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Abstract 
A nonlinear control system comprising a network of 

networks is taught using a two-phase learning procedure 
realized through novel techniques for initialization, on-line 
training, and adaptive critic design. The neural networks 
are initialized algebraically by observing that the gradients 
of the networks must equal corresponding linear gain 
matrices at chosen operating points. On-line learning is 
based on a dual heuristic adaptive critic architecture that 
improves control for large, coupled motions by accounting 
for plant dynamics and nonlinear effects. The result is an 
adaptive controller that is as conservative as the linear 
designs and as effective as the global controller. The 
design method is implemented to control the full. six- 
degree-of-freedom simulation of a business jet aircraft. 

1. Introduction 
The problem of optimizing a desired metric over time 

lies at the basis of virtually all robust and fault-tolerant 
control and identification schemes. Dynamic programming 
uses the principle of optimality to find an optimal strategy 
of action in a nonlinear environment. Backwards or 
discrete dynamic programming methods discretize the state 
space and make a direct comparison of the cost associated 
with all feasible trajectories, guaranteeing solution of the 
optimal control problem [l]. This approach leads to a 
number of computations that grows exponentially with the 
number of state variables (“curse of dimensionality”) [2]. 
Adaptive critic designs constitute a class of approximate 
dynamic programming methods [3] that uses incremental 
optimization combined with a parametric structure to 
efficiently approximate the optimal cost and control. They 
optimize a short-term cost metric that ensures optimization 
of the cost over all future times. Neural networks are the 
parametric structures of choice, because they easily handle 
large-dimensional input and output spaces and can learn in 
an incremental fashion. 

The simplest adaptive critic architectures are based on 
heuristic dynamic programming (HDP). They implement a 
critic network to approximate the cost-to-go in the Bellman 
equation [2] and an action network to approximate the 
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optimal control law. This paper presents a design approach 
based on a modification of HDP, referred to as dual 
heuristic programming (DHP), where the critic network 
approximates the derivatives of the cost-to-go with respect 
to the state. DHP is more promising than its earlier 
counterpart because it learns more quickly and alleviates 
persistence of excitation problems by computing the 
correlation between the cost and the individual state 
elements [4]. 

The advantages brought about by using prior knowledge 
in conjunction with on-line training are widely recognized 
in the neurocontrol literature [5 ] .  In the present approach, 
the nonlinear control system, comprising a network of 
networks, is taught using a two-phase learning procedure. 
During the first phase, referred to as initialization, the 
network size and parameters are determined from well- 
established linear control theory solely by solving algebraic 
equations that identify the exact matching of gain matrices 
at chosen operating points. During a second phase, on-line 
learning by a DHP approach improves control response for 
large, coupled motions, based on the actual state of the 
plant. This on-line phase accounts for differences between 
actual and assumed dynamic models and for nonlinear 
effects not captured by the linear designs. Classical control 
theory provides a unifying framework for the two training 
phases. The algebraic initialization is based on the linear 
quadratic regulator; the DHP approach is based on 
approximate dynamic programming. 

2. Foundations 
The goal of the adaptive critic design is to approximate 

the optimal control law for an infinite horizon problem 
subject to the real-time dynamics of a continuous plant or 
simulation. The neural controller adapts on line, with the 
plant operating over the entire range of state and command- 
input elements, { x(yc), yc}, or some suitably dense set in the 
space denoted by OR. The plant state, x, and the command 
input, yc, are fed to the controller on-line and are unknown 
prior to operation. It is assumed that linearized time- 
invariant plant models are known U priori for a subset of 
operating points, OF c OR. Corresponding linear control 
data are used to initialize the action and critic neural 
networks. These networks are further adjusted over time 
through the DHP architecture sketched in Fig. 1. 



2.1. Problem Statement 
Consider the deterministic minimization of a scalar 

integral function of the n x 1 plant state, x, and of the m x 1 
control, U, and a scalar terminal cost: 

The objective is to determine the control law for which this 
cost function is stationary, subject to the dynamic equation: 

(2) 

Plant motions and controls are sensed in the e, x 1 output 
vector y,, 

i ( t )  = f[x(r),u(t)], x(to) given 

(3) 

It is assumed that perfect measurements are available and 
that the output views all elements of the state. The mission 
goals are expressed by the e, x 1 command input, yc. which 
can be viewed as some desirable combination of state and 
control elements with e, I m. 

Critic 
State I 

Figure 1. Dual heuristic programming adaptive critic. 

The action network models the control law, which is 
assumed to be a function of the state. It can be written as 
the sum of a nominal and a perturbed effect, 

U *  [x' (t)]= U: [xi ( t ) ]  + Au* [xi (t), hx*(t)] (4) 

where, x*(t) = ~ * ( t )  + Ax*(t), and (e)* denotes the optimal 
solution. When the control law depends on parameters and 
command inputs as well as the state [6] ,  an augmented state 
can be defined to include these additional elements, as 
described in later sections. - At any moment in .  time, 
to I t I tfi the minimized value function or cost-to-go, v*(t), 
corresponding to eq. (1) can be expressed as: 

The critic network evaluates the action network 
performance by approximating the following derivative of 
the corresponding cost-to-go with respect to the state: 

av * & * (t )] 1* [x* ( t ) ]  = 
ax* (4 

Single-hidden-layer sigmoidal neural networks of the 
type shown in Fig. 2 are chosen to model the action and 
critic functionals. They hiwe input p ( t )  = [x(r)T a(r)T]T, 
where a is a scheduling vector of auxiliary inputs that 
informs the neural networks of the dynamically significant 
variables in the system. The network adjustable parameters 
consist of the input weights, W, of the output weights, V, 
and of the input and output biases, d and b. The output of 
the network is computed as the nonlinear transformation of 
the weighted sum of the input and the input bias: 

z[p(t)] = V T  a[Wp(t ) + d] + b (7) 

a[*] is a vector-valued function composed of individual 
sigmoidal functions of the form a(n) E (e" - l)/(e" + 1). 
This architecture can approximate any nonlinear function 
on a compact space arbitrarily well [7]. 

Figure 2. Sample vector-input vector-output sigmoidal 
network with s nodes in the hidden layer. 

2.2. Initialization Phase 
The goal of the initializ.ation phase is to incorporate 

linear control knowledge in the nonlinear control system. 
The procedure is based on the observation that the network 
gradients must equal corresponding linear control matrices 
at selected operating points, t3P, indexed by K =  1,2, ..., p. 
Linearized models of the plant can be obtained from eq. 2 
for the subset OP by assuming small perturbations about 
corresponding equilibria, and ignoring time-varying effects: 

(8)  

The optimization goals are expressed as a quadratic 
function of the state and conb-01 

k ( t )  = ~ ~ x ( t )  + GAU(~)  ,  AX(^,> given 

J = - 1 ' I  [Ax'(r)QAx(r)+ 2AxT (r)MAu(r)+Au'(r)RAu(r)br 

2 O  

(9) 
When the plant is subject to continuing disturbance inputs 
and +becomes infinite in the limit, the value of J may still 
be bounded by defining an average cost, 

that has the same optimality conditions as J [6]. As lj  
approaches infinity, it is reasonable to let the terminal cost, 
&x(+)]. equal zero. Furthennore, it can be shown [8] that 
the value function, 

V*[Ax*( t ) ]=  iAx*'(t)P(t)A~.*(t) 
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is optimal for eq. 8 and 9, and that P(t) approaches its 
steady-state value P. The following closed-form linear- 
optimal control law can be derived [6]: 

(12) 

LTI control laws that satisfy desired engineering criteria 
[9] can be designed for OP to provide a set of locally 
optimal gains and Riccati matrices { C, P}- The gradient 
of the action network at the dh operating point, which has 
value in initializing the network, is found by differentiating 
eq. 4 with respect to ~'(2). Using the result in eq. 12: 

Au* (1) = -R-' [G TP + MT b x *  (f ) = <Ax' (f ) 

C, is known from the LQ optimal gain matrices, and a, is 
the scheduling vector evaluated at the dh operating 
conditions. In infinite horizon problems, the structure of 
the value function is independent of time; therefore, a single 
time-invariant critic network can be used to approximate 
A*[x*(t)] or simply A*@) (eq. 6). The LQ optimal value 
function, eq. , l l ,  can be differentiated twice with respect to 
the state to seek the following derivative, 

where, P,is known and is used to initialize the critic. 
Thus, under the stated assumptions, the network 

gradient dz[p(t)]/ax(f) is known for both the critic and the 
action network. In addition, the following condition applies 
to their input/output relationship: 

The network architecture, number of nodes, and parameters 
that match these requirements exactly are determined in one 
step by solving sets of linear algebraic equations. 

2.3. Dual Heuristic Programming Adaptive Critic 
The on-line logic is implemented in discrete time 

through an incremental optimization scheme based on dual 
heuristic dynamic programming. During each time interval 
Ar = fk+l - f k ,  the action and critic networks are adapted to 
more closely approximate the optimal control law and value 
function derivatives, respectively. Adaptation criteria are 
derived from the recurrence relation by discretizing the 
optimal control problem [l]. Howard's form of the 
recurrence relation [3] can be used to approximate the value 
function over time, 

where v [ ~ ( r ~ + ~ ) ]  is necessarily a predicted value. The 
control u(tk) is defined as the function of x( fk )  that 
minimizes the right-hand side of eq. 16. When the function 
Vlx(fk)J is calculated from eq. 16 based on the current 

control, and u(tk) is adjusted to minimize this optimal value 
function approximation, the method iteratively converges to 
an optimal strategy [3]. For simplicity, the asterisks will be 
omitted in the remainder of the paper. 

At time f k ,  the control strategy for which the value 
function is stationary satisfies the optimality condition: 

Equation 16 is differentiated with respect to the state to 
obtain a recurrence relation for the DHP critic, which 
approximates the functional A[x(f)] : 

The critic is then used to compute A[x(fk+l)] in eq. 17, once 
the prediction of the state, x(tk+,), is known from the model 
of the plant (eq. 2). 

3. On-line Phase Implementation 
The DHP criteria are implemented for the networks' 

adaptation, based on x(tk), as shown by the schematic in 
Figs. 3 and 4. The adjustable parameters (or weights) of 
each network are updated to minimize the mean-squared 
error between a desired output or target and the network's 
actual output, z[p(fk)], for the input p(fk). Equations 17 and 
18 are used to generate the action and the critic desired 
outputs corresponding to p(fk), u&) and AD&), 
respectively. During the first time interval ( f l  - to), the 
initialization weights are used prior to the network update. 
Later, the weights obtained during ( fk - fk.,) are used as 
prior weights for the interval (tk+, - tk). 

3.1. Action and Critic Network Target Generation 
The action network target, U&), is obtained by solving 

the optimality condition, eq. 17, which consists of a set of 
nonlinear equations. A guess to the solution, uD(fk)', 
initially is provided by the action network (using the prior 
weights). Subsequently, it is perturbed by an established 
algorithm (e.g., Newton-Raphson) until the stopping 
condition is met. A(tk+,) is computed by the critic network 
based on the prediction of x(fk+,), as shown in Fig. 3. Once 
the action network has been updated, the critic's desired 
output is computed from eq. 18 based on the exact values of 
u(tk) and au(tk)/ax(fk). In the case of the critic (Fig. 4), no 
iteration is needed to compute its target AD&), which is at 
best a prediction of A&). The derivatives dL[*]/dx(fk) and 
aL[*]/du(tk) are computed analytically from L[x(tk),u(tk)]. 
The transition matrices, ax(fk+,)/au(tk) and ax(fk+,)/ax(tk),  
are obtained numerically from eq. 2. 
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Given actual state, x(tk), guess 
desired control, UD(tk)' 

Compute utility function derivative. I dL[.l/pu(tk) I I 
+ 

PLANT MODEL: - State prediction, x(tk+l) 

- Transition matrix prediction, & ( f k + l ) / d u ( r k )  

CRITIC: Predict cost-to-go, h(rk+]) 

Compute optimality condition, 

1 

1 

I Update action network weights based on U&) I 
Figure 3. Action network adaptation, during AZ = tk+l - t k .  

I Given actual state, x(tk) I 

Compute utility function derivatives, 
dL[*]/du(t,) and dL[*]/&(tk) 

I PLANT MODEL: - State prediction, x(tk+,) I - Transition matrices prediction, &( t t+ , ) /du( rk ) ,  &(tk+,)/&(tk) 

4 
CRITIC: - Predict cost-to-go, h(rk+,) , Compute desired cost-to-go, h&) 

Update critic network weights based on h&) 

Figure 4. Critic network adaptation, during Ar = tk+l - tk. 

3.2. On-line Training Algorithm 
The on-line training algorithm minimizes an error 

function E, defined in terms of one desired output ZD and 
the actual network output z, with respect to w, a vector of 
ordered weights wt indexed by k' = 1,2, . . .: 

1 
2 

E(w) = - 112 - z(w )I/' 

Since the initialized weights are close to being optimal, the 
on-line minimization is kept local. Based on the idea of 
backpropagation learning [ 1 I.], at each epoch, i, the on-line 
training algorithm modifies each weight w?' by an 
increment Aw?), based on the derivative dE(w)/dwc, i.e.: 

The on-line phase is effective and reliable when the 
error begins decreasing at {he onset of training, and the 
update algorithm does not degrade prior network weights. 
Because of the high-dimensional nature of real-world 
applications, the neural netwlorks implemented typically are 
large and their parameters; differ by many orders of 
magnitude, causing the derivatives to be highly dissimilar. 
Speed and memory requirements are particularly stringent 
on line, rendering this training phase arduous in practice. 

For these reasons, the resilient backpropagation 
algorithm (RPROP) [12] is modified and implemented. 
RPROP is based only on the temporal behavior of the signs 
of the gradients [12]. Therefore, it has low memory 
requirements and no dependence on the size of the 
derivatives. The individual size of each increment, denoted 
by 4, is increased by a factor r]' when the derivative is not 
changing sign, while it is decreased by a factor 7- when the 
derivative is changing sign. This process accelerates 
convergence in shallow regions and slows the search down 
when local minima are missed. Once all 4 are adjusted, 
each weight is modified in the direction of gradient descent. 
When the error derivative changes sign, indicating that a 
minimum was missed, the weight wc(I+') is brought back to 
its previous value wC(I-') by a backtracking epoch [ 121. 

Backtracking is a key algorithmic feature that allows the 
search to remain local. Another crucial element is the 
initial increment value 4"). Setting all initial increments 
equal to the same constant value (e.g.. 0.1) for weights of 
dissimilar sizes [12] is equivalent to disregarding prior 
network weights. Instead, initial increments are chosen 
commensurate with a fraction,f,, of the corresponding prior 
weights and perturbed byfo tlo account for zero weights: 

The same weight update routine is used for the action and 
the critic networks by letting z D =  uD(tk) in the action 
update, and zD = k D ( t k )  in the critic update. 

4. Adaptive Critic Proportional Integral Neural 
Network Clontrol Design 

The neural controller structure is motivated by a 
multivariable linear controller; proportional-integral (PI) 
control is considered for illustration. A PI controller 
modifies the stability and transient response of the plant 
through the feedback gain matrix, Cs, and provides Type-1 
response to command inputs through the proportional gain 
matrix, CF, and the command-integral gain matrix Cl [lo]. 
These gains are computed by minimizing a cost function in 
the form of eq. 9 formulated in terms of the augmented state 
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x, and the control deviation 6 .  x, includes the state 
deviation E and the output error's time integral 6, i.e., 
x, =[Z' g']', where %=x-x, .  ii and y" are similarly 
defined. The set point (G, K) is a function of the command 
input, yc. [6]. The LQ law (eq. 12) provides for the optimal 
control in terms of the newly defined deviations: 

(22) 

The gains and the Riccati matrix Pa are obtained by solving 
a matrix Riccati equation [6] formulated in terms of x, and 
5 .  The weighting matrices Q, M, and R are designed 
using implicit model following [lo]. 

The corresponding neural network structure is obtained 
by replacing each linear gain matrix with a nonlinear 
control network, N N B  for CB, N N F  for CF, and N N I  for CI 
[lo]. In addition to the scheduling vector, the networks 
NNB, NNF, and NNI are provided with the state deviation, 
the command input, and the command error integral, 
respectively. Each network contributes to the total control, 

u(t) = U, (t)+ AU , (t)+ Au, ( t )  
(23) 

G(t) = -taxa (t) = - c B q t ) -  C , ( ( t )  

= NN, [Y c (t),a(t)l+ NN, [:(t)34t)l+ "1 [t(t),a(t)l 

where ii = Au, + AuI is the control to be optimized. 
The action network, NNA, that approximates the 

miniinizing control law consists of the algebraic sum of 
NNB and N N I :  

(24) 

Given the same inputs, the critic network, NNc, computes 
the derivative of the value function v[%(t)] with respect to 
the augmented state: 

ii(t = " A Ix , (t )? a(41 

The final neural controller structure is shown in Fig. 5. The 
Scheduling Variable Generator (SVG) produces a based on 
yc and an exogenous vector, e, of measured variables. The 
Command State Generator (CSG) provides secondary 
elements of the state that are compatible with yr. 

ys(t) (h,[x(r),u(t)]k 
I A ~~~~ I 

. 
Figure 5. Action critic neural network controller. 

Subsequently, eq. 17 and 18 formulated in terms of x, 
and ii are used on-line to adapt the action and the critic 
network, respectively. 

5. Flight Control Simulation and Results 
The adaptive controller is implemented on a six-degree- 

of-freedom business jet aircraft model. The simulation 
explores the full flight envelope, OR = { V, H,  ,U, p}. The 
control design is based on the state, x = [V y q  8 r p p  pIT, 
comprising airspeed V(m/s ) ,  path angle y(rad), pitch rate 
q (rad), pitch angle B (rad), yaw rate r (rad/$, sideslip angle 
p(rad), roll rate p (radls), and bank angle ,U (rad). The 
independent controls being generated are throttle Sr (%), 
stabilator 6s (rad), aileron s4 (rad), and rudder 6R (rad); 
i.e., U = [Sr 6s s4 &PIT. The command, yc = [V, f i  pr &IT, 
contains the state elements that, given the altitude H (m), 
uniquely specify a longitudinal-lateral-directional steady 
maneuver, postulating iC = 8, = 0 with 4 as the Euler roll 
angle. All angular and kinematic relations involved pertain 
to non-longitudinal, non-level flight, and are based on 
spherical trigonometry [13]. 

The neural control architecture specified in Section 4 is 
initialized based on the performance criteria established 
locally by the linear gains and the augmented Riccati 
matrix, with NNF approximating the aircraft trim map [ 141. 
Independent longitudinal and lateral-directional linear 
models are obtained for a set, OP, of thirty-four operating 
points chosen from { V,  H} c OR, letting = = f i  = 0. 
Corresponding linear controllers are designed and used 
independently to initialize longitudinal and lateral- 
directional control networks [lo]. Each initialized pair is 
algebraically joined into a full longitudinal-lateral- 
directional neural network. Then, the full feedback and 
command-integral networks, NNB and " 1 ,  are 
algebraically summed to form the action network, NNA. 

During every time interval (0.1 sec), the critic and 
action networks are updated by the modified RF'ROP 
algorithm of Section 3.2 based on the respective targets, 
i iD and (Figs. 3 and 4). The user-defined update 

parameters are: q+ = 1.2, q- = 0.5 [12], fw - 0(10-5), and 
fo c< 1. The modified RPROP algorithm (Section 3.2) is 
validated by comparing its performance to that of the 
MATLAB 5.3 "trainrp" learning function, for the update of 
the action network at t = 0.2 sec, as illustrated in Fig. 6. 
Further studies also show that the modified RPROP better 
preserves the original weights and avoids overfitting. 

During the on-line phase, the update algorithm 
terminates after the mean-squared measure of each network 
error [zD - z(w)] has decreased by 10% and at least 3 
epochs have elapsed. When more than 3 epochs are needed 
to decrease the network error by this amount, the 
terminating value of & is saved and used as &(') for the 
next time interval, for V C. This typically requires several 
epochs during the first 0.2 sec to adjust the increment size, 
and three epochs during later time intervals to decrease the 
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network error. The initialization phase and the modified 
RF’ROP algorithm render the on-line phase feasible and 
efficient with respect to both time and storage consumption. 

B s- 94.8 g59: 

MATLAB’ algorithm 1 

__--------____ -- 
- , U- ,*%__l--- __--* I 

k. J Modified algorithm i 
error t ‘ n 

0 5 0  100 150 

Epochs 
Figure 6. Comparison between the MATLAB@ RF’ROP 
algorithm and its modified version (“A, at c = 0.2 s). 

Histories of the state elements directly commanded by 
yE are used to evaluate performance during a large-angle 
asymmetric maneuver and are plotted with a solid line in 
Fig. 7. At the initial time, the aircraft is flying level at a 
nominal airspeed VO of 95 m/s and an altitude Ho of 
2, 000 m, with (VO, HO) Q OP. The state response is judged 
against an equivalent PI neural network controller 
(represented by a dashed line in Fig. 7) that is initialized 
with the same linear data but does not undergo on-line 
adaptation. The comparison shows that on-line adaptation 
brings about an improvement with respect to the linear 
controllers. The action and critic networks minimize the 
cost-to-go on line, in the presence of coupling and nonlinear 
effects unaccounted for by the linear designs, and they do 
so without unlearning previous information. 

0 0.5 1 1.5 2 2 5 3 3 5 4 4.5 5 

6 ---------__ - 4  . 
4 2  

i 
0 0.5 1 1.5 2 2 5 3 3.5 4 4.5 5 sn . -- . . .  . . . . .  

.... Initialized controller 00 - Adaptive critic controller 4 
* ”  

0 0.5 1 1.5 2 2.5 3 3.5 4 4 . 5 -  5 

0 0.5 1 1 5  2 2 5  3 3 5  4 4 5  5 

Time, sec 
Figure 7. Comparison between on-line adaptive controller 
and initialized controller at (VO, Ho) = (95 d s ,  2 Km), 
subject to 5-deg climb angle and 30-deg roll step command. 

6. Conclusions 
Advances in off-line and on-line learning techniques 

and in adaptive critic methods are presented and 
incorporated in a novel approach to neural control system 
design. The nonlinear control system is taught using a two- 

phase learning procedure en compassing an initialization 
phase that provides for reliability, and an on-line phase that 
accounts for actual plant dynamics. Both phases are 
founded on optimal control theory and are realized with 
significant computational savings. The nonlinear adaptive 
controller is successfully implemented for the command- 
input control of a full-scale aircraft simulation, with the 
neurocontrollers adjusting on line, while retaining their 
baseline performance. The adaptive controllers 
spontaneously utilize those parameters that were unused 
during initialization to learn newly available information. 
Also, a modified resilient backpropagation algorithm allows 
the networks to improve their performance in only one or 
few epochs over each time increment. The advancements 
of all key design stages combined bring about concrete 
potential for real-life applications. 

2670 

Acknowledgement 
This research has been supported by the Federal 

Aviation Administration and the National Aeronautics and 
Space Administration under FAA Grant No. 95-G-0011. 

References 
[l] Kirk, D. E., Optimal Control Theory; and Introduction, 
Prentice-Hall, Englewood Cliffs, NJ, 1970. 
[2] Bellman, R. E., Dynamic Pfiogramming, Princeton University 
Press, Princeton, NJ, 1957. 
[3] Howard, R., Dynamic Programming and Markov Processes, 
M F  Press, Cambridge, MA, 1960. 
[4] White, D. A, Sofge, D., Han,dbook of Intelligent Control, Van 
Nostrand Reinhold, New York, 1992. 
[SI Narendra, K. S . ,  Parthasaranthy, K., “Identification and control 
of dynamical systems using neunal networks”, IEEE Trans. Neural 
Networks, Vol. 1, 1990, pp. 4-27 
[6] Stengel, R. F., Optimal IControl and Estimation, Dover 
Publications, Inc., New York, 1994. 
[7] Barron, A. R., “Universal Approximation Bounds for 
Superposition of a Sigmoidal Fknction,” IEEE Transactions on 
Information Theory, Vol. 39, No 3, 1993, pp. 930-945. 
[8] Astrom, K. J., Stewart, Ci. W., “Solution of the Matrix 
Equation AX + XB = C,” Communications of the ACM, Vol. 15, 

[9] Stengel, R. F., Manison, C., “Design of Robust Control 
Systems for Hypersonic Aircraft,” J. Guidance, Control, and 
Dynamics, Vol. 21, No. 1, 1997, pp.58-63. 
[lo] Ferrari, S . ,  Stengel, R. F ,  “ClassicaVNeural Synthesis of 
Nonlinear Control Systems,” to appear in J. Guidance, Control 
and Dynamics. 
[ l l ]  Werbos, P. J., “Backpropagation Through Time: What It 
Does and How to Do It,” Proc. ZEEE, Vol. 78, 1990, pp. 1550- 
1560. 
[I21 Reidmiller, M., Braun, H., “A Direct Adaptive Method for 
Faster Backpropagation Learning: The RPROP Algorithm,” Proc. 
IEEE Int. Cont on NN (ICNN), !San Francisco, CA, 1993. 
[13] Kalviste, J., “Spherical Mapping and Analysis of Aircraft 
Angles for Maneuvering Flight,” J. Aircrafi, Vol. 24, No. 8, 1987, 

1141 Ferrari, S., Stengel, R. F. “Algebraic Training of a Neural 
Network,” Proc. American Control Conference, Arlington, VA, 
200 1. 

1972, pp. 820-826. 

pp. 523-530. 


