
Abstract— Information-driven sensor management aims at 
making optimal decisions regarding the sensor type, mode and 
configuration in view of the sensing objectives. In this paper, an 
approach is developed for computing two information-theoretic 
functions, expected discrimination gain and expected entropy 
reduction, to optimize target classification accuracy based on 
multiple and heterogeneous sensors fusion.  The measurement 
process is modeled by means of Bayesian networks (BNs). The 
two objective functions utilize the BN models to represent the 
expected effectiveness of the sensors search sequence. New 
theoretic solutions are presented and implemented for comput-
ing the objective functions efficiently, based on the BN 
factorization of the underlying joint probability distributions. 
Dempster-Shafer fusion rule is embedded in the computations 
in order to account for the complementarity of multiple, 
heterogeneous sensor measurements. The efficiency of the two 
objective functions is demonstrated and compared using a 
landmine detection and classification application. 

I. INTRODUCTION 
HE problem of information-driven sensor planning and 
management for target classification consists of opti-

mally deciding the sensor type and mode that maximize the 
expected information profit. The sensor information profit is 
defined as the expected value of the information obtained 
through the sensor measurements, minus the cost associated 
with the use of the sensor and related resources, such as, its 
platform. The main philosophy behind this approach is to 
base the decision for sensor planning and platform naviga-
tion on dynamic sensor measurements that become available 
over time and whose outcome depends on the decision 
variables. For many sensor surveillance systems involving 
multiple and heterogeneous components or agents, the value 
of sensor measurements can be expressed as an information-
theoretic objective function.  Then, the measurements can be 
viewed as a feedback to the sensor manager (or controller), 
and can be used to make optimal decisions about measure-
ment sequence and sensor parameters. Ultimately, the 
solutions must optimize classification accuracy, probability 
of detection, and minimize the probability of false alarms. 

The use of information-theoretic objective functions for 
sensor management has been proposed by several authors. 
Schmaedeke used a discrimination gain technique to solve a 
multisensor-multitarget assignment problem [1]. Kastella 
managed agile sensors to optimize detection and classifica-
tion based on discrimination gain [2]. Zhao investigated 
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information objective functions such as entropy and Maha-
lanobis distance measure for sensor collaboration 
applications [3]. However, little work has been done to 
compare these objective functions and analyze their per-
formance across distinct sensor applications, such as, feature 
estimation and target classification. In this paper, a BN 
framework is developed for computing the discrimination 
gain and entropy reduction in multiple and heterogeneous 
sensor systems. 

Two common applications of multiple sensor systems are 
the classification of the target features from fused sensor 
measurements, referred to as feature inference, and target 
classification. The problems of feature inference for a 
Gaussian target are provided in [2]. In this paper, the theo-
retic solutions for non-Gaussian distributions are derived for 
both feature inference and target classification. 

When multiple heterogeneous sensors are employed, their 
complementarity and performance relative to the environ-
mental conditions are exploited through fusion. Dempster-
Shafer (D-S) fusion technique has been shown to be very 
effective for performing feature inference and target classifi-
cation based on multiple and heterogeneous sensor 
measurements [4-7]. A novel contribution of this paper is 
that the D-S fusion rule is embedded in the computations of 
the information objective functions to evaluate the expected 
benefit of obtaining sensor information that will be fused a 
posteriori.  Also, the Bayesian network (BN) sensor model-
ing presented in [8] is used in order to obtain a methodology 
that can be generalized to any measurement process, regard-
less of the form of the underlying probability distributions.  

The paper is organized as follows. In Section II, the dis-
crimination gain and entropy reduction are introduced. In 
Section III, the computation of these objective functions is 
presented for the feature-inference and target-classification 
cases, and D-S fusion is incorporated in the BN classifica-
tion frame. The demining application is presented and 
demonstrated in Section IV. 

II. BACKGROUND 

A. Bayesian Network Modeling of Sensor Measurements 
     A Bayesian network (BN) model is a directed acyclic 
graph (DAG) [8] comprised of a set of nodes representing 
variables, and a set of directed arcs connecting the nodes. In 
this paper, capital letters denote sets of variables, lowercase 
letters denote variables, and subscripts in lowercase letters 
denote the possible states of the variables. In BN models, 
Bayes’ rule of inference is utilized together with graphical 
manipulations to compute the posterior probability distribu-
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tion of a variable x given evidence about the observed 
variables in the network. 

BNs map causal-effect relationships among all relevant 
variables by learning the joint probability distributions from 
data and, possibly, heuristic arguments. They can be used for 
modeling a generic sensor measurement process by consid-
ering all of the variables that influence the measurements 
outcome. These variables that can be classified as follows: 
• Sensor Mode (S): The set of sensor parameters chosen to 
operate the sensor. 
• Environment (E): The set of environmental variables 
influencing sensor measurements. 
• Observed Features (F): The set of target characteristics that 
are obtained from the raw sensor measurements. 
• Actual Target Features (T): The set of actual target charac-
teristics that must be inferred from the sensor measurements. 

In many applications, such as demining, the measure-
ments obtained from multiple and heterogeneous sensors 
must be obtained and fused in order to achieve satisfactory 
classification performance. The BN architecture shown in 
Fig. 1 [4] can be used to model each sensor using the proce-
dure in [4]. In some cases, the likelihood P[F | T] may be 
given in terms of a known probability density function 
(PDF), such as the Gaussian distribution used in [2]. But, in 
general, P[F | T] may be unknown and non-Gaussian. Then 
the BN approach presented in this paper can be used to learn 
the PDF from available sensor data. 

 

 
Fig. 1. BN architecture for modeling kth sensor (for 1 ≤ k ≤ n) when a target 
has one feature, T = {t}. 
 

B. Sensor Fusion 
When two sensors, a and b, are applied to collect meas-

urements from the same feature t, the respective BN models 
are used to obtain the probability distribution of t over all of 
its possible states, e.g., P1[t = ti] and P2[t = tj], where Pk is 
obtained from the kth sensor,  l is the size of the domain of t, 
and j =1, …, l. The distributions are combined by the D-S 
rule of evidence combination [9, 10] to produce the fused 
probability of each state tk, as follows 
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For multiple sensors fusion is implemented as follows: 
first the probabilities obtained by two sensor measurements, 
P1 and P2, are fused to obtain P⊕. Then, P⊕ is fused with the 
next distribution, P3, and the iterative process continues until 
every distribution Pk, k = 1, …, n, is incorporated by eq. (1).  

C. Review of Information-Theoretic Functions 
The discrimination or cross-entropy is a measure of “dis-

tance” between two probability distributions [11]. Consider 
the problem of estimating feature t with mutually exclusive 
and countable l states. Let P[t] and Q[t] be two distributions 
over the domain of t, or {ti | i = 1, …, l}, as obtained, for 
instance, by two different information sources. The cross 
entropy, D, may be used to determine which measurements 
can improve the distribution, Q[t], obtained from cursory 
sensor measurements. The cross entropy of P with respect to 
Q is,  
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t
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and is lower the closer P[t] is to Q(t). 
This measure is always non-negative and although it often 

is interpreted as the “distance” between P and Q, it is not a 
proper metric. For example, D(P;Q)≠D(Q;P), it is not 
additive, and does not obey the triangle inequality. 

The entropy of a discrete random variable is a measure of 
the uncertainty associated with a random variable, as re-
flected in its probability distribution, P(t). The entropy of a 
feature t is defined as, 
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and it can be shown that conditioning, as due to evidence e 
from another variable, always reduces entropy, i.e., H(t | e) ≤ 
H(t) [11]. 

III. METHODOLOGY 

A. Problem Formulation 
Consider the general classification problem of detecting 

targets confined to discrete cells indexed by c = 1, …, cf, 
where cf is the total number of cells. The state x of each cell, 
c,  has l-possible values and is determined from a set of m 
features of the same target, T = {t 

j | j =1, .., m}. Let n denote 
the number of different sensors used to measure the m 
features of the target cells, producing a set of observation 
outcomes Fk = {fk 

j | j =1, .., m}, k = 1, …, n, for each feature 
t 

j. Then, the classification problem consists of using meas-
ured target features to infer the type of target  in the cell, i.e., 
x. A problem in sensor management is to direct n sensors to 
a subset of all available cells, and to select the sensor modes, 
such that the fused classification accuracy can be maximized 
by a fixed amount of measurements. 

 

 
Fig. 2. BN architecture for modeling sensor k (total n sensors) in target 
classification case 

 
When m = 1, the classification problem is reduced to fea-

ture inference, as shown in Fig. 1, where the classification 
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goal is to infer the only target feature t. When m ≥ 2, and the 
features depend on the target typology, as shown in Fig. 2, 
the problem is referred to as target classification. 

B. Virtual BN Formulation and Problem Solution 
The initial BN architecture in Fig. 1 is used to construct a 

BN model for each sensor type. The virtual BN representing 
the entire sensor system is comprised of n BN sensor models 
and of one BN classifier, as shown in Fig. 3. For the feature 
inference case, it can be assumed that there is only one 
feature in T, and the node x is eliminated. 

 

 
Fig. 3. A virtual BN including n sensor measurements 
 

The virtual BN illustrates the conditional independence 
relationships between the n sensor measurements Fk, k = 1, 
…, n. As shown in Fig. 3, the n sensor measurements Fk, k = 
1, …, n, are d-separated by the target feature set T, and, 
therefore, they are conditionally independent given T. 
Another advantage of this virtual BN is that it contains all of 
the conditional probability distributions needed to compute 
the information objective functions, as shown in the follow-
ing section. 

C. Information Theoretic Objective Functions for Sensor 
Planning 
The expected discrimination gain and expected entropy 

reduction, are used to assess the expected value of sensor 
measurements prior to sensor deployment. Let Zk-1 ={F1, …, 
Fk-1} and suppose (k − 1) different sensors have been used to 
obtain measurements from each cell. Then, the sensor 
manager must select the next cell that maximizes the infor-
mation objective function for each possible observation 
outcome that could be obtained by the kth sensor once it is 
deployed. Theoretic solutions for feature inference (Fig. 1) 
and target classification (Fig. 2) are stated below. 

 
1. Feature Inference 

In the feature inference case, shown in Fig. 1, the target in 
cell c can be assumed to have only one feature, T = {t}, and 
Fk ={ fk }, k = 1, …, n.  The prior Pc[t] and the conditional 
probabilities Pc[fk | t] are all known from the BN models. 
Since the following derivation holds for any cell, the cell 
subscript c is omitted for brevity, thus Pc = P. 

The probability of observing Zk is written in terms of the 
conditional probability as, 
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with the summation representing marginalization over T. 

Since the variables {Fk}k = 1, …, n are d-separated or condition-
ally independent given T it follows that, 
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and the cell’s feature state probabilities are given by, 
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where U = {t} is the feature set. 
To compute the discrimination gain, the probability distri-

bution for the kth observation after (k − 1) observations is, 

,]|[]|[

]|[],|[]|[

1

111

∑

∑

−

−−−

=

=

T
kk

T
kkkkk

ZTPTFP

ZTPZTFPZFP
 (7) 

because the variables {Fk}k = 1, …, n are conditionally inde-
pendent given the target feature T. 

After k observations, the discrimination of the inferred 
feature distribution with respect to the prior P[T] is com-
puted in terms of P[T | Zk]: 

            . (8) 
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After k observations, the entropy of the inferred feature is, 
            ∑−=

T
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 (9) 

while after (k − 1)th observations, and before the kth observa-
tion is obtained, the expected discrimination gain is, 
            ∑ −=
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 (10) 

and the expected entropy is: 
            .]|[)|(]|[ 1∑ −=

kF
kkkk ZFPZTHZHE  (11) 

It follows that for an individual cell c, the expected discrimi-
nation gain is 
                 ][]|[)( 1−−=Δ kkk ZDZDEZD  (12) 
and the expected entropy reduction is 
                 ]|[)|()( 1 kkk ZHEZTHZH −=Δ − . (13) 

ΔH(Zk) is always non-negative, while ΔD(Zk) can be nega-
tive.  An important advantage of this approach is that all of 
the probabilities required, such as P[T | Zk] and P[Fk | Zk-1], 
can be obtained from the virtual BN model in Fig. 3. 

 
2. Target Classification 

In the target classification case, T and Fk, with k = 1, …, 
n, are sets containing multiple variables. Thus, P[Fk | T] and 
P[T | x] are joint conditional probability distributions. These 
two conditional probabilities as well as the prior P[x] are all 
known from the BN model for cell c. 

The probability of P[T] is computed as, 
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x
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and the notation is modified such that T and Fk are marginal-
ized. With this modification, eq. (4) is still applicable to 
obtain P[Zk]. Then, since the connections of x, T and Fk are 
serial, x and Fk are d-separated given T. Hence, the following 
equalities hold, 
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where P[Zk | T] can be computed from eq. (5). The probabil-
ity distribution for the cell typology (or target classification) 
is given by: 
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Equation (7) also holds under the change in the notation of 
marginalization over all members of T. 

After k observations, the discrimination of the target clas-
sification variable’s distribution with respect to the prior P[x] 
is computed using P[x | Zk] in (17), 

             (18) 
∑=

=

x
kk

kk

xPZxPZxP
xPZxPDZD

])[/]|[(log]|[
])[];|[(][

2

and the entropy of the classification variable is 
             (19) ∑−=
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Equation (10) can be used to compute the expected discrimi-
nation, provided D[Zk] is obtained from eq. (18). Then, the 
expected entropy after (k − 1)th observations, and before the 
kth observation is obtained, is 
             (20) ∑ −=
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Thus, given the above results, eq. (13) can be used to com-
pute the expected discrimination gain. Also, the expected 
entropy reduction can now be computed as: 
                  (21) ]|[)|()( 1 kkk ZHEZxHZH −=Δ −

The formulas derived in this section allow to compute the 
expected discrimination gain and expected entropy reduction 
for target classification using probabilities, such as P[x | Zk] 
and P[Fk | Zk-1], that can all be obtained from the virtual BN 
model in Fig. 3, similarly to the feature inference case. 

D. D-S Sensor Fusion 
The previous section provides a framework for combining 

n ≥ 2 sensor measurements of the same features. Another 
approach that is based on the D-S fusion rule is shown in 
Fig. 4. Here, for any feature t j, j = 1, …, m, the posterior 
distribution Uk

j = P[t j | Fk] is obtained from (6-a) or from the 
kth sensor BN model, k =1, …, n. When k ≥ 2, a total of k 
posterior distributions Ui 

j , i =1, …, k, are needed in order 
for the D-S fusion method to be applicable, and to produce 
the distribution U⊕ 

j = P[t⊕ 
j  | Zk] as described in Section 

II.B. When the feature number is m ≥ 2, the fused distribu-
tion U⊕ 

j is used as soft evidence for the BN classifier model 
to compute two distributions, namely, the posterior distribu-
tion of target classification variable, P[x | Zk], and the joint 
probability P[T⊕  | U⊕

1, …, U⊕
m]. Where, the fused feature 

set is defined as T⊕  ≡ {t⊕ 
j | j = 1, …, m}. Since U⊕ 

j = P[t⊕ 
j  | Zk], for any j = 1, …, m, and T⊕  = {t⊕

1, …, t⊕
m}, then 

P[T⊕  | U⊕
1, …, U⊕

m] is equal to P[T⊕ | Zk] or, simply, 
P[T | Zk], for any k = 2, …, n. 
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Fig. 4. Feature D-S fusion in classification 
 

In target classification based on sensor fusion, P[Fk | Zk-1] 
can be computed as, 
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The expected discrimination gain and expected entropy 
reduction can be obtained from eqs. (12) and (21), respec-
tively, provided that D[Zk] is obtained from eq. (18) and 
P[Fk | Zk-1] is obtained from eq. (22). 

The main difference between these two approaches lies in 
the computation of P[T | Zk]. In the non-fusion case, P[T | Zk] 
is computed from eq. (6-b). In the sensor-fusion case, 
P[T | Zk] is approximated by combining the D-S fusion rule 
with the BN classifier model. 

IV. APPLICATION TO LANDMINE DETECTION AND CLASSIFI-
CATION 

The information functions are applied to a demining sys-
tem comprised of airborne infrared (IR) sensors, ground 
penetrating radar (GPR) and electromagnetic induction 
(EMI) sensors mounted on ground vehicles that search for 
potential targets. The features measured by these sensors are 
shape, size, depth, and metal content. The targets buried 
underground must ultimately be classified as either land-
mines or clutter. Environmental conditions that are 
heterogeneously distributed over the field influence the 
individual performance of each sensor at a given location in 
the workspace. The sensor-planning problem considered in 
this paper consists of determining an optimal policy that 
decides optimal search cell sequence by the IR and GPR 
sensors, given a maximum allowable number of measure-
ments. 

A minefield shown in Fig. 5 is generated by the simula-
tion of landmine detection systems developed in [4]. The 
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targets include anti-tank mines, anti-personnel mines, 
unexploded ordnance, and clutter objects that have been 
reproduced based on the Ordata Database [12]. Prior infor-
mation is obtained from the 98 target cells in the minefield 
in Fig. 5 by a remote (e.g., airborne) IR sensor. The goal is 
to optimally direct GPR sensors to obtain additional meas-
urements that complement the existing IR measurements and 
maximize the improvement of fused IR-GPR classification 
accuracy. It is assumed that the GPR sensor is only allowed 
to make a fixed number of measurements due to energy and 
time limitations. 
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Fig. 5. Prior IR sensor measurements of the minefield obtained by an 
airplane flying over the region (targets are grey and obstacles are black). 

 
For comparison, the target cells are searched using the 

following three methodologies: 
• Directed Search (DS): advance through the cells in the 
same order for every frame, taking one measurement over 
each cell. 
• Discrimination Gain Based Search (DGBS): direct the 
sensor to search the cells with the highest expected discrimi-
nation gain, taking one measurement over each cell. 
• Entropy Reduction Based Search (ERBS):  direct the 
sensor to search the cells with the highest expected entropy 
reduction, taking one measurement over each cell.  

An IR sensor BN model (Fig. 6), a GPR sensor BN model 
and a BN classifier are developed and learned from training 
data, as shown in [4]. These BN models are combined with 
D-S fusion rule to compute expected discrimination gain and 
expected entropy reduction.  
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Fig. 6. IR BN sensor model taken from [4], where d is the depth (cm), z the 
size (cm), s the shape, m the measurement, mIR is the IR mode, sr:is the soil 
moisture (%), w is weather, v is vegetation, and i is illumination.  

Based on these objective functions the GPR sensor is di-
rected to obtain measurements from a selected cell sequence 
according to DGBS or ERBS. Figures 7-9 show comparisons 
of average classification accuracy using the three searching 
techniques with a fixed number of GPR measurements 
(shown on the abscissa). 
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Fig. 7. Average classification accuracy using three searching technique, 
obtained by averaging 10-trials. 
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Fig. 8. Average size (z) feature-inference accuracy using three searching 
techniques, obtained by averaging 10-trials. 
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Fig. 9. Average shape (s) feature-inference accuracy using three searching 
techniques, obtained by averaging 10-trials. 
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As can be seen from Fig. 7, when up to 50 GPR meas-
urements are taken, both a high expected discrimination gain 
and a high expected entropy reduction lead to high target 
classification accuracy. With less than 40 cell measurements, 
ERBS obtains better classification accuracy than DGBS. In 
both ERBS and DGBS, the classification accuracy unex-
pectedly increases after 60 fixed GPR measurements. This 
increase may be caused by one of the following factors: (1) 
random noise in sensor measurements, (2) BN modeling 
errors due to noisy sensor training data, or (3) approximation 
in computing objective functions due to the D-S rule. 

The two information-theoretic objective functions are also 
implemented in feature inference examples. In Fig. 8, both 
DGBS and ERBS achieve high accuracy for the inference of 
the size-feature of buried targets. Although in this case 
DGBS is slightly better than ERBS, it should be noted that 
the classification accuracy difference is very small, and a 
better size inference does not necessarily result in a better 
overall target classification, since the confidence level of 
inferred size posterior is not yet considered. Figure 9 shows 
that the expected entropy-reduction objective function is 
much better than the expected discrimination-gain objective 
function for the inference of the shape feature, with less than 
30 GPR measurements. The fact that average shape infer-
ence accuracy unexpectedly increases in DGBS shows that 
expected discrimination-gain objective function does not 
work for shape inference. 

Based on the results shown in Fig. 7-9, it is concluded that 
expected entropy reduction is generally preferable to the 
expected discrimination gain for the purpose of sensor 
planning, particularly in the case of target classification. 

V. CONCLUSIONS AND FUTURE WORK 
Two information theoretic functions, namely, expected 

discrimination gain and expected entropy reduction, are 
demonstrated and compared for feature inference and target 
classification. The equations to compute these objective 
functions are derived in terms of posterior and prior prob-
ability distributions that are available from BN models of the 
sensor measurement processes. Another significant contribu-
tion is that the D-S fusion rule is embedded in these 
computations, thereby accounting for the expected value of 
the complementarity of measurements obtained from multi-
ple and heterogeneous sensors. A virtual BN framework is 
proposed to integrate different sensor models and classifiers, 
as well as sensor fusion.  

A simulated demining system is used to compare search 
methods based on the two objective functions with direct 
search. The results suggest that both objective functions are 
efficient for sensor planning aimed at optimizing classifica-
tion performance. In these simulations, expected entropy 
reduction is found to be particularly effective and reliable 
when sensor fusion is performed for the purpose of target 
classification. On-going work by the authors is considering 
planning the actions of both the sensors and their platforms 
to maximize the expected value of information, and mini-

mize the cost associated with the use of sensor and platform 
resources. Another direction that is being investigated is the 
use of discrimination gain or entropy reduction in sensor 
management for properly detecting and classifying dynamic 
targets. 
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