAVs). However, the UAVs do not communicate
or coordinate any decisions on path planning, control, or
target assignment. Also, every UAV considers other UAVs as
moving obstacles to avoid, and is characterized by a platform
geometry Ai = A ∈ R3, i = 1, 2, . . . , r. All UAVs are
equipped a sensor characterized by the same FOV, denoted
by Si = S ∈ R3, for i = 1, 2, . . . , r, but by a different
measurement model.

The sensor FOVs are assumed to be compact (closed and
bounded) subsets of R3. Let IA denote the index set of
the robotic platforms. Each sensor is assumed to be fixed
on the robot platform, and to explore a common partially-
observed workspace denoted by W to measure and classify
multiple geometric targets. The workspace is also assumed
to be a compact subset of a three-dimensional Euclidian
space, W ∈ R3, and to be populated with n fixed obstacles
B = {B1, . . . ,Bn}, where Bi ∈ R3, and m fixed targets
T = {T1, . . . , Tm}, where Ti ∈ R3 with Bi ∩ Tj = ∅,
∀ i ∈ IB and j ∈ IT , where IB and IT are the index
sets of obstacles and targets. Obstacles and targets are also
assumed to be fixed and rigid in W , such that every point
of Bi, for ∀ i ∈ IB , and every point of Tj , ∀ j ∈ IT , have
a fixed position with respect to a fixed inertial frame FW ,
embedded in W .

Let FAi be a moving Cartesian frame embedded in Ai.
Then, every point of Si has a fixed position with respect to
FAi . The configuration qi = [xi yi zi θi] ∈ R3 × [0 π] is
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used to specify the position [xi, yi, zi] and orientation θi
of the ith Ai and Si with respect to the inertial frame FW .
As far as the design of the planner and high level control is
concerned, UAVs are represented by the same discrete-time
second-order dynamic model,

q(t+ dt) = q(t) + q̇(t) dt+ 1/2 u(t) dt2 + ν

q̇(t+ dt) = q̇(t) + u(t) dt+ ω; (2)

where u ∈ R4 is the control input, and ν and ω are
white noises. Note that the above approximated model is
just considering the four d.o.f defined in Subsection II-
A, as the high level controller will be only in charge of
generating a reference trajectory for the low-level control. Let
C denote the space of all possible UAV configurations, such
that ∀ qi ∈ C, ∀ j ∈ IB Ai ∩Bj = ∅. For simplicity, it is
assumed that the configuration space is connected, although
this assumption may not hold at all times due to moving
obstacles that might temporarily block the way for the UAV.
But, if the configuration space is permanently split into
unconnected regions, then all regions must be removed from
the configuration space except the one where the vehicle is
currently deployed.

Then, the path of the ith UAV’s centroid is defined as
a continuous map τi : [0, 1] → C, with qi0 = τi(0)
and qif = τi(1), where qi0 and qif are the initial and
final configurations, respectively. Since Si is mounted on
Ai, the path τi determines the targets in W that can be
measured by the sensor mounted on the ith UAV, while
traveling from qi0 to qif . Let Q = {q1, . . . ,qr} be the
set of UAVs’ configurations, and Q0 = {q10 , . . . ,qr0} and
Qf = {q1f , . . . ,qrf } denote the sets of initial and final
sensors’ configurations, respectively. Then, the set of paths
Γ = {τ1, . . . , τr} determines the targets in W that can be
detected and classified by the UAV network traveling from
the corresponding configuration in Q0, to the corresponding
configuration in Qf .

It is assumed that the measurement process of every sensor
in the network can be modeled by a known joint probability
mass function (PMF) obtained from first principles or prior
experiments [20], [17], [12], [10]. Let Zi ∈ Z ⊂ Rr
denote the sensor measurements from target Ti ∈ T that
are used to estimate or classify the unknown target state
Xi ∈ X ⊂ Rn. The sensor characteristics, including the
sensor mode, environmental conditions, and sensor noise or
measurement errors, are grouped in a vector of parameters
λi ∈ D ⊂ Rl. Then, assuming that the targets’ state,
sensor measurements, and parameters are random vectors,
the sensor measurements can be modeled by a joint PMF
that typically can be factorized as follows [12], [10],

p(Zi,Xi,λi) = p(Zi | Xi,λi)p(Xi)p(λi), ∀i ∈ IT (3)

assuming that Xi and λi are independent variables. In this
paper, the sensor model represented by (3) is considered
to hold for all targets, and to remain constant regardless
of measuring distance at all times. Prior information, such
as measurements and environmental maps from satellite

sensors, is used to estimate the geometry and location of
obstacles and targets in B and T , where it is assumed that
only a portion of the target and obstacle locations are known
a priori, and the others are sensed online.

The UAVs are deployed to search and classify targets in
W , based on partial prior information about the targets’
and obstacles’ locations and geometries. Additionally, the
path planning algorithm must take into account the value of
information, for correctly classifying targets that have been
detected up to the present time by prior sensor measurements.
Once a target i ∈ IT is detected, we assume that its location
and geometry Ti become known, but its classification Xi

remains uncertain, due to the random nature of the measure-
ment process (3). Once the ith target is measurement by the
UAV sensor, its classification is updated based on Zi and λi
by the following equation

Xi =
∑
xi∈X

∑
λi∈D

p(Zi | xi,λi)p(xi)p(λi) (4)

where p(xi) is the prior PMF given the prior information
of the ith target, and lower-case letters denote the value
of the corresponding (upper-case) random variable. The ith
target’s information value, denoted by Vi, is the expected
benefit of making additional measurements from Ti, and it
can be represented by the expected reduction in uncertainty
associated with Zi, conditioned on the sensor model and
prior information. The information value is used to construct
the adaptive potential function in next section.

III. ARTIFICIAL POTENTIAL FUNCTION FOR GEOMETRIC
SENSING

This section begins by introducing the concept of utility
of a measurement and expected information value for a
future measurement. The C-Target regions of attraction are
defined, then the expected information value is mapped to
the configuration space C into an attractive potential directed
to these regions. Two repulsive potentials, one for fixed
obstacles and one for moving obstacles, are then added to
the attractive potential, in order to build a potential function
that the robot can autonomously compute locally, given
the geometries and locations of targets and obstacles and
the current PMF of the targets. Geometries of the vehicle,
sensor FOV, targets and obstacles are of great importance to
this method and are the main difference from other known
potential function methods for planning.

A. Measurement Utility

Information-driven sensor planning utilizes information
theoretic functions to assess the value of a set of sensor
measurements. Target classification can be reduced to the
problem of estimating one or more random variables from
partial or imperfect measurements. Therefore, the utility of
future measurements may be represented by the expected
information value of possible measurements. If information
value is represented by the decrease of uncertainty, i.e. the
decrease in information entropy of the PMF that represent the
target state, then, knowing the sensor parameter λi for each
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target Ti, and the current PMF of the target classification, Xi,
it is possible to assess how useful it would be for the sensor to
measure the target, by calculating expected reduction in the
target’s state entropy. This idea of utility of a measurement
is used to build an adaptive potential field integrated with
targets’ information value, to determine which targets the
UAV should measure and consequently to plan the trajectory
of the UAV.

B. Target Information Value

Conditional mutual information is a measure of the infor-
mation value of one random variable about another random
variable, where this information is higher when the two
random variables are strongly correlated. For example, if
the actual target classification Xi, and the measurement Zi
are two independent random variables, then their conditional
mutual information is null. However, due to the underlying
nature of sensor measurements, if a sensor is deployed to
classify a target, its measurements are always correlated with
the target classification variable. Thus, given a sensor mode
λi, a possible measurement Zi and a target state Xi, we are
interested in reducing the uncertainty in Xi by observing the
value of Zi. Suppose the current information entropy of the
target classification Xi is,

H(Xi) = −
∑
xi

p(xi) log2[p(xi)], (5)

then we can measure the reduction in the uncertainty of Xi

brought by a measurement zi from the posterior PMF, using
the conditional information entropy [23]:

H(Xi|Zi) = −
∑
xi

∑
zi

p(xi, zi) log2[p(xi | zi)]. (6)

Furthermore, because in sensor path planning and control
we are interested in determining the expected information
value of a measurement zi prior to obtaining it, the expected
information value of the measurement is defined as mutual
information i.e.:

Vi
.
= I(Xi; Zi|λi)

.
= H(Xi|λi)−H(Xi|Zi,λi)

= H(X) −
∑
zi

p(zi|λi)H(X|zi,λi). (7)

The expected information value Vi represents the expected
the entropy reduction associated with the ith target classifi-
cation H(Xi) when it is measured. The higher the expected
information value, the higher the importance of the target for
the sensor.

C. Artificial Potential Function

The potential field method is a robot motion planning
method that control robots based on the gradient field of
a potential function. The potential function U represents the
characteristics of the configuration space, and are constructed
by the geometries and locations of the obstacles and targets.
Although diverse functions have been utilized to generate
U [24], [25], [26], in this paper, the potential function for
the jth UAV, Uj , is a summation of the attractive potential

Uai ,∀ i ∈ IT generated by the targets, the repulsive potential
Url ,∀ l ∈ IB brought by the obstacles, and possibly the
repulsive potential Usk ,∀ k ∈ IA&k 6= j from other UAVs.
Thus

Uj(q) =
∑
i

U(q)ai +
∑
l

U(q)rl +
∑
k 6=j

U(q)sk (8)

where q = [x y z θ]T is the jth UAV’s configuration in C.
The gradient of Uj regarding to qj is used to design a UAV
controller in next section, and is

∇Uj(q) =

[
∂Uj(q)

∂x

∂U(q)

∂y

∂U(q)

∂z

∂U(q)

∂θ

]T
. (9)

The repulsive potential U(q)rl is defined as

U(q)rl
.
=

{
1
2η1

(
1

ζl(q)
− 1

d0

)2
, if ζl(q) ≤ d0

0, otherwise
(10)

where ζl(q) denotes the distance from the lth obstacle to the
UAV at q, and η1 is a small constant. In [13], the attractive
function for ith target is defined as

U(q)ai
.
= η2(1− σV ai e

− ζ
t
i (q)2

2σV a
i ) (11)

where ζti (q) denotes the distance from the lth obstacle to
a UAV at q; η2 is a scaling parameter representing the
influence of targets; Vi is the information value of the ith
target; σ is the influence parameter which together with Vi
and parameter a decides the influence distance of the ith
target. Let ζi = ζti (q), U(ζi)

a
i can also be regarded as a

function of ζi. As shown in [13], Ui(ζi)ai is an increasing
function of ζi, the influence distance of the ith target ζi =√
σV ai . Before new measurements of targets are obtained,

the information values of targets can be calculated and are
constant. When new measurements are obtained, the PMF of
the target classification is updated via Bayesian law, and thus,
information values of targets are updated instantly. Therefore,
information values are piecewise constants, and at any given
moment (10) is differentiable.

One well known limitation of potential field methods is
that the UAV can be trapped in local minima when multiple
obstacles and targets are populated in the workspace. The
local minima are regions where the potential function gra-
dient is null but do not intersect with any C-Target region.
This can severely lower the ability of the UAV or the group
of UAVs to efficiently reach the C-Target regions. A local
minimum is reached by the UAV when the L2 norm of (9) is
less than a predefined threshold and no new measurement is
obtained. In [13], an PRM based local information roadmap
was developed to navigate the robotic sensor escaping the
local minimum. In this paper, the same algorithm is extended
to navigate UAVs. The planner will find an escape route by
generating a random subspace Q ⊂ C, with the requirement
that the current configuration q ∈ Q and that at least one
target Ti ∈ Q. After Q is generated, a set of milestones
are sampled from Q. Then, based on these milestones, a
PRM roadmap is built starting from q. In this situation, it is
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guaranteed that there exists at least one compact subset of Q
where the potential function has lower values than the current
one, because CT i∩Q 6= ∅. This approach further guarantees
that the UAV will always navigate to a configuration with
lower potential, and thus the UAV will eventually reach a
target configuration.

IV. PLANNING AND CONTROL

The sensor planning and control method presented in
this section considers a single UAV sensor and its con-
trol. Considerations on the cooperation of multiple UAVs
are presented in the next section. The UAV is controlled
by three components: a mode planner that decides UAV’s
mode, a high level controller that generates references from
UAV’s current configuration and the decision provided by the
planner, and a low level controller that turns these references
into control inputs for the UAV. This section focuses on the
design of the planner, of the high level controller, and on
the integration with the low level control law. The inputs for
the low level controller, that has been taken from [27], are
sufficiently smooth time reference trajectories obtained by
properly interpolating the reference deriving from the high
level control law.

 

Low level controller 
 

Mode planner 
High level controller 

References 
Control input 

Configuration 
References 

UAV simulator 
 

Control input 
Configuration 

Fig. 1. Three components of the UAV control

A. Mode Planner
The UAV is equipped with an autonomous planner that

is able to compute the adaptive potential function defined
in section III at the current configuration. Depending on
the value of the gradient potential, the planner can switch
between three modes, gradient navigation mode, measuring
mode and minimum escaping mode, in order to generate a
reference for a low level controller.

When in gradient navigation mode (the default mode), the
UAV moves with no specifically defined target but only under
the effect of the negative gradient of the adaptive artificial
potential function. The planner switches to the second mode,
measuring mode, when the UAV is within a C-Target region.
The measuring mode guarantees that UAV stays within the
C-Target region long enough for the measurement to be
obtained. The third mode, minimum escaping mode, is used
if UAV gets trapped in a local minimum without measurable
targets. In this cases an escape roadmap is computed and
the executed. Once the UAV converges to the last milestone
mescape, the escaping mode is considered as completed and
normal gradient navigation mode resumes.

Fig. 2. Planner modes and transitions.

B. High Level Control

The high level controller considers the UAV’s current
mode and configuration, and uses the adaptive potential
function introduced in the background section to calculate
the references for the low level controller. Using a fixed time
step dt, at time t, the reference qrj(t + dt) of the jth UAV
is obtained by,

qr(t+ dt) = qj(t) + q̇j(t)dt

− 1

2
∇Uj(q)⊗ [

1

M

1

M

1

M

1

I
]T dt2 (12)

where M is the mass of the UAV, I is the robot’s moment
of inertia around the z axis, and qj(t) is the jth UAV’s
configuration at time t. The operator ⊗ multiplies vectors
element-by-element and returns a same size vector. While
q̇j(t) = [vxj (t) vyj (t) vzj (t) wzj (t)]T where vxj (t), vyj (t),
and vzj (t) are the jth UAV’s velocities in x, y, z direction
respectively, and wzj (t) is its angular velocity.

C. Low Level Control

Goal of the low level control law is to design the control
inputs uf and uτ for the dynamical model (1) so as to
track a desired position and attitude reference trajectory, as
pointed out in Subsection II-A. By considering the nonlinear
globally stabilizing controller in [28], the desired references
are required to be sufficiently smooth time signals with high
order derivatives satisfying appropriate bounds. A trajectory
smoother, having as inputs the references qrj(t), can be then
employed to obtain time reference signals pr(t) and Rr(t)
fulfilling the assumptions in [28].

V. SIMULATION RESULTS

This section focuses on some applications that differ in the
number of UAVs deployed a in the sensor’s characteristics,
exploring the emerging cooperative behavior of the UAVs.

A. Single UAV

This application explores the behavior of a single UAV
equipped deployed in the workspace, with n targets, m fixed
obstacles and r moving obstacles. The target states have the
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same prior PDF, which can be uniform or not, but all target
states are identical at time t0. The sensor parameter λi (III-
B) is supposed to have a fixed value λ0 for all targets Ti in
W .

The equality of all target state PDF and the fixed value S0

of the sensor parameter imply that the expected information
value of yet unmeasured targets is fixed and equal to a value
V0, therefore the attractive potential Uai generated by the
target Ti depends only on the distance ρi(q) of the UAV’s
current configuration q to the C-Target region CT i, with
the attractive potential of the closest target generating the
strongest virtual attractive force on the robotic sensor. The
agent is then attracted to the closest C-Target region, stops
there to acquire the measurement, then moves on. When a
target has been measured, its information value is set as zero
because the uncertainty in the target state cannot be reduced
by further measurements of the same sensor.

The UAV is initially deployed at a random location in
the workspace. The path followed by the UAV in this case
is not generally the shortest path that could be followed
and depends strongly on the robot initial configuration.
Classification performance depends only on the performance
of the sensor. Figure 3 shows the paths followed by a single
agent deployed at a random initial location to classify ten ran-
domly placed targets. The simulated sensor has comparable
performances for all targets and all target values: a gaussian
PDF with a variance σ = 5, which leads to rather unprecise
measurements. Iterations where the location doesn’t change
are when the agent is sensing the target.

 
Iteration 

 

M
et

er
/r

ad
 

 

 

x, y, z, θ 
 

Fig. 3. Path followed by a single agent to classify ten targets.

Figure 4 shows for the same simulation how the global
entropy, i.e. the sum of the entropies of the individual targets’
PDFs, decreases as measurements are acquired. The initial
entropy is 10 log2 ‖domain‖, and the rather large residual
entropy is due to the large error of the sensor.

B. N UAVs with Different Capabilities

The cooperative aspect emerges more efficiently when the
UAVs have different capabilities of sensing, and they have
widely different performances for the values in the real target
domain. As an example consider a single target T ; let the

 
Iteration 

 

En
tr

op
y  

Total entropy 
 

Fig. 4. Global uncertainty decreasing as the measurements are acquired.

target state domain be [1, . . . , 256] and the prior PDF of T be
uniform: pX(xi) = 1

256 , i = 1 . . . 256. Let also the target real
value be 19. Two UAVs, Rwide and Rprecise, are deployed:
Rwide has the same performance over the whole domain:
it measures the correct value xi with a normal PDF with
µ = xi, σ = 5. It’s the same sensor parameters used in the
single UAV example and, as seen, has a very low precision.
Rprecise has peak performances in a narrow range of the
domain, the [5, . . . , 25], where it can measure the correct
value xi with a normal PDF defined by µ = xi, σ = 0.1.
In the rest of the domain the sensor could indifferently read
any value, including the ones in the preferred range.

When the target PDF is still uniform, and its entropy is
maximum, with the given parameters the UAV Rwide has an
expected entropy value Hwide that is uniform and shown in
blue Fig. 5. The slopes at the ends of the domain are due to
border effects.

Fig. 5. Uniform expected entropy.

The green line in Fig. 5 shows the expected entropy value
Hprecise when the target PDF is uniform. The rather high
residual entropy even in the sensor’s range is due to the range
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values be possible even for out-of-range measurements. The
slight decrease in the uncertainty even for out-of-range values
reflects the fact that range values are much more likely to
be correct.

These expected entropies are dot-multiplied by the target
PDF, which is uniform and = 1/256 for each domain value,
then the two corresponding expected information values are:

Vwide = 3.6741, Vprecise = 0.3591

The attractive potential on the Rwide agent is ten times
the attractive potential on the precise sensor; the precise
sensor will tend to move very slowly, will mostly try to
avoid obstacles passing by, while the wide-spectrum sensor
will rush to give a first rough classification of the target.

Once the Rwide sensor senses the target, sensing for
instance 15 instead of the correct value 19. The target PDF
is no longer uniform, as shown in Fig. 6

Fig. 6. The target state after the first measurement. Real value is 19,
predicted value is 15

The expected information values now change, making
Vwide = 0 and Vprecise > 0. The wide-spectrum sensor is
no longer attracted and the precise sensor is attracted.

Given these considerations, the following scenario is pre-
pared and tested: N targets are setup in the workspace, with
some obstacles. A number of UAVs are supposed to have a
measurement range that covers the whole target state domain,
but with low precision. A measurement by any of these UAVs
could have a large error, but sufficient to identify the target
state.

In the same workspace, other UAVs are also deployed,
that can sense only a small range of values but with high
precision. When the algorithm is initialized and uncertainty
in the target states is maximum, these specialized robots
are affected by very small expected information values and
therefore moved by very small attractive forces, whereas they
can be pushed away by other moving obstacles. As long as
these conditions persist, the specialized robots tend then to
move very little and slowly, while the general purpose UAVs
start to move rapidly to perform a first, rough classification
of targets.

As one target Ti is measured by a general purpose UAV,
its target state uncertainty decreases, concentrating in a peak
in the range around the real target value. When the PDF is
updated to reflect this peak, if there is a UAV Rj specialized
in the most likely range, the expected information value for
this robotic sensor will actually increase with the reduction
of the uncertainty, because the UAVs are able to reduce or
almost eliminate the residual uncertainty. Other specialized
robotic sensors, that are not tuned to the specific range, will
instead compute an even lower expected information value.
The robotic sensor Rj , affected mostly by the attractive
potential of CT i, will start to navigate toward it, thus
maximizing the performance with respect to the distance
traveled. Also, if the specialized UAVs almost do not move
unless necessary, other UAVs that are planning routes to
escape local minima are less likely to replan, improving the
performances of the whole class of robots.

Simulations show that this kind of cooperation is possible,
however it greatly depends on the accuracy of the precise
sensors. Sensors which are completely and uniformly blind
outside of their range are not of great utility, because their
expected information value doesn’t increase easily. Better
sensor models, such as sensor that give at least an “out-
of-range” measurement instead of a uniform PDF that can
also erroneously produce values in the preferred range, could
perform better and enhance the cooperative behavior.

C. Measure A Target Behind A Fixed Obstacle

This situation is set up to test the roadmap method to es-
cape local minima, which becomes of paramount importance
as multiple robots are deployed. The workspace is divided
in two parts by a wall-obstacle Bwall, that impedes passage
of the robotic sensors except for a single passage. A target
Thidden is set on one side of Bwall and the UAV are supposed
not to be able to obtain measurements from behind the wall.
A single UAV is then deployed on the opposite side of Bwall,
in a configuration q0 from which gradient navigation will
bring the UAV to the local minimum that is formed on the
side of Bwall in the configuration that is closer to Thidden.
This is the minimum value of the attractive potential function
Uatt that is on the UAV’s side of the wall:

 

Target 

Obstacle 

Fig. 7. Robot stuck in a local minimum behind the obstacle.
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When the UAV detects the trapping, minimum escaping
mode is entered and the milestones are sampled. By con-
struction, the final target milestone has a lower potential than
the current configuration, and is located on the opposite side
of Bwall. In this case, the subspace Q used for sampling
milestones must include the target configuration or at least a
portion of the C-Target region, the current configuration and
the passageway left open by the wall. When the sampling
is able to sample at least two milestones that are connected
by a path that passes through the passageway, a navigation
plan from the current minimum to the opposite side of the
wall is built, and the robot navigates through the passageway.
Simulations with multiple UAVs deployed in the same situ-
ation show that the UAVs will pass through the passageway
one at a time, provided that the expected information value is
large enough. As soon as the information value of the hidden
target decreases, UAV will not likely try to reach it.

VI. CONCLUSIONS

The artificial potential function integrated with informa-
tion value function presented here is an effective method for
planning and coordinating UAVs equipped with sensors. It
allows to perform independent path-planning and obstacle
avoidance, and implicitly provides a mean to maximize the
overall performance of a class of UAVs without centralized
coordination. Simulation of the different application has
shown that the method performs best when the density of
UAVs, obstacles and targets is kept low and when the objects
are relatively small. As the number of objects increases,
the artificial potential function presents many local minima,
which require the planner to suspend navigation by gradient
and invoke the computationally more expensive roadmap
navigation, that however is in line with the overall goal of
maximizing classification performance.
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