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Abstract— In order to drive and operate safely around
humans, future autonomous vehicles will be expected to perceive
visual scenes and predict human behaviors beyond explicit
visual features. Inferring human interactions, for example,
plays an indispensable role in predicting pedestrian trajectories,
because social actions such as walking together, gathering,
holding hands, and talking, influence where and how people
move relative to each other and their environment. Existing
methods for semantic action recognition and labeling provide
inputs that, while useful to human operators, cannot be used
to improve predictions made by autonomous vehicles. This
paper presents a graphical model approach for jointly inferring
pedestrian interactions from short video clips over time. New
Markov random field algorithms are presented for modeling
social interactions probabilistically using spatial and temporal
observations obtained over short video clips, at a time scale use-
ful for making real-time decisions such as collision avoidance.
Experiments conducted using real-world pedestrian streaming
videos show that the average interaction-inference accuracy of
the proposed approach is approximately 94.6%.

I. INTRODUCTION

Autonomous vehicles and smart environments will soon
require the ability to predict human behaviors and trajectories
with high accuracy and well into the future [1], [2], [3].
Existing tracking algorithms can fall short of predicting hu-
man actions, often deemed and modeled as random, because
human behaviors cannot be captured by kinodynamic dif-
ferential equation models applicable to robots and vehicles.
Human decisions and behaviors, such as jaywalking versus
waiting for the light to turn green or looking for a crossroad,
are largely driven by factors, such as emotions, social inter-
actions, and internal thoughts, that are not readily extracted
from video or sensor data. This paper seeks to obtain a
mathematical model of social interactions and familiarity
from streaming video of pedestrians, such that significant
interrelationships can be inferred from a scene, similarly to
cognitive processes of inference that allow a human driver
to predict people trajectories based on visual features alone.

Most of the existing human tracking and prediction liter-
ature treats pedestrians as a group of mutually independent
individuals, without taking into account social interactions.
Yet, statistical video analysis reveals that the trajectories of
individuals who are interacting socially while walking are
highly correlated (Section V-B). Inferring human interactions
from video is a challenging problem. To date, methods that
account for human interactions in order to improve trajec-
tory prediction and robot navigation can be distinguished
into empirical, clustering, and inference based [4], [5], [6].
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Empirical methods rely on a Euclidean-distance threshold
obtained from social studies and experiments in order to
determine whether two or more people are interacting. The
empirical approach performs poorly in complex, pedestrian-
rich environments because, as shown in Section V-B, proxim-
ity measures vary greatly and dynamically as people move
about. Clustering methods, such as the dominant set (DS)
algorithm, develop graph representations of human interac-
tions by representing each person as a node and pairwise
interactions as arcs [5]. Interacting people are clustered into
maximum cliques, typically resulting in a dense interaction
structure. The inference method presented in [6] represents
interactions by binary random variables in an agent-based
model derived from first principles and observations of the
pedestrians’ position, speed, preferred speed, and chosen
destination.

This paper seeks to combine the advantages of both
clustering and inference methods by modeling and infer-
ring pedestrian interactions using the probabilistic graphical
models known as Markov random fields (MRFs). A new
MRF model is presented such that nodes can be used to
represent pedestrian bounding boxes extracted from video,
and probabilistic arcs can be used to represent pedestrian
interactions. In this case, the graph structure is inferred
from data, by determining the maximum a-posteriori (MAP)
estimate of the graph arc set. The exponential complexity
of the MAP inference problem is addressed by designing
an energy function that allows to convert the inference
problem into an integer linear program (ILP). Furthermore,
the energy function is constructed to encode discriminant
interaction features, such as position, speed, and orientation,
and such that its parameters can be learned from a small
labeled training set, using a structural support vector machine
(SSVM) algorithm [7].

When compared to existing methods, the advantages of the
MRF approach presented in this paper are threefold. Firstly,
the problem of inferring human interactions is formulated
from the perspective of jointly inferring the arcs of an undi-
rected graphical model, whereby the symmetric property of
interaction is automatically guaranteed. Secondly, a flexible
MRF inference algorithm is developed by sharing parameters
among all arcs, such that the model can be applied to scenes
with an arbitrary number of pedestrians. Thirdly, the MRF
approach can be generalized to other scene interpretation
problems and, potentially, used to infer other hidden vari-
ables associated with human labels and interactions. The
proposed MRF approach is shown to achieve an average
interaction inference accuracy of approximately 95%, when
tested across very different videos and outdoor scenarios.
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II. PROBLEM FORMULATION

The prediction of people trajectories and behaviors is rele-
vant to a broad range of applications including but not limited
to autonomous driving, autonomous robots, and human-
machine interactions. Modern computer vision algorithms are
able to extract and track people bounding boxes [8], and,
using past measurements, to estimate future trajectories by
methods such as Kalman filters, particle filters, or Bayesian
nonparametric models [9]. However, people trajectories and
behaviors are also highly influenced by mutual interactions
and relationships that cannot be readily extracted from video
or camera frames. Therefore, this paper seeks to develop
a model of human interactions based on video recordings
obtained over a finite time window, without prior knowledge.

Consider a video of pedestrians, V , obtained over a finite
and fixed time window, [t0, tf ], using a fixed camera in
an outdoor environment, with no access to verbal commu-
nications. The video is comprised of many camera frames
obtained at discrete moments in time in [t0, tf ]. Therefore,
each video frame is represented by an image matrix of
(m × n) pixel intensities, denoted by Il ∈ Rm×n, where
m and n are known camera parameters, and l indicates the
frame index. A labeled bounding box can be obtained for
each pedestrian in a frame Il using a convolutional neural
network (CNN), as shown in [8], [10].

The number of pedestrians in the camera field-of-view
(FOV) changes over time and can be obtained from the
number of bounding boxes in each frame. Therefore, after a
video with Mf total frames is obtained, i.e.,

V = {Il | Il ∈ Rm×n, l = 1, . . . ,Mf} (1)

it can be partitioned into short, consecutive, non-overlapping
video clips that each contain a fixed number of pedestrians,
as follows. Let Vk denote the kth video clip in V containing
Nk pedestrians detected from Mk consecutive frames with
frame-index set Tk, or

Vk = {Il | Il ∈ Rm×n, l ∈ Tk}, k = 1, . . . , f (2)

where f indicates the total number of video clips. Then, V
can be partitioned into a set of non-overlapping short video
clips, such that,

V = ∪fk=1Vk, and Vk ∩ Vk′ = ∅, if k 6= k′ (3)

where I1 ∈ V1 is the first frame obtained at time t0, and
IMf
∈ Vf is the last frame obtained at time tf .

The goal of this paper is to model and infer pedestrian
interactions dynamically, during each video clip, in order to
aid in the prediction of their future trajectories and behaviors.
For simplicity, each pedestrian is assumed to interact with
at most one other pedestrian. A lonesome pedestrian is
referred to as singleton hereon in the paper. Although these
assumptions are met in most scenarios [11], future work
will consider larger group interactions and more complex
behaviors. The goal of the model is to infer paired pedestrian
interactions whereby a symmetric relationship is induced by
social acquaintance or familiarity and is recorded by a fixed
stationary camera in an outdoor environment.

III. MRF MODEL OF PEDESTRIAN INTERACTIONS

Markov random fields or MRFs are undirected probabilis-
tic graphical models defined over a set of discrete or continu-
ous random variables that may be hidden or observable [12],
[13]. In traditional MRFs, each node represents a random
variable and the arc set, or graph structure, represents a
factorization of the joint MRF probability that is learned from
data [14]. Typically, the arc set is pre-defined to represent
a regular structure such as a uniform grid [15] or a fully
connected graph [16]. In contrast, this paper presents a new
MRF model that can be used to model and infer pedestrian
relationships from streaming video data by representing
pedestrian labels as nodes and their interrelationships as arcs.
Then, the MRF structure is inferred probabilistically in order
to determine the arc configuration with the maximum pos-
terior probability (MAP) by minimizing an energy function
learned from data.

A. MRF Structure

Unlike previous MRF methods for computer vision in
which the graph structure represented the most probable
image segmentation [13], [15], this paper develops an MRF
approach for modeling and inferring hidden pedestrian re-
lationships from multiple, consecutive video frames. The
MRF pedestrian model is dynamically constructed with every
video clip Vk, k = 1, . . . , f , with few offline training data
and based on video frames acquired from the fixed camera
FOV.

Let Nk = {1, . . . , Nk}, Nk ∈ N+, denote the index
set of pedestrian extracted from Vk via CNN, where Nk
is obtained by counting the bounding boxes’ labels. Every
pedestrian bounding box extracted from Vk is represented by
an MRF node labeled by the bounding box index i ∈ Nk.
As a result, Nk defines the full set of MRF nodes, which
can be assumed observable and known from the video clip
Vk. The set of undirected arcs Ek = {(i, j) | i, j ∈ Nk}
represents the pedestrian interactions in the scene, such that
an arc (i, j) is placed between the node representations of
bounding boxes i and j if the corresponding pedestrians are
believed to interact significantly with one another in Vk. The
singleton case of a lonesome pedestrian with bounding box
label i is represented by an arc (i, i) connecting node i to
itself. Both arc representations are illustrated by the orange
line in Fig. 1. Then, the MRF pedestrian model structure to
be learned from a video clip Vk is given by the pair (Nk, Ek).

Unlike pedestrian bounding boxes, which can be extracted
from Vk using CNNs or other computer vision algorithms,
pedestrian interactions due to social acquaintance or famil-
iarity come in many different forms and, typically, cannot be
readily extracted from video frames. This is because simi-
lar instantaneous pedestrian positions, poses, and behaviors
may be induced by social interactions or by chance. While
training a CNN to recognize these implicit interactions from
streaming video is a possible solution [17], [18], it requires
training on very large data sets and may lead to predictions
that are not necessarily robust to the broad range of social
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Fig. 1. Interaction model of four pedestrians based on corresponding
(unlabeled) bounding boxes shown in blue.

situations and behaviors exhibited by pedestrians in different
contexts and settings.

Because the pedestrian interactions are to be inferred from
short video clips, in this paper, the MRF structure is inferred
from data, by assigning a random binary variable Xk,i,j to
each MRF arc (i, j) ∈ Ek, such that its value xk,i,j equals
one when a symmetric interaction exists between pedestrians
labeled by i and j, and equals zero when an interaction
does not exist, i.e., xk,i,j ∈ L, where L = {0, 1}. Then,
all random variables can be organized into a matrix,

Xk , (Xk,i,j)Nk×Nk
k = 1, . . . , f (4)

that is to be inferred from video data, and any arc set Ek is
a possible realization (or instantiation) of Xk that has range
LN2

k .
For each frame Il (l ∈ Tk) in video clip Vk, the ith

pedestrian’s position, pk,i,l ∈ R2×1, speed vk,i,l ∈ R+,
and heading θk,i,l ∈ [0, 2π) can be extracted. The 2D
position and velocity vectors of each pedestrian are measured
relative to the FOV, so as not to require knowledge of the
camera position and orientation in inertial frame. Then, the
pedestrian speed and heading are obtained from the norm
and orientation of the velocity vector with respect to the
horizontal FOV direction, respectively. Next, organize all
measurements into a frame observation vector,

zk,i,l , [pTk,i,l vk,i,l θk,i,l]
T (5)

Then, the sequence of consecutive observations extracted
over the entire video clip Vk can be organized into a video
observation vector,

zk,i = [zTk,i,1 . . . zTk,i,|Tk|]
T (6)

obtained by stacking all (column) observation vectors for
pedestrian i, obtained from the video clip Vk, where |Tk|
denotes the cardinality of index set Tk. Finally, the observa-
tion vectors obtained from all pedestrians in video clip Vk
are organized into an (4|Tk|×Nk) video observation matrix,

Zk = [zk,1 . . . zk,Nk
] (7)

Then, the goal of the MRF structural learning algorithm
presented in Section IV is to infer the optimal set of arcs,
E∗k , from the video observation matrix, Zk.

B. MRF Energy Function

The structural inference problem can be transcribed into
tractable optimization problem by designing an energy func-
tion that can be learned from a small set of discriminative
features governing pedestrian interactions. Although spatial
proximity has been used as an interaction feature in several
published works [4], [5], [6], it alone is not discriminative
enough in dynamic scenes populated with pedestrians. For
example, spatial proximity would not discriminate among
a scenario with two interacting pedestrians walking side
by side (Fig. 2.a) and scenarios with two non-interacting
pedestrians passing by (Fig. 2.b) or crossing paths (Fig. 2.c).

 

(a) (b) (c) 

Fig. 2. Examples of pedestrians walking and interacting (a), passing
by and non-interacting (b), crossing paths and non-interacting (c), and
corresponding bounding boxes (labeled by color).

Therefore, this paper presents a new discriminative feature
representation for any node pair (i, j) that is based on
proximity (relative position), as well as relative velocity and
relative heading, i.e.,

φ(zk,i, zk,j) ,
1

|Tk|


∑
l∈Tk

‖pk,i,l − pk,j,l‖∑
l∈Tk

‖vk,i,l − vk,j,l‖∑
l∈Tk

‖θk,i,l − θk,j,l‖

 ,
∀i, j ∈ Nk, i 6= j (8)

where ‖·‖ is the Euclidean norm. The observations are
averaged over the video clip length in order to obtain a
robust and representative estimate for the video clip Vk. To
subsume the singleton case into a unified framework, we
let φ(zk,i, zk,i) , [dp dv dθ]

T , where dp, dv, dθ ∈ R+

are user-defined hyper-parameters that can be interpreted as
the counterparts of proximity, relative velocity, and relative
heading in (8), respectively.

After the hyper-parameters are tuned based on the video
data (Section IV-A), the generalized feature representation
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can be written in a compact form,

φ(zk,i, zk,j) ,

1

|Tk|


∑
l∈Tk

‖pk,i,l − pk,j,l‖ δ(i 6= j) + dp δ(i = j)∑
l∈Tk

‖vk,i,l − vk,j,l‖ δ(i 6= j) + dv δ(i = j)∑
l∈Tk

‖θk,i,l − θk,j,l‖ δ(i 6= j) + dθ δ(i = j)

 ,
∀i, j ∈ Nk (9)

where δ(·) is an indicator function that equals one when the
enclosed statement holds true and is zero otherwise.

From the above feature representation, an arc potential
function is designed to relate the discriminative features to
the random variable Xk,i,j ,

Φ(zk,i, zk,j , xk,i,j ,w) = [wTφ(zk,i, zk,j)] xk,i,j (10)

where xk,i,j is the realization of Xk,i,j , and w is a vector of
parameters to be learned from data. Then, using the approach
in [12], the MRF energy function can be defined as the sum
of arc potentials,

E(Zk, Ek) ,
∑

(i,j)∈Ek

[wTφ(zk,i, zk,j)] xk,i,j (11)

It can be seen that the energy function is constructed as a
linear function of the realizations of the random variables
Xk,i,j , when w is given. Therefore, parameter learning is
performed as a first step using a training data set in which the
interaction ground truth is available. Subsequently, structural
inference is approached as an energy minimization problem
that can be solved via Integer Linear Programs (ILPs).

IV. MRF LEARNING AND INFERENCE

By conditioning structural inference on the video observa-
tion matrix Zk, the MRF joint distribution can be written as
the normalized negative exponential of an energy function,

P (Ek | Zk) =
1

C
exp{−E(Zk, Ek)} (12)

where C is a normalization constant [14], and E(Zk, Ek)
is defined in (11). Then, inferred arcs of high probability
correspond to minima of the energy function. In particular,
the optimal labeling E∗k that best describes the pedestrian
interaction structure is obtained from the MAP estimate of
the random variables Xk, or equivalently, by minimizing the
energy function,

E∗k = arg max
Ek
{P (Ek | Zk)} = arg min

Ek
{E(Zk, Ek)} (13)

subject to the constraints,∑
i∈Nk

xk,i,j = 1, ∀j ∈ Nk (14)

xk,i,j = xk,j,i, ∀(i, j) ∈ Ek (15)

Ek ∈ LN
2
k (16)

which guarantee that a pedestrian is either a singleton or
interacts with, at most, one other pedestrian, and all pairwise
interactions are symmetric.

The next subsections describe the algorithms for learning
first the MRF parameters and, then, for inferring the optimal
graph structure by minimizing the parameterized function.

A. Parameter Learning via SVM

This subsection presents an approach for learning the
energy function parameters from a database of manually an-
notated ground-truth arcs, denoted by Ĕk, and corresponding
video observation matrices, i.e.,

D = {(Ĕ1,Z1), . . . , (Ĕf ,Zf )} (17)

where the total number of video clips, f , may or may not be
the same as in the validation database. The learning objective
is to find the optimal parameters w∗ for which the true arc set
Ĕk has the lowest energy value than any other set Ek ∈ LN

2
k ,

according to the energy function in (11).
Let ξ` (` = 1, . . . , f ) denote f slack variables, and let c

denote a constant weight that balances the minimization of
the parameter magnitude and the minimization of the energy
function [7]. Then, the optimal MRF parameters w∗ can be
obtained by solving the constrained optimization problem,

min
w,ξ`

1

2
‖w‖2 +

c

f

f∑
`=1

ξ` (18)

sbj to E(Zk, Ek)− E(Zk, Ĕk) ≥ 1− ξ`, ∀k, ` (19)

w ≥ 0, ξ` ≥ 0, ∀`, ∀Ek 6= Ĕk, k = 1, . . . , f

using a structural SVM method [7]. The constraints in (19)
ensure that the energy of the true graph structure (Ĕk) is less
than that of any other structure by a margin controlled by
the slack variables (ξ`).

B. MRF Structural Inference

Once the optimal energy function parameters are learned
from the training database D (Section IV-A), the energy
function E(Zk, Ek,w∗) can be minimized to infer the op-
timal pedestrian interactions in a new validation database
comprised of a streaming video, V . By combining the energy
function in (11) with the structural inference constraints in
(14)-(15), the inference problem in (13) is re-formulated as
an ILP in Ek with linear objective and constraints:

min
Ek

∑
(i,j)∈Ek

[(w∗)Tφ(zk,i, zk,j)] xk,i,j (20)

sbj to
∑
i∈Nk

xk,i,j = 1, ∀j ∈ Nk (21)

xk,i,j = xk,j,i, ∀(i, j) ∈ Ek (22)

Ek ∈ LN
2
k (23)

The ILP structure constraints are crucial to enabling the
model to represent both pairwise interactions and singletons
in a unified framework. Additionally, the proposed approach
can be extended to account for situations where a pedestrian
interacts with many other pedestrians by setting the right
hand side of (21) to be equal to an integer greater than one.

1376

Authorized licensed use limited to: Cornell University Library. Downloaded on February 09,2021 at 19:49:43 UTC from IEEE Xplore.  Restrictions apply. 



V. EXPERIMENTAL RESULTS

The proposed MRF modeling and inference approach is
demonstrated using a self-created Cornell Campus database
and the PETS09-S2L1 database taken from the Multiple
Object Tracking Challenge (MOTC) benchmark [19]. Both
databases are comprised of several outdoor streaming videos
with multiple pedestrians. For comparison purpose, this
paper also implements an existing algorithm known as domi-
nant sets (DS) proposed in [20]. As a first step, two validation
scenarios are considered using the Cornell Campus database:
the Campus Road scenario (Fig. 3) and Ho Plaza scenario
(Fig. 4). Subsequently, the MRF approach is compared to DS
by obtaining average inference accuracy results across mul-
tiple validation videos. Finally, the PETS09-S2L1 database
is used to demonstrate that inferred pedestrian relationships
influence pedestrian trajectories and may, thus, be able to
improve upon pedestrian behavior and trajectory predictions.

 

Zoom-in area 

Fig. 3. Campus Road region of interest (ROI).

 

Zoom-in area 

Fig. 4. Ho Plaza region of interest (ROI).

In the Campus Road region of interest (ROI), five pedes-
trians are detected and their bounding boxes labeled and
extracted into MRF nodes, as shown in Fig. 5.(a). In this
video clip, only pedestrians 4&5 are interacting socially
(ground truth). After the video observation matrix is obtained
from the video clip, the pedestrian trajectories are plotted
as curves of the same color as the corresponding bounding
boxes and MRF nodes in Fig. 5.(b)-(c), where the units of
FOV relative position are in pixels. The pairwise pedestrian
interactions obtained by the DS algorithm are shown as
arc connections between the corresponding nodes, over time

(video clip index), in Fig. 5.(b). It can be seen that, because
of non-discriminating proximity features, the DS algorithm
erroneously infers interactions between pedestrians 1&2.
Instead, the MRF algorithm presented in this paper is able
to correctly infer the interaction between pedestrians 4&5 as
well as the singletons without errors (Fig. 5.(c)).
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Fig. 5. Campus Road sample video frame and pedestrian (labeled)
bounding boxes (a) and pedestrian trajectories and relationships inferred
via DS (b) and MRF (c) algorithms.

In the Ho Plaza ROI, five pedestrians detected are detected
and their bounding boxes labeled and extracted into MRF
nodes, as shown in Fig. 6.(a). In this video clip, only pedes-
trians 3&4 interact socially (ground truth). The pedestrian
trajectories and social interactions inferred by the DS and
MRF algorithms are plotted in Figs. 6.(b) and 6.(c), respec-
tively. The DS algorithm once again produces an erroneous
result indicating that pedestrians 1&2 are interacting for the
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duration of the entire video. On the other hand, the proposed
MRF approach (Fig. 6.(c)) only presents an error for the first
video clip (V1), when it incorrectly infers that pedestrian 1&2
interact. The MRF error is caused by inaccurate position
information due to the relative FOV coordinates measured
in pixels in the camera image plane. Hence, at V1, when
pedestrians 1&2 are very far away from the camera, they
appear to walk together and interact. Immediately after V1,
the MRF algorithm corrects its MAP estimate and accurately
predicts all pedestrian interactions thereafter. This type of
error can be prevented either by including depth information
(as provided by an RGB-D camera), or by transforming the
pedestrian FOV-relative position into inertial frame using
landmarks and camera information.
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Fig. 6. Ho Plaza sample video frame and pedestrian (labeled) bounding
boxes (a) and pedestrian trajectories and relationships inferred via DS (b)
and MRF (c) algorithms.

A. Performance Comparison

The performance of DS and MRF algorithms was evalu-
ated and compared by considering several validation videos
and computing an average inference accuracy, where the in-
ference accuracy is defined as the percentage of interactions
inferred correctly in each validation video. As summarized
in Table I, the average inference accuracy of the proposed
MRF approach is very high at 94.6%, and it significantly
outperforms the clustering-based DS algorithm proposed in
[5]. While DS obtains more true positives than MRF, it also
brings about many more false positives, indicating that it is
far less capable of identifying lonesome pedestrians. Also,
unlike the proposed MRF approach, which jointly infers and
models the interaction structure across all the pedestrians,
the DS algorithm only computes interactions iteratively. In
particular, the DS algorithm first finds a dominant interaction
and, then, it removes the dominant interacting pairs, repeat-
ing the process until all remaining pedestrians have been
considered. Additionally, the proposed MRF method obtains
much higher inference accuracy for short video clips (results
not shown for brevity).

TABLE I
INFERENCE ACCURACY COMPARISON

Method True False True False Inference

Positive Positive Negative Negative Accuracy

DS 186 158 66 0 61.5%

MRF 174 8 214 14 94.6%

B. Behavior and Trajectory Prediction

Ten videos drawn from the Cornell Campus database and
the MOTC PETS09-S2L1 database are used to demonstrate
the influence of social interactions and familiarity on the
pedestrian trajectories. By measuring the relative distance
variance (RDV) between every pair of trajectories it can be
seen that trajectories of interacting pedestrians are highly
correlated (low RDV), while those of non-interacting pedes-
trians are not (high RDV).

Consider, as an example, the trajectories of five pedes-
trians that are extracted along with bounding boxes from
one MOTC video [19], shown in Fig. 7. In this video,
pedestrians 1&2 interact initially, and, then, by the tenth
frame, the interaction ceases and their trajectories diverge
(Fig. 7). Pedestrians 4&5 interact for the entire duration
of the video and, therefore, their trajectories evolve very
similarly. Pedestrian 3 is lonesome and, thus, it can be seen
that his/her trajectory is uncorrelated with the others.

The above qualitative observations are validated by com-
puting the RDV of every pair of pedestrian trajectories in
ten videos, V1, . . . ,V10, obtaining the results in Table II.
The average RDV for non-interacting pedestrians is much
higher than that of interacting pedestrians, as also indicated
by the ratio of non-interacting over interacting pairs (Table
II). Therefore, it can be concluded that correctly inferring
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Fig. 7. MOTC sample video frame and color-coded pedestrian nodes and
bounding boxes (a), and ground-truth trajectories and interactions (b).

pedestrian interactions can aid in the prediction of their future
trajectories and behaviors.

VI. CONCLUSIONS

Knowledge of pedestrian social interactions and behaviors
is key toward improving the efficiency and accuracy of
trajectory prediction algorithms. The Markov random field
approach developed in this paper utilizes spatial and temporal
evidence obtained from streaming video to jointly reason and
infer the social interaction structure of multiple pedestrians in
a scene. New Markov random field structure and algorithms
are developed in order to cast interaction inference as an
energy minimization problem. With the proposed definition
of energy function in terms of relative pedestrian position,
speed, and orientation, energy minimization can be solved
efficiently as an integer linear program. The approach is
tested using the Cornell Campus database and the Multiple
Object Tracking Challenge database in order to demonstrate
its flexibility and robustness to different settings and envi-
ronments. The experimental results show that the proposed
Markov random field method significantly outperforms the
dominant sets clustering algorithm, achieving an average
interaction inference accuracy of 94.6%.
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TABLE II
AVERAGE RELATIVE DISTANCE VARIANCE (RDV) OF PEDESTRIAN

TRAJECTORIES

Video Interacting Non-interacting Ratio

Pedestrians (IP) Pedestrians (NP) (NP/IP)

V1 10.9 1303.4 119.6

V2 3.6 2193.0 609.2

V3 3.3 19.2 5.82

V4 4.8 703.7 146.6

V5 0.8 1660.5 2075.6

V6 6.4 136.3 21.3

V7 4.3 951.5 221.3

V8 18.1 958.5 53.0

V9 15.5 874.4 56.4

V10 28.2 859.9 30.5
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