
Proceedings of the American Control Conference
Anchorage, AK May 8-1 0,2002

An Adaptive Critic Global Controller

Silvia Ferrari. and Robert F. Stengelt

Princeton University
Department of Mechanical and Aerospace Engineering

Princeton, NJ 08544

Abstract
A nonlinear control system comprising a network of

networks is taught using a two-phase learning procedure
realized through novel techniques for initialization, on-line
training, and adaptive critic design. The neural networks
are initialized algebraically by observing that the gradients
of the networks must equal corresponding linear gain
matrices at chosen operating points. On-line learning is
based on a dual heuristic adaptive critic architecture that
improves control for large, coupled motions by accounting
for plant dynamics and nonlinear effects. The result is an
adaptive controller that is as conservative as the linear
designs and as effective as the global controller. The
design method is implemented to control the full. six-
degree-of-freedom simulation of a business jet aircraft.

1. Introduction
The problem of optimizing a desired metric over time

lies at the basis of virtually all robust and fault-tolerant
control and identification schemes. Dynamic programming
uses the principle of optimality to find an optimal strategy
of action in a nonlinear environment. Backwards or
discrete dynamic programming methods discretize the state
space and make a direct comparison of the cost associated
with all feasible trajectories, guaranteeing solution of the
optimal control problem [l]. This approach leads to a
number of computations that grows exponentially with the
number of state variables (“curse of dimensionality”) [2].
Adaptive critic designs constitute a class of approximate
dynamic programming methods [3] that uses incremental
optimization combined with a parametric structure to
efficiently approximate the optimal cost and control. They
optimize a short-term cost metric that ensures optimization
of the cost over all future times. Neural networks are the
parametric structures of choice, because they easily handle
large-dimensional input and output spaces and can learn in
an incremental fashion.

The simplest adaptive critic architectures are based on
heuristic dynamic programming (HDP). They implement a
critic network to approximate the cost-to-go in the Bellman
equation [2] and an action network to approximate the

Graduate Student.
Professor. Fellow IEEE, AIAA.

Presented at the 2002 American Control Conference,
Anchorage, AK, May 2002.

0-7803-7298-0/02/$17.00 0 2002 AACC 2665

optimal control law. This paper presents a design approach
based on a modification of HDP, referred to as dual
heuristic programming (DHP), where the critic network
approximates the derivatives of the cost-to-go with respect
to the state. DHP is more promising than its earlier
counterpart because it learns more quickly and alleviates
persistence of excitation problems by computing the
correlation between the cost and the individual state
elements [4].

The advantages brought about by using prior knowledge
in conjunction with on-line training are widely recognized
in the neurocontrol literature [5] . In the present approach,
the nonlinear control system, comprising a network of
networks, is taught using a two-phase learning procedure.
During the first phase, referred to as initialization, the
network size and parameters are determined from well-
established linear control theory solely by solving algebraic
equations that identify the exact matching of gain matrices
at chosen operating points. During a second phase, on-line
learning by a DHP approach improves control response for
large, coupled motions, based on the actual state of the
plant. This on-line phase accounts for differences between
actual and assumed dynamic models and for nonlinear
effects not captured by the linear designs. Classical control
theory provides a unifying framework for the two training
phases. The algebraic initialization is based on the linear
quadratic regulator; the DHP approach is based on
approximate dynamic programming.

2. Foundations
The goal of the adaptive critic design is to approximate

the optimal control law for an infinite horizon problem
subject to the real-time dynamics of a continuous plant or
simulation. The neural controller adapts on line, with the
plant operating over the entire range of state and command-
input elements, { x(yc), yc}, or some suitably dense set in the
space denoted by OR. The plant state, x, and the command
input, yc, are fed to the controller on-line and are unknown
prior to operation. It is assumed that linearized time-
invariant plant models are known U priori for a subset of
operating points, OF c OR. Corresponding linear control
data are used to initialize the action and critic neural
networks. These networks are further adjusted over time
through the DHP architecture sketched in Fig. 1.

2.1. Problem Statement
Consider the deterministic minimization of a scalar

integral function of the n x 1 plant state, x, and of the m x 1
control, U, and a scalar terminal cost:

The objective is to determine the control law for which this
cost function is stationary, subject to the dynamic equation:

(2)

Plant motions and controls are sensed in the e, x 1 output
vector y,,

i (t) = f[x(r),u(t)], x(to) given

(3)

It is assumed that perfect measurements are available and
that the output views all elements of the state. The mission
goals are expressed by the e, x 1 command input, yc. which
can be viewed as some desirable combination of state and
control elements with e, I m.

Critic
State I

Figure 1. Dual heuristic programming adaptive critic.

The action network models the control law, which is
assumed to be a function of the state. It can be written as
the sum of a nominal and a perturbed effect,

U * [x' (t)]= U: [xi (t)] + Au* [xi (t), hx*(t)] (4)

where, x*(t) = ~ * (t) + Ax*(t), and (e)* denotes the optimal
solution. When the control law depends on parameters and
command inputs as well as the state [6] , an augmented state
can be defined to include these additional elements, as
described in later sections. - At any moment in . time,
to I t I tfi the minimized value function or cost-to-go, v*(t),
corresponding to eq. (1) can be expressed as:

The critic network evaluates the action network
performance by approximating the following derivative of
the corresponding cost-to-go with respect to the state:

av * & * (t)] 1* [x* (t)] =
ax* (4

Single-hidden-layer sigmoidal neural networks of the
type shown in Fig. 2 are chosen to model the action and
critic functionals. They hiwe input p (t) = [x(r)T a(r)T]T,
where a is a scheduling vector of auxiliary inputs that
informs the neural networks of the dynamically significant
variables in the system. The network adjustable parameters
consist of the input weights, W, of the output weights, V,
and of the input and output biases, d and b. The output of
the network is computed as the nonlinear transformation of
the weighted sum of the input and the input bias:

z[p(t)] = V T a[Wp(t) + d] + b (7)

a[*] is a vector-valued function composed of individual
sigmoidal functions of the form a(n) E (e" - l)/(e" + 1).
This architecture can approximate any nonlinear function
on a compact space arbitrarily well [7].

Figure 2. Sample vector-input vector-output sigmoidal
network with s nodes in the hidden layer.

2.2. Initialization Phase
The goal of the initializ.ation phase is to incorporate

linear control knowledge in the nonlinear control system.
The procedure is based on the observation that the network
gradients must equal corresponding linear control matrices
at selected operating points, t3P, indexed by K = 1,2, ..., p.
Linearized models of the plant can be obtained from eq. 2
for the subset OP by assuming small perturbations about
corresponding equilibria, and ignoring time-varying effects:

(8)

The optimization goals are expressed as a quadratic
function of the state and conb-01

k (t) = ~ ~ x (t) + GAU(~) , AX(^,> given

J = - 1 ' I [Ax'(r)QAx(r)+ 2AxT (r)MAu(r)+Au'(r)RAu(r)br

2 O

(9)
When the plant is subject to continuing disturbance inputs
and +becomes infinite in the limit, the value of J may still
be bounded by defining an average cost,

that has the same optimality conditions as J [6]. As lj
approaches infinity, it is reasonable to let the terminal cost,
&x(+)]. equal zero. Furthennore, it can be shown [8] that
the value function,

V*[Ax*(t)]= iAx*'(t)P(t)A~.*(t)

2666

is optimal for eq. 8 and 9, and that P(t) approaches its
steady-state value P. The following closed-form linear-
optimal control law can be derived [6]:

(12)

LTI control laws that satisfy desired engineering criteria
[9] can be designed for OP to provide a set of locally
optimal gains and Riccati matrices { C, P}- The gradient
of the action network at the dh operating point, which has
value in initializing the network, is found by differentiating
eq. 4 with respect to ~'(2). Using the result in eq. 12:

Au* (1) = -R-' [G TP + MT b x * (f) = <Ax' (f)

C, is known from the LQ optimal gain matrices, and a, is
the scheduling vector evaluated at the dh operating
conditions. In infinite horizon problems, the structure of
the value function is independent of time; therefore, a single
time-invariant critic network can be used to approximate
A*[x*(t)] or simply A*@) (eq. 6). The LQ optimal value
function, eq. , l l , can be differentiated twice with respect to
the state to seek the following derivative,

where, P,is known and is used to initialize the critic.
Thus, under the stated assumptions, the network

gradient dz[p(t)]/ax(f) is known for both the critic and the
action network. In addition, the following condition applies
to their input/output relationship:

The network architecture, number of nodes, and parameters
that match these requirements exactly are determined in one
step by solving sets of linear algebraic equations.

2.3. Dual Heuristic Programming Adaptive Critic
The on-line logic is implemented in discrete time

through an incremental optimization scheme based on dual
heuristic dynamic programming. During each time interval
Ar = fk+l - f k , the action and critic networks are adapted to
more closely approximate the optimal control law and value
function derivatives, respectively. Adaptation criteria are
derived from the recurrence relation by discretizing the
optimal control problem [l]. Howard's form of the
recurrence relation [3] can be used to approximate the value
function over time,

where v [~ (r ~ + ~)] is necessarily a predicted value. The
control u(tk) is defined as the function of x(fk) that
minimizes the right-hand side of eq. 16. When the function
Vlx(fk)J is calculated from eq. 16 based on the current

control, and u(tk) is adjusted to minimize this optimal value
function approximation, the method iteratively converges to
an optimal strategy [3]. For simplicity, the asterisks will be
omitted in the remainder of the paper.

At time f k , the control strategy for which the value
function is stationary satisfies the optimality condition:

Equation 16 is differentiated with respect to the state to
obtain a recurrence relation for the DHP critic, which
approximates the functional A[x(f)] :

The critic is then used to compute A[x(fk+l)] in eq. 17, once
the prediction of the state, x(tk+,), is known from the model
of the plant (eq. 2).

3. On-line Phase Implementation
The DHP criteria are implemented for the networks'

adaptation, based on x(tk), as shown by the schematic in
Figs. 3 and 4. The adjustable parameters (or weights) of
each network are updated to minimize the mean-squared
error between a desired output or target and the network's
actual output, z[p(fk)], for the input p(fk). Equations 17 and
18 are used to generate the action and the critic desired
outputs corresponding to p(fk), u&) and AD&),
respectively. During the first time interval (f l - to), the
initialization weights are used prior to the network update.
Later, the weights obtained during (fk - fk.,) are used as
prior weights for the interval (tk+, - tk).

3.1. Action and Critic Network Target Generation
The action network target, U&), is obtained by solving

the optimality condition, eq. 17, which consists of a set of
nonlinear equations. A guess to the solution, uD(fk)',
initially is provided by the action network (using the prior
weights). Subsequently, it is perturbed by an established
algorithm (e.g., Newton-Raphson) until the stopping
condition is met. A(tk+,) is computed by the critic network
based on the prediction of x(fk+,), as shown in Fig. 3. Once
the action network has been updated, the critic's desired
output is computed from eq. 18 based on the exact values of
u(tk) and au(tk)/ax(fk). In the case of the critic (Fig. 4), no
iteration is needed to compute its target AD&), which is at
best a prediction of A&). The derivatives dL[*]/dx(fk) and
aL[*]/du(tk) are computed analytically from L[x(tk),u(tk)].
The transition matrices, ax(fk+,)/au(tk) and ax(fk+,)/ax(tk),
are obtained numerically from eq. 2.

2667

Given actual state, x(tk), guess
desired control, UD(tk)'

Compute utility function derivative. I dL[.l/pu(tk) I I
+

PLANT MODEL: - State prediction, x(tk+l)

- Transition matrix prediction, & (f k + l) / d u (r k)

CRITIC: Predict cost-to-go, h(rk+])

Compute optimality condition,

1

1

I Update action network weights based on U&) I
Figure 3. Action network adaptation, during AZ = tk+l - t k .

I Given actual state, x(tk) I

Compute utility function derivatives,
dL[*]/du(t,) and dL[*]/&(tk)

I PLANT MODEL: - State prediction, x(tk+,) I - Transition matrices prediction, &(t t+ ,) /du(rk) , &(tk+,)/&(tk)

4
CRITIC: - Predict cost-to-go, h(rk+,) , Compute desired cost-to-go, h&)

Update critic network weights based on h&)

Figure 4. Critic network adaptation, during Ar = tk+l - tk.

3.2. On-line Training Algorithm
The on-line training algorithm minimizes an error

function E, defined in terms of one desired output ZD and
the actual network output z, with respect to w, a vector of
ordered weights wt indexed by k' = 1,2, . . .:

1
2

E(w) = - 112 - z(w)I/'

Since the initialized weights are close to being optimal, the
on-line minimization is kept local. Based on the idea of
backpropagation learning [1 I.], at each epoch, i, the on-line
training algorithm modifies each weight w?' by an
increment Aw?), based on the derivative dE(w)/dwc, i.e.:

The on-line phase is effective and reliable when the
error begins decreasing at {he onset of training, and the
update algorithm does not degrade prior network weights.
Because of the high-dimensional nature of real-world
applications, the neural netwlorks implemented typically are
large and their parameters; differ by many orders of
magnitude, causing the derivatives to be highly dissimilar.
Speed and memory requirements are particularly stringent
on line, rendering this training phase arduous in practice.

For these reasons, the resilient backpropagation
algorithm (RPROP) [12] is modified and implemented.
RPROP is based only on the temporal behavior of the signs
of the gradients [12]. Therefore, it has low memory
requirements and no dependence on the size of the
derivatives. The individual size of each increment, denoted
by 4, is increased by a factor r]' when the derivative is not
changing sign, while it is decreased by a factor 7- when the
derivative is changing sign. This process accelerates
convergence in shallow regions and slows the search down
when local minima are missed. Once all 4 are adjusted,
each weight is modified in the direction of gradient descent.
When the error derivative changes sign, indicating that a
minimum was missed, the weight wc(I+') is brought back to
its previous value wC(I-') by a backtracking epoch [121.

Backtracking is a key algorithmic feature that allows the
search to remain local. Another crucial element is the
initial increment value 4"). Setting all initial increments
equal to the same constant value (e.g.. 0.1) for weights of
dissimilar sizes [12] is equivalent to disregarding prior
network weights. Instead, initial increments are chosen
commensurate with a fraction,f,, of the corresponding prior
weights and perturbed byfo tlo account for zero weights:

The same weight update routine is used for the action and
the critic networks by letting z D = uD(tk) in the action
update, and zD = k D (t k) in the critic update.

4. Adaptive Critic Proportional Integral Neural
Network Clontrol Design

The neural controller structure is motivated by a
multivariable linear controller; proportional-integral (PI)
control is considered for illustration. A PI controller
modifies the stability and transient response of the plant
through the feedback gain matrix, Cs, and provides Type-1
response to command inputs through the proportional gain
matrix, CF, and the command-integral gain matrix Cl [lo].
These gains are computed by minimizing a cost function in
the form of eq. 9 formulated in terms of the augmented state

2668

x, and the control deviation 6 . x, includes the state
deviation E and the output error's time integral 6, i.e.,
x, =[Z' g']', where %=x-x, . ii and y" are similarly
defined. The set point (G, K) is a function of the command
input, yc. [6]. The LQ law (eq. 12) provides for the optimal
control in terms of the newly defined deviations:

(22)

The gains and the Riccati matrix Pa are obtained by solving
a matrix Riccati equation [6] formulated in terms of x, and
5 . The weighting matrices Q, M, and R are designed
using implicit model following [lo].

The corresponding neural network structure is obtained
by replacing each linear gain matrix with a nonlinear
control network, N N B for CB, N N F for CF, and N N I for CI
[lo]. In addition to the scheduling vector, the networks
NNB, NNF, and NNI are provided with the state deviation,
the command input, and the command error integral,
respectively. Each network contributes to the total control,

u(t) = U, (t)+ AU , (t)+ Au, (t)
(23)

G(t) = -taxa (t) = - c B q t) - C , ((t)

= NN, [Y c (t),a(t)l+ NN, [:(t)34t)l+ "1 [t(t),a(t)l

where ii = Au, + AuI is the control to be optimized.
The action network, NNA, that approximates the

miniinizing control law consists of the algebraic sum of
NNB and N N I :

(24)

Given the same inputs, the critic network, NNc, computes
the derivative of the value function v[%(t)] with respect to
the augmented state:

ii(t = " A Ix , (t)? a(41

The final neural controller structure is shown in Fig. 5. The
Scheduling Variable Generator (SVG) produces a based on
yc and an exogenous vector, e, of measured variables. The
Command State Generator (CSG) provides secondary
elements of the state that are compatible with yr.

ys(t) (h,[x(r),u(t)]k
I A ~~~~ I

.
Figure 5. Action critic neural network controller.

Subsequently, eq. 17 and 18 formulated in terms of x,
and ii are used on-line to adapt the action and the critic
network, respectively.

5. Flight Control Simulation and Results
The adaptive controller is implemented on a six-degree-

of-freedom business jet aircraft model. The simulation
explores the full flight envelope, OR = { V, H, ,U, p}. The
control design is based on the state, x = [V y q 8 r p p pIT,
comprising airspeed V(m/s) , path angle y(rad), pitch rate
q (rad), pitch angle B (rad), yaw rate r (rad/$, sideslip angle
p(rad), roll rate p (radls), and bank angle ,U (rad). The
independent controls being generated are throttle Sr (%),
stabilator 6s (rad), aileron s4 (rad), and rudder 6R (rad);
i.e., U = [Sr 6s s4 &PIT. The command, yc = [V, f i pr &IT,
contains the state elements that, given the altitude H (m),
uniquely specify a longitudinal-lateral-directional steady
maneuver, postulating iC = 8, = 0 with 4 as the Euler roll
angle. All angular and kinematic relations involved pertain
to non-longitudinal, non-level flight, and are based on
spherical trigonometry [13].

The neural control architecture specified in Section 4 is
initialized based on the performance criteria established
locally by the linear gains and the augmented Riccati
matrix, with NNF approximating the aircraft trim map [141.
Independent longitudinal and lateral-directional linear
models are obtained for a set, OP, of thirty-four operating
points chosen from { V, H} c OR, letting = = f i = 0.
Corresponding linear controllers are designed and used
independently to initialize longitudinal and lateral-
directional control networks [lo]. Each initialized pair is
algebraically joined into a full longitudinal-lateral-
directional neural network. Then, the full feedback and
command-integral networks, NNB and " 1 , are
algebraically summed to form the action network, NNA.

During every time interval (0.1 sec), the critic and
action networks are updated by the modified RF'ROP
algorithm of Section 3.2 based on the respective targets,
i iD and (Figs. 3 and 4). The user-defined update

parameters are: q+ = 1.2, q- = 0.5 [12], fw - 0(10-5), and
fo c< 1. The modified RPROP algorithm (Section 3.2) is
validated by comparing its performance to that of the
MATLAB 5.3 "trainrp" learning function, for the update of
the action network at t = 0.2 sec, as illustrated in Fig. 6.
Further studies also show that the modified RPROP better
preserves the original weights and avoids overfitting.

During the on-line phase, the update algorithm
terminates after the mean-squared measure of each network
error [zD - z(w)] has decreased by 10% and at least 3
epochs have elapsed. When more than 3 epochs are needed
to decrease the network error by this amount, the
terminating value of & is saved and used as &(') for the
next time interval, for V C. This typically requires several
epochs during the first 0.2 sec to adjust the increment size,
and three epochs during later time intervals to decrease the

2669

network error. The initialization phase and the modified
RF’ROP algorithm render the on-line phase feasible and
efficient with respect to both time and storage consumption.

B s- 94.8 g59:

MATLAB’ algorithm 1

__--------____ --
- , U- ,*%__l--- __--* I

k. J Modified algorithm i
error t ‘ n

0 5 0 100 150

Epochs
Figure 6. Comparison between the MATLAB@ RF’ROP
algorithm and its modified version (“A, at c = 0.2 s).

Histories of the state elements directly commanded by
yE are used to evaluate performance during a large-angle
asymmetric maneuver and are plotted with a solid line in
Fig. 7. At the initial time, the aircraft is flying level at a
nominal airspeed VO of 95 m/s and an altitude Ho of
2, 000 m, with (VO, HO) Q OP. The state response is judged
against an equivalent PI neural network controller
(represented by a dashed line in Fig. 7) that is initialized
with the same linear data but does not undergo on-line
adaptation. The comparison shows that on-line adaptation
brings about an improvement with respect to the linear
controllers. The action and critic networks minimize the
cost-to-go on line, in the presence of coupling and nonlinear
effects unaccounted for by the linear designs, and they do
so without unlearning previous information.

0 0.5 1 1.5 2 2 5 3 3 5 4 4.5 5

6 ---------__ - 4 .
4 2

i
0 0.5 1 1.5 2 2 5 3 3.5 4 4.5 5 sn . --

.... Initialized controller 00 - Adaptive critic controller 4
* ”

0 0.5 1 1.5 2 2.5 3 3.5 4 4 . 5 - 5

0 0.5 1 1 5 2 2 5 3 3 5 4 4 5 5

Time, sec
Figure 7. Comparison between on-line adaptive controller
and initialized controller at (VO, Ho) = (95 d s , 2 Km),
subject to 5-deg climb angle and 30-deg roll step command.

6. Conclusions
Advances in off-line and on-line learning techniques

and in adaptive critic methods are presented and
incorporated in a novel approach to neural control system
design. The nonlinear control system is taught using a two-

phase learning procedure en compassing an initialization
phase that provides for reliability, and an on-line phase that
accounts for actual plant dynamics. Both phases are
founded on optimal control theory and are realized with
significant computational savings. The nonlinear adaptive
controller is successfully implemented for the command-
input control of a full-scale aircraft simulation, with the
neurocontrollers adjusting on line, while retaining their
baseline performance. The adaptive controllers
spontaneously utilize those parameters that were unused
during initialization to learn newly available information.
Also, a modified resilient backpropagation algorithm allows
the networks to improve their performance in only one or
few epochs over each time increment. The advancements
of all key design stages combined bring about concrete
potential for real-life applications.

2670

Acknowledgement
This research has been supported by the Federal

Aviation Administration and the National Aeronautics and
Space Administration under FAA Grant No. 95-G-0011.

References
[l] Kirk, D. E., Optimal Control Theory; and Introduction,
Prentice-Hall, Englewood Cliffs, NJ, 1970.
[2] Bellman, R. E., Dynamic Pfiogramming, Princeton University
Press, Princeton, NJ, 1957.
[3] Howard, R., Dynamic Programming and Markov Processes,
M F Press, Cambridge, MA, 1960.
[4] White, D. A, Sofge, D., Han,dbook of Intelligent Control, Van
Nostrand Reinhold, New York, 1992.
[SI Narendra, K. S . , Parthasaranthy, K., “Identification and control
of dynamical systems using neunal networks”, IEEE Trans. Neural
Networks, Vol. 1, 1990, pp. 4-27
[6] Stengel, R. F., Optimal IControl and Estimation, Dover
Publications, Inc., New York, 1994.
[7] Barron, A. R., “Universal Approximation Bounds for
Superposition of a Sigmoidal Fknction,” IEEE Transactions on
Information Theory, Vol. 39, No 3, 1993, pp. 930-945.
[8] Astrom, K. J., Stewart, Ci. W., “Solution of the Matrix
Equation AX + XB = C,” Communications of the ACM, Vol. 15,

[9] Stengel, R. F., Manison, C., “Design of Robust Control
Systems for Hypersonic Aircraft,” J. Guidance, Control, and
Dynamics, Vol. 21, No. 1, 1997, pp.58-63.
[lo] Ferrari, S . , Stengel, R. F , “ClassicaVNeural Synthesis of
Nonlinear Control Systems,” to appear in J. Guidance, Control
and Dynamics.
[l l] Werbos, P. J., “Backpropagation Through Time: What It
Does and How to Do It,” Proc. ZEEE, Vol. 78, 1990, pp. 1550-
1560.
[I21 Reidmiller, M., Braun, H., “A Direct Adaptive Method for
Faster Backpropagation Learning: The RPROP Algorithm,” Proc.
IEEE Int. Cont on NN (ICNN), !San Francisco, CA, 1993.
[13] Kalviste, J., “Spherical Mapping and Analysis of Aircraft
Angles for Maneuvering Flight,” J. Aircrafi, Vol. 24, No. 8, 1987,

1141 Ferrari, S., Stengel, R. F. “Algebraic Training of a Neural
Network,” Proc. American Control Conference, Arlington, VA,
200 1.

1972, pp. 820-826.

pp. 523-530.

