
Abstract— The detective boardgame of CLUE® can be 
viewed as an example of preposterior decision problem, where 
decisions on how to navigate the board are based on the ex-
pected utility of the observations, and the observations are 
aimed at improving an inference process. The same principles 
arise in modern surveillance systems, such as demining sensor 
networks, where the sensor platforms (e.g., autonomous ground 
or vehicles) move about the environment in order to collect 
measurements or evidence from unknown targets and improve 
inference of unknown features. The boardgame of CLUE® 
serves as a well-known and intuitive example problem, that 
displays the same couplings between motion planning and 
inference, as modern surveillance systems. In this paper, a 
Bayesian network (BN) approach is used to develop an auto-
mated computer player for CLUE®, that is tested through an 
interactive simulation of the game. The results show that the 
intelligent player plans its motions according to the evidence 
that needs to be collected, and is capable of winning the game of 
CLUE® against experienced human players. 

I. INTRODUCTION

HE boardgame of CLUE® is a popular detective game 
with the purpose of determining the guilty suspect, the 

weapon, and the room of an imaginary murder. Players 
ultimately find the answers by entering rooms, making 
suggestions, and obtaining other players’ responses support-
ing or refuting their suggestions. In this paper, a network 
modeling approach using Bayesian networks (BNs) is 
developed to model the process of inferring the answer to 
the murder posed in CLUE®. Furthermore, intelligent 
movements and suggestion-making techniques of the indi-
vidual players can be explored based on the proposed 
Bayesian network model. The intelligent computer player 
designed in this paper is capable of automatically developing 
a strategy for navigating the mansion illustrated on the game 
board, based on the evidence collected from the responses of 
the other players. The tools developed in this paper, which 
include an interactive simulation of the game and an intelli-
gent computer player implementing BNs, also allow to 
investigate and illustrate the underlying principles of the 
decision problems that arise in modern surveillance systems. 

Recently, there has been much interest in modern surveil-
lance systems with increased flexibility and functionality, 
where the sensors and their platforms are characterized by a 
high degree of autonomy, reconfigurability, and redundancy 
[1]-[3]. The initial motivation of the CLUE® research is the 
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similarity between these surveillance systems objectives and 
those of the game of CLUE®. Recent research in the AI 
community seeks to develop computer games implementing 
advanced AI [4,11], supporting the idea that computer game 
simulations are useful for investigating and demonstrating 
intelligent systems and algorithms. 

II. BACKGROUND

A. The Game of CLUE® 
There are nine rooms in the mansion shown in Fig. 1, i.e., 

dining room, library, billiard room, hall, kitchen, lounge, 
ballroom and conservatory, and six suspects, i.e., Col. 
Mustard, Miss Scarlet, Prof. Plum, Mr. Green, Mrs. White 
and Mrs. Peacock. All of these pawns are potential suspects. 
As for the weapon, there are six possibilities: knife, rope, 
candlestick, lead pipe, revolver, and wrench. An interactive 
simulation of the game of CLUE  is developed, as de-
scribed in Section IV, in order to allow a human to play 
against the intelligent computer player. 

Each item in the three categories of suspect, weapon, and 
room is represented by an illustrated card and there are a 
total of twenty-one cards in the deck. One card from each 
category is randomly selected and removed from the deck. 
The selected cards represent the true killer, weapon, and 
room of the crime and are hidden in an envelope. The 
remaining cards are then dealt to the players. Players move 
their pawns from room to room and upon entering one of the 
nine rooms make a “suggestion” about their belief of the 
guilty suspect, the weapon and the room where their pawns 
have moved into. By making suggestions, players collect 
information about other players’ cards, and can infer the 
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hidden cards in the envelope. 
There are three ways for a player to enter a room: (i) en-

tering through one of the doors, (ii) via the Secret Passages, 
corner to corner (see Fig. 1), or (iii) being taken to the room 
by another player who is suggesting the player’s pawn as a 
suspect. Both (i) and (ii) are moves made only during his/her 
turn of play, whereas (iii) is done during another player’s 
turn.  When a suggestion has been made by a particular 
player (Player 1) upon entering a room by method (i) or (ii), 
the next player (Player 2) proves or disproves the suggestion 
either by saying, “I have NONE of the suggested cards” or 
by showing one of the cards to the suggestion maker. If 
Player 2 has none of the cards, it is the turn of the second 
next player (Player 3) to prove or disprove the suggestion 
made by Player 1. This is continued until the suggestion has 
been disproved or all of the players have been asked. By 
making suggestions and observing the outcomes of the other 
players’ responses, information is obtained about their cards.  
When players are confident in their knowledge of the hidden 
cards, they can make an accusation.  If the accusation is 
correct, the player wins the game; otherwise he/she will lose 
and exit the game. 

B. Bayesian Network Inference 
In CLUE®, players infer the three hidden cards based on 

information gathered from the responses to previous sugges-
tions. By viewing the information as evidence, inference can 
be carried out by a BN [6] that represents the relationships 
between the hidden cards and those dealt to the players. 

In this paper, capital letters denote variables and lower-
case letters denote the states or instantiations of the variables 
(i.e., Xi is said to be in its jth instantiations when Xi = xi,j). A 
BN is a directed acyclic graph (DAG) with conditional 
probability tables (CPTs) attached to each node. If there is a 
link from node A to node B, it is said that B is a child of A
and A is a parent of B [5]. A CPT lists in tabular form the 
conditional probabilities of each node or state variable, Xi,
given its parents, or p(Xi| (Xi)), where (Xi) denotes the 
parents of Xi. Let μi denote the instantiations of the children 
of variable Xi. By utilizing Bayes’ rules of inference, given 
evidence about the observed variables in the network, the 
posterior probability distribution of variable Xi can be 
computed as follows: 

                     .
( | ) ( )

( | )
( )

p X p Xi i ip Xi i p i
 (1) 

The prior probability of Xi, p(Xi), is the known probability 
distribution over the states of Xi, (xi,1, …,

,xi ri
). The likeli-

hood function, p(μi|Xi), contains the conditional probabilities 
of the instantiated children variables connected to Xi. This 
probability is the product of the likelihood probabilities of 
the instantiated variables ( )( | ) ( | )i j i

j
p X p Xi i , where 

μi(j) represents the instantiation of the jth child of Xi. The 
marginalization over the observed variables, p(μi), accounts 

for the relationship between the instantiated variables and all 
of the possible states of Xi,
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The posterior probability p(Xi = xi,k|μi), also referred to as the 
marginal probability of xi,k, represented the likelihood or 
confidence level in xi,k given the μi. Therefore, using (1), Xi

can be inferred from the available hard evidence. 
Hard evidence refers to perfect knowledge of a node’s 

instantiation, and is accounted for in (1). If the probability 
distribution of a node over its possible values is known, it is 
referred to as soft evidence, and denoted by se.  In this case, 
Jeffrey’s rule can be used as a mechanism to update soft 
evidence, represented as a distribution Q(μi) [7, 8]; the rule 
can be written in (3)-(4), 
                                ( | ) ( )i ip se Q  (3) 
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In (3), the soft evidence distribution Q(μi) can be explained 
as the conditional probability of μi being instantiated given 
soft evidence se. Therefore, Q(μi) can be viewed as the 
weights of p(Xi |μi) which can be calculated by (1). By 
comparing (1) and (4), hard evidence can be viewed as a 
special type of soft evidence whose conditional possibility 
given soft evidence is 1 for the instantiated or observed 
value, and 0 on other values. 

III. METHODOLOGY

A. BN Inference in the Game of CLUE® 
An intelligent computer player (ICP) for CLUE® is de-

veloped by using a BN to infer the hidden cards from the 
collected evidence. The evidence pertains to the cards 
belonging to the other players, which at the onset of the 
game are unknown to the ICP.  In order to replicate the 
inference process, a so-called CLUE® BN is developed 
where each card is represented by a BN node. Both the 
relationships between the nodes (BN arcs) and the CPTs are 
determined by inspecting the game rules. 

Assume there are three players in the game. After three 
guilty cards comprised of one suspect card (K), one weapon 
card (W), and one room card (R) are hidden, the remaining 
eighteen cards are thoroughly mixed together and shuffled, 
and then dealt one by one such that six cards go to each 
player. Every time a card is dealt, its value influences the 
cards that are dealt later. Let Cji denote the jth card of ith

player. Then, the general CLUE® BN model represents the 
relationships between all of the CLUE® cards, shown in Fig. 
2. Each card Cji will influence the cards of the same type 
(suspect, weapon, or room) that are dealt later in the game, 
i.e., Cji Cmn, when n > i or when i = n, m > j. Although 
cards of a different type do not influence each other (i.e., are 
conditionally independent), the typology of the dealt cards is 
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unknown.  Therefore, in this BN none of the arcs can be 
eliminated a priori.

Let the information gathered by the ICP be the evidence e.
If its CPTs are known this BN can be used to compute the 
posterior probability distributions p(K|e), p(W|e), and p(R|e), 
i.e., to infer the hidden cards K, W, and R.  The size of the 
CPT attached to a node Xi, referred to as |CPT(Xi)|, is equal 
to the product of the number of instantiations of Xi times the 
number of instantiations of each node in (Xi). In the general 
CLUE® BN (Fig. 2), the suspect cards have six possible 
instantiations, i.e., the suspect domain is dom(K) = {Col. 
Mustard, Miss Scarlet, Prof. Plum, Mr. Green, Mrs. White, 
Mrs. Peacock}; similarly, dom(W) = {knife, rope, candle-
stick, lead pipe, revolver, wrench} and dom(R) = {dining 
room, library, billiard room, hall, kitchen, lounge, ballroom, 
conservatory}. It follows that Cji, whose typology is un-
known a priori, has twenty-one possible instantiations and 
its domain is dom(Cji) = dom(K) dom(W) dom(R). Also, 
all previous hidden or dealt cards are parents of Cji,
             | ( ) | 3 6( 1) ( 1) 6 4,jiC i j i j  (5) 

where, |  | denotes the member number of a set. For example, 
| (Cji)| = 20, when j = 6 and i = 3. The size of the CPT 
attached to Cji, denoted by |CPT(Cji)|, is given by: 
              

( ) { }
.| CPT( ) | | ( ) |

ji jiX C C
jiC dom X  (6) 

For example, |CPT(C63)| = 6 6 9 2117 = 9.7336 1024.
The children of K, W and R, denoted by μK, μW and μR

respectively are all Cji, j = 1, 2, …, 6 and i = 1, 2, 3. The 
object of the BN model is to calculate p(K|se), p(W|se) and 
p(R|se). From (1) and (4), the probability of the hidden card, 
T, is, 
                        ( | ) ( | ) ( ),

T

T Tp T se p T Q  (7) 

where,

                          ,
( | ) ( )

( | ) ( )T

p T p TTp T p T
 (8) 

and T = K, W or R, represents the card type. The general 
CLUE® BN model shown in Fig. 2 is exact. However, the 
computational complexity of the inference task using BN is 
NP-hard [9]. Therefore, inference is computationally infea-
sible for the general CLUE® BN. 

The computational complexity of the inference task can 
be reduced by exploiting the fact that cards of different 
typology are conditionally independent through the follow-
ing assumptions: 

1) Player P1 (the ICP), always has two suspect cards, two 
weapon cards, and two room cards. 

2) Player P2 (the player next to P1) always has 2 suspect 
cards, 1 weapon card and 3 room cards. 

3) Player P3 (the player next to P2) always has 1 suspect 
card, 2 weapon cards and 3 room cards. 

Subsequently, the cards can be labeled not only by the order 
in which they are dealt and by the player’s number, but also 
by their typology. For example, Cji

(k) denotes the suspect 
card that is number j in the deck of the ith player; similarly, 
Cji

(w) and Cji
(r) respectively denote the weapon and room 

cards. Although each player can shuffle its own deck, since 
only in the cards’ instantiations are of interest, the cards can 
be labeled in this order without loss of generality.  In order 
to label the cards according to their typology, the cards are 
shuffled and dealt using three separate decks containing the 
suspect, weapon, and room cards, respectively. 

Since the cards dealt to the ICP player cannot appear in 
the hidden deck nor in the other players’ hands, they can be 
removed from the BN model, thereby reducing the domains 
of the three card types. The simplified BN model is shown in 
Fig. 3.  Here, the domain of node K, dom(K) ={Kj: j = 1, 
2, …, 4}, excludes the two suspect cards dealt to the ICP. 
Similarly, the ICP’s weapon and room cards can be excluded, 
such that, dom(W) ={Wj: j = 1, 2, …, 4} and dom(R) ={Rj: j
= 1, 2, …, 7}. Equations (6)-(8) still hold for the simplified 
CLUE® BN model and, therefore, are used to infer the 
posterior probabilities of K, W, and R.  Now that a feasible 
CLUE® BN structure has been identified, the corresponding 
CPTs are determined by inspection. 

A variable unique(.) is introduced such that unique(Cji) = 
1 if the instantiated cards of all members of (Cji)  {Cji}
are different from each other, otherwise, unique(Cji) = 0. The 
CPTs for this simplified BN model are: 
            ( ) 1/ | ( ) |, ( ),p T T dom T T dom Tj j  (9) 

where T  = K, W or R.
(k)0, if ( ) 0(k) (k)( | ( )) (k)1/(| ( )| | ( )|), else

unique C jip C Cji ji dom K C ji
 (10) 
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(w)0, if ( ) 0(w) (w)( | ( )) (w)1/(| ( )| | ( )|), else

unique C jip C Cji ji dom W C ji
 (11) 

     .
(r)0, if ( ) 0(r) (r)( | ( )) (r)1/(| ( )| | ( )|), else

unique C jip C Cji ji dom R C ji
 (12) 

B. Evidence Table (ET) Construction 
The approach for formalizing and updating the evidence 

collected during the game consists of using matrices of 
probabilities, referred to as Evidence Tables (ETs), to store 
hard and soft evidence about the cards of the two ICP 
adversaries. Both hard and soft evidence about suspect, 
weapon, and room cards is presented in the form of probabil-
ity distributions Q(μK), Q(μW), and Q(μR), respectively, and 
used in (7) and (8) to infer the three hidden cards. Let μK(m), 
μW(m) and μR(m) represent the instantiation of the mth child 
of K, W and R, respectively.  Then, the evidence table for the 
cards of type T, denoted by ET, is defined in terms of the 
probability distribution Q( T),
                         ( , ) ( ( ) ),E T nm n Q m TT  (13) 

where T  represents K, W or R, m = (1, …, |μT|), and n = 
(1, …, |dom(T)|).  In Fig. 3, μK = {C12

(k), C22
(k), C13

(k)}, μW = 
{C32

(w), C23
(w), C33

(w)} and μR = {C42
(r), C52

(r), C62
(r), C43

(r),
C53

(r), C63
(r)}. Thus, the dimensions of EK, EW and ER are 

|μK| |dom(K)|, |μW| |dom(W)| and |μR| |dom(R)|, respectively. 
Hard and soft evidence are stored in the ETs in the same 

fashion, but differ in their updating. Hard evidence repre-
sents perfect knowledge of an adversary’s card. However, 
cards are shown only to the player making the suggestions, 
and the other players can gather information about their 
adversaries’ cards from the suggestions themselves. This 
type of observation is referred to as soft evidence. 

There are two ways for the ICP to obtain soft evidence. 
The first situation arises when the ICP makes a suggestion 
= {Ks1, Ws2, Rs3} that cannot be disproved by Pd (P2 or P3), 
or both.  This is referred to as Case (a), and indicates that the 
probabilities for the instantiations of  are equal to 0. Case (b)
refers to the situation where Pd shows another player his/her 
card, Cshow, in order to disprove one element of the sugges-
tion .

Before any evidence is entered, the ETs reflect uniform 
distributions for all cards, and are initialized as follows, 
                        ( , ) 1/ | ( ) |,E m n dom TT  (14) 

where T = K, W or R, m = (1, …, |μT|), and n = (1, …, 
|dom(T)|). The ETs are updated after each player’s turn 
based on the evidence collected from his/her suggestion and 
the corresponding replies, according to the following rules: 
1) The probabilities of mutually-exclusive instantiations 

for a variable must sum to one, i.e., 
                                 ( , ) 1,T

n
E m n  (15) 

where T = K, W or R, m = (1, …, |μT|), and n = (1, …, 
|dom(T)|). 

2) Hard evidence supporting the negation of an instatian-
tion holds for the remainder of the game, i.e. 

           , ,if ( ) ( , ) 0, t > tT n im T E m nT  (16) 

where T = K, W or R, and ti is the present turn. 
3) Hard evidence supporting an instantiation holds for the 

remainder of the game, i.e. 

       
( , ) 0
( , ) 0, t > t ,
( , ) 1

if ( ) , then
E o nT
E m qT i
E o qT

o TqT (17) 

where T = K, W or R, m = (1, …, |μT|) and m o,          
n = (1, …, |dom(T)|) with n q, and ti is the present turn. 

The ETs are updated by first selecting the elements to be 
updated upon a player’s move (step 1), and then by normal-
izing the corresponding rows and columns (step 2). 

C. Evidence Tables Updating 
Two normalization procedures called row normalization 

and column normalization are developed to guarantee that 
the laws of probability apply to the updated ETs. 

1) Step 1 of ETs Update 
In Fig. 3, the child nodes of type T belonging to Pd are 

denoted as μT(Pd), where  Pd = P2 or P3. For example, μK(P2)
= {C12

(k), C22
(k)}. During the game of CLUE® hard evidence 

is obtained only when the ICP suggestion is disproved by a 
player, say Pd.  When Pd shows a card of type T to the ICP, 
the row with the highest uncertainty among μT(Pd), denoted 
as the sth row in ET, is selected for updating and set equal to 
one (Rule 3). The Shannon's entropy [10] is used to quantify 
the uncertainty of the discrete probability distributions 
contained in the ETs. For an ET of type T this entropy is, 
                 

2
( ) ( , ) log ( ( , )),T T

n
H m E m n E m nT   (18) 

where, T = K, W or R, m = (1, …, |μT|), and n = (1, …, 
|dom(T)|). 

In Case (a), presented in Section III. B., player Pd has 
none of member cards in the suggestion of . Only those 
elements corresponding to the instantiation values in  but 
not held by ICP, i.e., the intersections of  and dom(K)
dom(W) dom(R), are updated. Denote these intersections 
as  = {Th(v): 1 v | |}. Th(v) means the instantiated value is 
the h(v)th member in dom(T). For any Th(v) in , determine 
the row in ET corresponding to every member in μT(Pd) to be 
s(v)th row, and then set the appropriate element ET(s(v),h(v)) 
= 0, showing that any T card held by player Pd is not Th(v).

In Case (b), player Pd shows another one of his/her cards, 
Cshow, to disprove one element of the suggestion  = {Ks1,
Ws2, Rs3}. The possible instantiations of Cshow are the free
instantiations that are also the intersections of  and dom(K)

dom(W) dom(R), denoted by  = {Th(v): 1 v | |}: 
                       ( ) 1/ | | .show ( )p C Th v  (19) 

For any Th(v) in , determine the highest uncertainty among 
μT(Pd), say the sth row in ET, and then select the appropriate 

4353



element to be ET(s,h(v)), such that, 
( , ( )) ( ( ) )( )

( ( ) | ) ( )( ) show ( ) show ( )

( ( ) | ) ( )( ) show ( ) show ( )

E s h v Q s TT T h v

p s T C T p C TT h v h v h v

p s T C T p C TT h v h v h v

 (20) 

( ( ) | ) 1( ) show ( )p s T C TT h v h v  (21) 

( ) 1 ( )show ( ) show ( )p C T p C Th v h v  (22) 

( ( ) | )( ) show ( )

previous ( ( ) )( )

previous ( , ( ))

p s T C TT h v h v

p s TT h v

E s h vT

 (23) 

where 1 v | |. Under the condition that Cshow is Th(v), the 
statement that μT(s) equals the value of Th(v) is always true, 
as is shown in (21). 

2) Step 2 of ETs Update 
The procedure of row normalization has two inputs: a row 

in ET, say ET(s,:) and the last set element to be updated, say 
ET(s,h). Row normalization procedure first finds “1” and “0” 
elements in ET(s,:). Then, if any element is equal to 1, the 
other elements are set equal to 0; if none of the element 
equals 1, calculate the variation 1 ( , )T

n
E s n  and 

divide  by those elements that are not equal to 0 nor ET(s,h).
The negative element(s) in ET(s,:) is set equal to 0. The 
above procedure is used again until the sum of ET(s,:) equals 
1 and all the elements in ET(s,:) are non-negative. It can be 
seen that row normalization guarantees that ET-updating 
Rules (1), (2) and the first part of Rule (3) are always satis-
fied.  

The procedure of column normalization first finds “1” 
elements in ETs. If there is any element of value 1, say 
ET(s,q), in ET, then the other elements along the same col-
umn in the same matrix, (i.e, ET(m,q) for all m s) are set to 
0. This procedure guarantees that the second part of rule (3) 
is always satisfied. 

IV. CLUE® SIMULATION

The simulation of CLUE® is developed through MAT-
LAB Graphical User Interface (GUI) toolbox and includes 
three steps, choose players, deal cards, and start game. 

A. Choose Players and Deal Cards 
In the simulation of CLUE®, the ICP plays against two 

other players who are either human or random computer 
players. The human player(s) can choose three pawns to be 
computerized or human, among which is at least one com-
puter player (pawn). In the sequence Col. Mustard, Miss 
Scarlet, Prof. Plum, Mr. Green, Mrs. White, Mrs. Peacock, 
the first computer player (pawn) is always the ICP. The 
other computer player, if any, is random and performs 
random moves and suggestions. Otherwise, the ICP plays 
against two human players. 

The CLUE® cards are dealt through the rules described in 
Section III. A. Subsequently, the CLUE® BN model for the 
ICP is created based on the remaining cards or available 
instantiations. The BN CPTs are computed as described in 
Section III. A., and the ETs are initialized according to (14). 

B. Start and Play Game 
The necessary steps for a player of CLUE® include: 1) 

roll the die and get a random number from 2 to 12 to deter-
mine how far the pawn can move, 2) move to a position on 
the board with the number of passing bins no greater than 
die number, 3) transfer the turn to next player. If a player 
enters a room during his/her move, the player makes a 
suggestion and waits for other players’ responses. If the 
player is taken into a room by another player, he/she must 
wait for his/her turn to make a suggestion. An accusation can 
be made at the beginning or at the end of players’ turn.  
Secret passages to other rooms are located in the corner 
rooms, as in the real boardgame. The human players can see 
their CLUE® cards, and their actions are observed by the 
computer and the human players during the game via the 
interfaces developed in MATLAB. 

At the beginning of every turn, the ICP infers posterior 
probabilities p(K|se), p(W|se) and p(R|se), based on (7) and 
(8). If the maximum values max(p(K|se)), max(p(W|se)) and 
max(p(R|se)) are all  90%, then the ICP makes an accusa-
tion {Kestimated, Westimated, Restimated}. Otherwise, the ICP rolls 
the die and moves its pawn. The movement rule is that if 
max(p(R|se))  90%, then ICP enters the room Restimated of  
p(R|se)  90% as often as possible and makes suggestions on 
suspect and weapon cards; if max(p(R|se)) < 90%, then ICP 
enters the nearest room where 0 < p(R|se) < 90% as often as 
possible and makes suggestions as often as possible. When-
ever the ICP enters a room, he makes a suggestion based on 
the following rule: if there is one suspect card Ks of 0 < p(K
= Ks |se) < 90%, the ICP chooses Ks as the suggested suspect 
card, otherwise, the ICP chooses a suspect weapon card in 
hand as the suggested card; if there is one weapon card Ws of 
0 < p(W = Ws|se) < 90%, the ICP chooses Ws as the sug-
gested weapon card, otherwise, the ICP chooses a weapon 
card in hand as the suggested card. After making a sugges-
tion, the ICP observes the response(s) of other player(s) and 
updates his ETs accordingly. At the end of his turn, the ICP 
makes an accusation if max(p(K|se)), max(p(W|se)), 
max(p(R|se)) are all  90%, otherwise play continues. 

 The user-interface allows the human players to manually 
select the suggestion. He/she also can make an accusation. If 
it is incorrect, he/she loses the game and will not move 
further but still can prove or disprove others’ suggestions. 
To analyze CLUE® playing results, history record files are 
written to store useful information in CLUE® playing, such 
as information of players, ETs, posterior probabilities. 

V. RESULTS AND DISCUSSION

The CLUE® simulation begins with the simplified 
CLUE® BN model and the standard CLUE® rules.  Then, 
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the ETs are continually updated, allowing the ICP to follow 
the rules for movement and suggestion-making and to 
intelligently move about the board and make suggestions. 
Through many simulations involving the ICP playing against 
a random computer player and a human, ICP’s intelligent 
suggestion-making is rationalized via game playing statistics. 

Two testers, tester 1 and tester 2, respectively, were in-
vited to test the CLUE® simulation. Tester 1 is a 15 year old 
10th grader at Chapel Hill High School, Chapel Hill, North 
Carolina, USA. Tester 2 is a 12 year old 7th grader at Grey 
Culbreth Middle School, Chapel Hill, North Carolina, USA. 
Both testers have more than 2 years experience playing the 
game of CLUE®. A simulation begins with one tester 
choosing three of the six colored pawns, which represent a 
human player (the respective tester), an ICP, and a random 
computer player. The game is then played according to the 
rules outlined in Section II. A. and repeated until ICP or the 
tester wins the game. The test results are shown in Table I. 

It can be seen from Table I that the ICP winning rate is 
lower for tester 1 (35.7%) than tester 2 (66.7%). The reason 
for the change in the rate ICP wins is related to the addi-
tional experience in playing the game of CLUE® of tester 1 
over tester 2. The initial results about ICP winning rates are 
inspiring and show that ICP can defeat human players. 

VI. CONCLUSION AND FUTURE WORK

A BN approach is developed to derive an intelligent com-
puter player for the board game of CLUE®, whose objective 
is to correctly infer the three hidden cards, representing the 
suspect, weapon, and room of the murder. Evidence tables 
are constructed to update hard and soft evidence available 
during the game playing and incorporated by the proposed 
Bayesian network model. The game of CLUE® is used as a 
research benchmark to develop intelligent technologies for 
surveillance systems. Future work will implement ICP’s 
optimal movement using finite state machine (FSM) ap-
proach [11] and preposterior analysis technique [12]. 
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TABLE I
TEST RESULTS OF CLUE SIMULATION

 Tester 1 Tester 2 

Total Times of Playing 14 12 
Times human player wins 9 4 
Times ICP wins 5 8 
Rate ICP wins 35.7% 66.7% 
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