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Abstract— So far coverage problems have been formulated to
address area coverage or to maintain line-of-sight visibility in
the presence of obstacles (i.e., art-gallery problems). Although
sensor networks often are employed to track moving targets,
none of the existing formulations deal with the problem of
allocating sensors in order to achieve track-formation capa-
bilities over a region of interest. This paper investigates the
problem of finding the configuration of a network with n
sensors such that the number of tracks intercepted by k sensors
is optimized without providing redundant area coverage over
the entire region. This problem arises in applications where
proximity sensors are employed that have individual detection
capabilities, and that obtain limited measurements from each
track, possibly at different moments in time. By assuming that
the target travels along a straight unknown path, and that
the sensors are omnidirectional with limited range (i.e., their
visibility can be represented by a circle), it can be shown that
the tracks detected by one or more (k) sensors always are
contained by a coverage cone. Therefore, the track coverage
of the network can be measured through the opening angle
of the coverage cone and formulated in terms of unit vectors
that depend on the sensors’ range and location. Through this
approach, the coverage of a given network configuration can
be rapidly assessed. Also, a coverage function is obtained that,
when maximized with respect to the sensor location, optimizes
the number of tracks detected over a rectangular area of
interest. The same approach can potentially be applied to other
convex polygons and to three-dimensional Euclidian space.

I. INTRODUCTION

In sensor networks literature, coverage typically refers to

the problem of area coverage, that is, ensuring that every

point in a two-dimensional space is within the range of at

least one sensor in the sensor network (e.g., [9]). Depending

on the underlying physics, the area coverage of one sensor

is the area of a circle or sector centered at the sensor

location. Then, the network coverage can be investigated

by considering the union of all the areas covered by its

sensors. Another well-known formulation of coverage is the

art-gallery problem, where a point or sensor sees the target

if the line segment between them does not intersect any

obstacles (also known as line-of-sight visibility) [10]-[12].

This problem is concerned with placing the sensors such that

the targets in a given area of interest that includes obstacles

are in the line-of-sight of at least one of the sensors. Although

very useful in many sensor applications, none of the existing

formulations address coverage as it pertains to target tracking

by means of multiple sensors. This paper presents a novel

coverage problem, referred to as track coverage, that can
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be formulated using elementary planar geometry, and can

be used to deploy sensors such that the probability of track

detection is maximized.

II. BACKGROUND ON TARGET TRACKING BY

MEANS OF MULTIPLE SENSORS

The problem of target tracking by means of distributed

sensors arises in many applications, such as, surveillance sys-

tems, tracking of endangered species, and manufacturing, and

consequently it has received considerable attention. Tracking
refers to the estimation of the state (e.g., position, velocity,

and acceleration) of a moving object through one or more

sensors positioned on stationary or moving platforms. After

a new target is detected by one or more sensors in search

mode its track is formed. That is, from that moment onward,

its state trajectory is estimated from a set of measurements

that are associated to it. In a sensor network the data also

is fused to maintain the track as precisely as possible. The

problems of data association and data fusion that arise in

the tracking process have been studied through several ap-

proaches that include the Nearest Neighbor (NN) algorithm,

Probabilistic Data Association (PDA), Multiple Hypothesis

Tracking (MHT), and assignment [1]-[6]. Typically, after the

data is associated with each target and fused by one of these

algorithms, it is used together with past observations to esti-

mate the target state by means of well-known Kalman-filter

equations [7], as reviewed in [3]. However, these methods

rely on frequent measurements obtained from sensors that

can observe the target over the same time interval, such as

air-traffic-control radars.

In order for sensor networks to be practical and afford-

able, simple proximity sensors often are employed in those

applications where there is no a-priori knowledge of the

target track. In proximity networks the measurements are

very limited and may be collected by the sensors at different

times, while the target moves across the sensor network. In

this case, the event-based algorithm developed in [8] can be

used to determine the potential track of a single target based

on multiple reports on its location. The target is assumed to

move at constant speed and heading through the sensor field

maintaining a constant source amplitude. Also, each sensor

reports its location in two-dimensional space and a single

value of received signal at the sensor-to-target closest-point-

of-approach (CPA), denoted by eCPA = e(tCPA). But, the

CPA time, tCPA, is not reported to the central position and,

thus, cannot be accounted for in the analysis. Since in the

proximity networks of interest tracking would be performed

through this event-based algorithm, these assumptions are

extended to the coverage problem presented in this paper.
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In addition, the track-forming algorithm in [8] assumes

that the received signal is isotropic energy attenuated by the

environment according to the following power law,

ei(t) = cFr−α
i (t) (1)

which constitutes the model for the ith proximity sensor.

Sensors that measure magnetic, acoustic, or optical waves,

for example, can be represented by (1) assuming linear wave

propagation models. Thus, the value of the attenuation coeffi-

cient α and of the scaling constant c depend on the physical

mechanism of wave propagation and on the environment.

The target source level F is independent of time and of the

sensor location. Therefore, by letting S = (cF )−1/α, the

measurements of the range-to-CPA can be represented by

the variable,

βi = (eCPA
i )−1/α = Sri(tCPA) > 0 (2)

for the ith-sensor in the proximity network. Under the

simplifying assumptions above, these measurements contain

the same scaling factor or invariant S, which is independent

of the target detected and may be unknown.

It is shown in [8] that given a set of βi = Sri(tCPA)
measurements for sensors located at xi, the track of a target

with constant speed and heading is a straight line that is

jointly tangent to all circles defined as Ci(S) ≡ {x : ‖x −
xi‖ ≤ βi/S}, for a fixed value of S. Where, x ∈ R2×1 and

‖ · ‖ denotes the Eucledian or quadratic norm. For example,

if two proximity sensors are located respectively at x1 and

x2 and have each reported a detection, the corresponding

circle Ci can be drawn with radius ri = βi/S, where βi are

the measurements from the ith sensor and i = 1, 2, as shown

in Fig. 1. Then, the potential tracks, also illustrated in Fig.

1, can be obtained without knowledge of S [8]. There are

four potential tracks that correspond to two sensor detections:

an interior and an exterior track, and their corresponding

reflections about the axes that connects x1 and x2 (the

reflections are not shown in Fig. 1 for simplicity). Even from

this simple example it can be seen that two or more sensor

detections may be required for reliable tracking. On the other

hand, multiple detections can be obtained without covering

the entire area surrounding the target-track of interest, since

the detections can take place at different times along the

target trajectory.

Interior track
CPA point

r1

x1
x2

r2
r2r1 Exterior track

CPA pointsCPA point

Fig. 1. Geometry of potential interior and exterior tracks formed by
the CPA events of two sensors (symbolized by ♦), located at x1 and x2

(adapted from [8]).

III. TRACK COVERAGE PROBLEM

The track coverage problem consists of finding the loca-

tions of n sensors that maximize the number of tracks that

are intercepted by at least k sensors (where, k ≤ n), and

that cross a pre-defined area of interest. For simplicity, the

problem is formulated based on the following assumptions:

(i) the targets move at constant speed and heading across

the area (i.e., tracks can be represented by straight lines);

(ii) the area of interest is a rectangle; (iii) the visibility or

range of each sensor can be represented by a disk centered at

the sensor location. Extensions to maneuvering tracks, and to

other shapes of the area-of-interest and sensor range (such as,

polygons and sectors, respectively) are all subjects of future

work.

The set of all tracks in two-dimensional space can be

described by the equation representing a straight line in the

x1x2-plane, i.e., x2 = ax1 + b, with slope a and intercept b.

According to Section II, a CPA detection event takes place

when the track path is tangential to a circle of radius ri

and centered at the ith sensor location, xi = [x1,i x2,i]T .

Letting x0 denote the position of the intercept between the

track path and the x2-axes, as illustrated in Fig. 2, the

position of the ith sensor can be expressed more conveniently

with respect to the track intercept:

vi ≡ (xi − x0) =
[

x1,i

(x2,i − b)

]
(3)

Hence, given that the CPA point must be within range of

the sensor, it can be easily shown that the tracks detected

are those whose slope and intercept satisfy the following

equation,

ri =
∣∣∣∣ (b + ax1,i − x2,1)√

a2 + 1

∣∣∣∣ ≤ rmax
i (4)

where, rmax
i , is the maximum range of the ith sensor, and

is assumed to be known for ∀i (a brief proof is provided in

Appendix I).

x2

Actual track:
CPA point

x2 = a x1 + b

ri

ri
max

vi

b

xi
x0

x1

Fig. 2. Geometry of one-sensor one-track detection, where the equation
x2 = ax1 + b describes the track, and the sensor with maximum range
rmax
i is located at xi in the x1x2-plane.
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A. Assessing track coverage for a known configuration

For a given sensor network configuration, in which all

the sensor positions and maximum ranges are known, (4)

can be used to determine the number of CPA detection

events for a set of tracks crossing the region of interest. As

an example, consider a representative subset of the tracks

with intercept b ∈ [xmin
2 , xmax

2 ] and slope a = tan(α),
with α ∈ (−π/2, π/2). This subset can be obtained by

discretizing these parameters through intervals δb and δα,

respectively, thus choosing values in the set:

{xmin
2 : δb : xmax

2 }×{(−π/2+δα) : δα : (π/2−δα)} (5)

Equation (4) is evaluated for every pair (a, b) in (5) and,

using Boolean logic, the number of sensors capable of

intersecting the corresponding target can be determined. Let

A be a matrix with all the values of a that correspond to the

set (5), and B a matrix with all the values of b in (5). Then,

(4) can be used to compute a matrix Ri containing the CPA

radius ri of the tracks defined by the pair (A, B), for the ith

sensor. A logical array or truth table, with 1 representing true

and 0 representing false, can be obtained from the following

operation

Di = {Ri ≤ rmax
i } (6)

indicating whether the ith sensor has made a detection (true)

or not (false). In a sensor network where at least k sensors

must detect the moving target in order to positively form its

track path, the logical array,

P =

{∑
i

Di ≤ k

}
(7)

indicates whether each track defined by the pair (A,B) has

had sufficient coverage in the present sensor network.

Although this approach can be used to assess the track

coverage of a given sensor network configuration, a proper

coverage function must be derived in order to maximize it

with respect to the sensors locations. This problem is the

subject of the next section.

IV. CONSTRUCTION OF TRACK-COVERAGE

FUNCTION

The track coverage of a known configuration of sensors

can be assessed by evaluating (4) for a subset of track paths

traversing the region of interest, as explained in the previous

section. However, in order to solve the track coverage

problem that maximizes the number of tracks intercepted

by the sensor network (Section III), a function expressing

the coverage with respect to the sensor location must be

determined. Clearly, the number of straight lines that traverse

an area is infinite. Moreover, in order to be determined, the

track path must be intercepted by at least k of the n sensors.

The approach presented in this paper constructs the desired

coverage function by introducing the concept of coverage

cone for one sensor and with respect to one reference axes.

This step allows to quantify the amount of tracks intercepted

using a finite metric. Secondly, intersection cones are used

to represent the amount of tracks intercepted by k sensors,

with respect to their location and one reference axes. Finally,

the coverage function for an area of interest in the shape of a

rectangle is constructed by considering the intersection cones

in reference to four axes that are each aligned with one side

of the rectangle. This approach can then be extended to any

polygon by induction.

x2

+
uk

uj

x1

(ui , uj, uk)ui

Fig. 3. Example of three vectors ordered according to the orientation of
the x1x2-plane, i.e., (ui,uj ,uk).

A. Track coverage of one sensor

Consider a sensor that is indexed by i and is located at xi

in the x1x2-plane, as illustrated in Fig. 4. For a given x2-

intercept denoted by b, and located at x0 = [0 b]T , the set

of tracks that are potentially intercepted by the sensor with a

maximum range rmax
i (which hereon will be denoted simply

by ri) is contained by a so-called two-dimensional coverage

cone which can be defined by two unit vectors l̂i and ĥi (Fig.

4). In this paper, vectors are said to be ordered according

to the orientation of the reference frame. An example is

provided in Fig. 3. In this problem, the order (̂li, ĥi) indicates

that if these vectors are translated such that their origins

coincide and l̂i is rotated through the smallest angle possible

to meet ĥi, this rotation is in the same direction as the

orientation of the x1x2-plane (in this case, positive in the

counterclockwise direction). With this order, l̂i and ĥi define

the directions of the lowest and highest tracks that can be

intercepted by the sensor, respectively. Given the intercept

b, every track that can be intercepted by the sensor will

lie inside the coverage cone, and every track that cannot

be intercepted will lie outside the coverage cone.

iĥ

il̂

x2

Coverage cone

ri
max

vi
i

b

xi

x0

x1

Fig. 4. Coverage cone and corresponding unit vectors, l̂i and ĥi, for a
sensor located at xi and an intercept b.
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Let v ≡ (xi−x0) denote the position of the sensor relative

to the x2-intercept b, and let θi denote half the opening angle

of the cone (Fig. 4). Then, the unit vectors defining the cone

can be obtained through rotation matrices, as follows,

ĥi =
[

cos θi − sin θi

sin θi cos θi

]
vi

‖vi‖ ≡ Q+
i v̂i (8)

and,

l̂i =
[

cos θi sin θi

− sin θi cos θi

]
vi

‖vi‖ ≡ Q−
i v̂i (9)

where, Q−
i = (Q+

i )T . Also, since the lowest and highest

tracks both form right triangles with vi and with the radius

of the circle Ci, the following trigonometric relationships,

sin θi =
ri

‖vi‖ =
ri√

x2
1,i + (x2,i − b)2

(10)

and,

cos θi =

√‖vi‖2 − (ri)2

‖vi‖ (11)

can be used to express the rotation matrices with respect to

the sensor location, xi.
It can be easily seen from this example (Fig. 4) that

the amount of tracks within range of the ith sensor can

be maximized by maximizing the angle θi or, equivalently,

sin θi. For a single sensor and a single value of the x2-

intercept b, the trivial solution to this maximization problem

is to place the sensor at x0, such that all possible tracks

through x2 = b can be intercepted. Using these simple

constructs, however, a function can be obtained to express

the track coverage defined in Section III with respect to

the positions of n sensors, that can then be determined by

numerical optimization. The next step is to address the tracks

covered by the ith sensor with respect to a range of intercepts

on the x2 axes, i.e., b ∈ [xmin
2 , xmax

2 ]. For simplicity, this

range is discretized by letting b�+1 = b� + δb, such that

the track coverage function for the axes can be obtained by

summing over b�:

Tx2(xi) ≡
∑

�

sin θi(b�) (12)

=
xmax
2∑

b�=xmin
2

ri√
x2

1,i + (x2,i − b�)2
(13)

In principle, the function above could be utilized to express

the coverage in the entire x1x2-plane, since all of the

straight lines that lie in this plane must intersect the x2

axes. However, this would comprise letting the limits in

the summation go to ±∞, which clearly is not a practical

solution. Moreover, track coverage typically is desired over

an area of interest in the shape of a polygon, often a

rectangle. Then, in order for (12) to include the majority of

the tracks traversing a rectangle, a very large b-range would

have to be considered, which would lead to also including a

large number of tracks that never intersect this area. Thus,

an approach for addressing track coverage over a rectangular

region is developed in Section IV-C. In the next section, a

track coverage function is derived for multiple (k) sensors.

B. Track coverage of multiple sensors

It was shown in [8] that CPA events from at least two

sensors are necessary to determine potential track path lo-

cations from perfect β-measurements, through the method-

ology reviewed in Section II. Depending on the application,

when error measurements and other uncertainties are factored

into the problem of track determination, it may be desirable

to have more than two detections. Hence, the coverage of

k ≥ 2 sensors in a network of size n must be addressed

such that a track path can be considered to be detected (and

subsequently determined) when it is intercepted by at least

k sensors during the time it takes the target to travel through

the area of interest.

Given the x2-intercept b�, the set of tracks intercepted by

k sensors is contained by a so-called k-coverage cone that

can be determined from the coverage cones of the individual

sensors. Let I be the index set of the list of position vectors,

(x1, . . . ,xk), for k sensors in the network, and let the

ordered pair of unit vectors (̂li, ĥi) define the coverage cone

of the sensor located at xi, with i ∈ I . Also, let all unit

vectors l̂i, i ∈ I , be ordered according to the orientation

of the x1x2-plane, with l̂∗ denoting the last member of the

ordered list. This is equivalent to the following statement,

sin γl = sup{sin γi, i ∈ I} ≡ sin γ∗ (14)

where, l̂i = [cos γi sin γi]T . Similarly, let all unit vectors

ĥi, i ∈ I , be ordered according to the orientation of the

x1x2-plane, and denote the first member of the ordered list

by ĥ∗, i.e.,

sin λj = inf{sin λi, i ∈ I} ≡ sin λ∗ (15)

where, ĥi = [cos λi sin λi]T . Then, the ordered pair

(̂l∗, ĥ∗) defines the k-coverage cone for the sensors po-

sitioned at (x1, . . . ,xk). This cone is illustrated for two

sensors in Fig. 5. The opening angle ψ (at the vertex) of

the cone is the magnitude of the cross product between the

two unit vectors

sin ψ = ‖̂l∗ × ĥ∗‖ (16)

Using (8)-(9), this angle can be written in terms of the

sensors locations,

sin ψ =
∣∣∣∣ (̂l∗)T

(ĥ∗)T

∣∣∣∣ =
∣∣∣∣ v̂T

l Q+
l

v̂T
j Q−

j

∣∣∣∣ (17)

or, more explicitly, as illustrated in Appendix II. Where, | · |
is the matrix determinant.

Thus, the number of tracks intercepted by all k sensors

can be maximized by positioning the sensors such that ψ or,

equivalently, sin ψ are maximized. The k-coverage function

can be defined as,

Tx2(xl,xj) =
xmax
2∑

b�=xmin
2

H(ψ) sin ψ, l, j ∈ I (18)

subject to (14) and (15), and with sin ψ given by (17). The

Heaviside function H(ψ) = H(sinψ) guarantees that if the
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2ĥ

1ĥ

1l̂

2l̂

x2 k-Coverage cone

x2
max

x2

x1

b

x0 x1

x2
min

Fig. 5. 2-Coverage cone of two sensors located at x1 and x2, with intercept
b� ∈ [xmin

2
, xmax

2
].

order of l̂∗ and ĥ∗ is reversed, the coverage is zero. k-track

coverage for a rectangular area can be derived by considering

the k-track coverage of the network with respect to each axes

that can be aligned with a side of the rectangle, as explained

in the following section.

C. k-Track Coverage over a Rectangular Area

Consider the track coverage problem over a rectangular

area A in a two-dimensional plane. As illustrated in Fig. 6,

place the x1x2-frame of reference along two sides of the

rectangle, such that its origin coincides with the lower-left

vertex, labeled as (0, 0)x1x2 . Also, place a second frame of

reference along the remaining sides of the rectangle, namely

the χ1χ2-frame, such that its origin coincides with the vertex

opposite to (0, 0)x1x2 , labeled as (0, 0)χ1,χ2 . The remaining

vertices can be labeled as (L1, 0)x1x2 and (0, L2)x1x2 , as

shown in Fig. 6, such that L1 and L2 are the width and height

of the rectangle, respectively. Every track traversing this

region intercepts two sides of the rectangle. Also, it intercepts

two and only two of the axes in the x1x2- and χ1χ2- frames,

and these intercepts must fall within the following intervals:

bx1 , bχ1 ∈ [0 L1] and bx2 , bχ2 ∈ [0 L2], where the

subscript denotes the axes intercepted. Therefore, using the

approach described in the previous section, the k-coverage

cones can be formulated with respect to each of these

four axis, and summed over the corresponding intercepts to

include all possible tracks.

Equation (12) expresses the k-track coverage with respect

to the x2-axes, with xmin
2 = 0 and xmax

2 = L2. The

track function with respect to the x1-axes is determined by

defining the vector x0 to be the location of the intercept

bx1 , i.e., x0 = [bx1 0]T . Then, let vi = (xi − x0),
where the sensor position xi must be expressed in the same

coordinate frame, namely x1x2. The unit vectors defining the

k-coverage cone are obtained through the same procedure

outlined in Section IV-B. The opening angle ζ can be

obtained from the magnitude of their cross product, and the

coverage function for the x1-axes can be written as

Tx1(xl,xj) =
L1∑

bx1=0

H(ζ) sin ζ, l, j ∈ I (19)

2x
b

1x
b

2
b

1
b

21
)0,0(

21
),0( 2 xxL

21
)0,0( xx

21
)0,( 1 xxL

x2

1

2-Coverage cones

x2

x1

x1

L1 L2 Rectangular

Aera of Interest

2

Fig. 6. 2-Coverage-cone definition illustrated for two sensors located at
x1 and x2, and a rectangular area of interest, A, with vertices (0, 0)x1x2 ,
(0, 0)χ1,χ2 , (L1, 0)x1x2 , and (0, L2)x1x2 .

Since the plane has the same orientation as in Section IV-B,

the indices l, j are determined from the same equations, (14)

and (15), for every value of the intercept bx1 . An equation for

sin ζ written explicitly with respect to the sensors locations

is provided in Appendix II.

The same approach is then applied to axis χ1 and χ2 in

Fig. 6. By choosing a plane with the same orientation as

x1x2 (i.e., positive in the counterclockwise direction), the

unit vectors defining the k-coverage cones with respect to

these axis are ordered in the same manner and, thus, also

can be obtained through the relationships (14) and (15).

For each axes considered (χ1, then χ2), the vector x0 is

defined as the position of the intercept along that axes, and

the vector vi = (xi − x0) is recomputed based on this

intercept. Subsequently, the unit vectors ĥi and l̂i, which

define the lowest and highest track for each sensor i ∈ I ,

are obtained from (8)-(11), and are ordered according to (14)-

(15) to obtain the two unit vectors describing the k-coverage

cone, ĥ∗ and l̂∗. Then, the k-track coverage function for the

entire region of interest can be obtained by summing the

contribution of each axes, i.e.,

TA(xl,xj) =
∑L2

bx2=0 H(ψ) sin ψ +
∑L1

bx1=0 H(ζ) sin ζ

+
∑L1

bχ2=0 H(ξ) sin ξ +
∑L2

bχ1=0 H(ρ) sin ρ (20)

subject to (14)-(15). Although the coverage problem is

formulated by means of two reference frames, the sensors

coordinates, x1,i and x2,i, can be expressed with respect to

a single reference frame using a simple transformation. For

example, in this case (xi)χ1χ2 = [(−x1,i − L1) − x2,i]T ,

where x1,i and x2,i refer to the x1x2-plane. The equations

for each opening angle in the coverage function can be found

in Appendix II.

V. RESULTS AND APPLICATIONS

The methodology developed in this paper can be used to

assess the coverage of a sensor network configuration with

respect to an axes or an area of interest. In particular, Section
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III-A introduces a simple method for considering a subset of

all the possible tracks of interest, and computing which of

these tracks are detected or missed by a sensor network of

known position and range. The k-coverage of a network of

n = 8 sensors, with ranges and configuration illustrated in

Fig. 7, is considered for illustration. In this case, k = 3 CPA

detections are required for a positive track detection. The

tracks that are missed by this network are computed using

(4), and are plotted in Fig. 7. By the same approach, using

(6) it also is possible to compute the number of detections

with respect to the parameter space, which consists of the

slope and intercept of the tracks, as shown in Fig. 8.

Fig. 7. Sample of tracks missed by an initial sensor network configuration
with the ranges ri illustrated by the corresponding circles (Ci), and k = 3
CPA detections required for track coverage.

Fig. 8. Number of detections (colorbar) with respect to track parameters
for the sensor network configuration in Fig. 7.

Now, suppose the configuration is altered, for example as

would happen for sensors floating and drifting in the ocean,

and suppose the new configuration can be determined (e.g.,

by GPS). Also, the sensor performance, and thus the range,

may vary across the network due to changing environmental

conditions. Then, the k-coverage of the network can be re-

computed using the new sensor positions and ranges, as

illustrated through an example in Fig. 9. This figure shows

the new sensor characteristics and the tracks missed by the

new configuration, based on the requirement that k = 3 CPA

detections are needed for positive track detection. The value

of k is application specific, and can be considered as a design

parameter. Figure 10 shows that the number of detections

with respect to the parameter space has decreased overall,

and that new holes are beginning to form in the k-coverage

of the network. The analytical functions derived in Section

IV can also be used for measuring and assessing coverage,

as well as for computing the probability of detection over an

area of interest. But, most importantly, by expressing the k-

coverage explicitly with respect to the sensors locations and

ranges, they can be used to compute the optimal network

configuration for a given area of interest.

Fig. 9. Sample of tracks missed by a non-uniform sensor network
configuration with the ranges ri illustrated by the corresponding circles
(Ci), and k = 3 CPA detections required for track coverage.

Fig. 10. Number of detections (colorbar) with respect to track parameters
for the sensor network configuration in Fig. 9.

VI. CONCLUSIONS

A novel approach is presented for defining and formulating

coverage in systems where multiple sensors track a moving

target through limited measurements, such as closest-point-

of-approach (CPA) detections. The approach is based on

planar geometry and on the introduction of a so-called k-

coverage cone, which allows to express the amount of tracks

detected by k sensors in a network in terms of opening angles

along the boundaries of a rectangular region of interest. A

technique for rapidly assessing the coverage of a given net-

work configuration, with known sensor ranges and locations,
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is derived and demonstrated through simulations involving

eight sensors and k = 3 required detections for track

formation. Also through this approach, a coverage function

is derived that expresses the k-track coverage analytically in

terms of the sensor locations and ranges. This result allows to

formulate the k-track coverage as an optimization problem,

where the coverage function is to be maximized with respect

to the sensor network configuration.

APPENDIX I

PROOF OF EQUATION (4)

Consider the CPA triangle formed by joining the x2-

intercept, b, the CPA point, and the sensor position in the

x1x2-plane (as shown in Fig. 2). This is always a right

triangle, where the side opposite to the right angle is the

vector vi = (xi − x0), with x0 = [0 b]T . Let w =
[−b/a − b]T be a vector parallel to the straight line,

x2 = ax1 + b, representing a track path detected by the

ith sensor. Then, the angle θi that is opposite to the right

angle at the CPA point, can be obtained from the following

dot product,

vi · w = ‖vi‖‖w‖ cos θi =
−bx1,i

a
− b(x2,1 − b) (21)

and the CPA radius is given by

ri = ‖vi‖ sin θi (22)

Taking the ration between (22) and (21) leads to,

ri

−b(x1,i

a + x2,i − b)
=

tan θi

‖w‖ =
tan θi

| b
a |
√

a2 + 1
(23)

Using the trigonometric relationship,

tan(θi + α) =
tan θi + tan α

1 − tan θi tan α
=

(x2,i − b)
x1,i

(24)

and, observing that a = tanα, an equation for tan θi is

found solely with respect to the track parameters a and b:

tan θi =
(x2,i − b − ax1,i)
(x1,i + ax2,i − ab)

(25)

Hence, by combining (25) with (23) and simplifying the

result, an equation can be obtained expressing the CPA radius

in terms of the track parameters, i.e.,

ri =
∣∣∣∣ (b + ax1,i − x2,1)√

a2 + 1

∣∣∣∣ ≤ rmax
i

where, the CPA radius must be within the sensor range,

rmax
i , in order for the track to be detected.

APPENDIX II

OPENING ANGLES EQUATIONS

Using the equations in Section IV-B, the k-coverage

opening angle with respect to the x2-axes can be formulated

as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin ψ = 1

m2
l m2

j
{[x1,lql + (x2,l − b�)rl][x1,jrj + (x2,j − b�)

·qj ] − [x1,jqj − (x2,j − b�)rj ][(x2,l − b�)ql − x1,lrl], }
mi ≡ ‖vi‖ =

√
x2

1,i + (x2,i − b�)2,

qi ≡
√

m2
i − r2

i ,∀i ∈ I
(26)

Similarly, it can be shown (Section IV-C) that the k-

coverage opening angle with respect to the x1-axes is⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin ζ = 1

m2
l m2

j
{[(x1,j − bx1)qj + x2,jrj ][(x1,l − bx1)rl+

x2,lql] − [(x1,l − bx1)ql − x2,lrl][x2,jqj − (x1,j − bx1)

·rj ]}; mi ≡ ‖vi‖ =
√

(x1,i − bx1)2 + x2
2,i,

qi ≡
√

m2
i − r2

i ,∀i ∈ I
(27)

By applying the usual procedure to the remaining axis, χ1

and χ2, it can be easily shown that,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin ξ = 1
m2

l m2
j
{[(L1 − x1,l)ql − (x2,l + bχ2)rl]

·[(L1 − x1,j)rj − (x2,j + bχ2)qj ] − [(L1 − x1,j)qj

+(x2,j + bχ2)rj ][(x1,l − L1)rl − (x2,l + bχ2)ql]},
mi ≡ ‖vi‖ =

√
(L1 − x1,i)2 + (x2,i + bχ2)2,

qi ≡
√

m2
i − r2

i ,∀i ∈ I
(28)

and,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin ρ = 1
m2

l m2
j
{[(L1 − bχ1 − x1,l)ql − x2,lrl]

·[(L1 − bχ1 − x1,j)rj − x2,jqj ] − [(L1 − bχ1 − x1,j)qj

+x2,jrj ][(x1,l + bχ1 − L1)rl − x2,lql]},
mi ≡ ‖vi‖ =

√
(L1 − bχ1 − x1,i)2 + x2

2,i,

qi ≡
√

m2
i − r2

i ,∀i ∈ I
(29)

Where, all of the above equations are subject to (14)-(15),

which determine the values of l, j ∈ I .
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