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Abstract— The problem of optimizing the configuration of a
moving sensor network deployed to detect moving targets is
formulated using optimal control theory. A cost function of the
Lagrange type is obtained through a computational geometry
approach to measure the space of line transversals for k of the
n sensors by formulating an integral function of the sensors
locations, where k is the number of required detections. Then,
the cost function is optimized subject to the sensors dynamics
expressed by a state-space model. The method is demonstrated
for a surveillance application that involves sonobuoys deployed
on the ocean’s surface to detect underwater targets within a
specified region of interest and over a desired period of time. It
is shown that a state-space model of the sonobuoy dynamics can
be obtained from the steady-state solution of Stokes’s problem
and a current vector field obtained from oceanographic models
or CODAR measurements. In this paper, a solution is presented
for the case of non-maneuverable sensors that can be placed
anywhere within the region of interest and move subject to
the ocean’s current. The methodology can also be extended to
maneuverable sensors with on-board control capabilities, such
as, thrusters, or to acoustic sensors installed on underwater
vehicles. The numerical simulations show that by taking into
account the drift dynamics the cumulative coverage over a
period of seven days can be increased by up to 85%.

I. INTRODUCTION

Simple, low power sensors distributed throughout an en-

vironment can provide situational awareness at a moderate

cost. This technology enables military and environmental

surveillance tasks [1], such as monitoring ocean features,

tracking endangered species, and detecting and tracking

underwater vehicles. Many of these sensor implementations

require coverage of large regions of interest, where non-

cooperative targets whose trajectories are unknown a priori

must be detected over time. To ensure that the distributed

system is both practical and affordable, proximity sensors

with individual detection capabilities are often employed to

obtain multiple measurements from each track, possibly at

different moments in time. Proximity sensors only report a

simple energy observation, from which a relative distance

measurement from the sensor to the target, referred to as

the sensor-to-target closest-point-of-approach (CPA), may

be inferred. Multiple sensor detections are used to form a

hypothesis for a target’s track by fusing the detection events

from several sensors in what is referred to as a track-before-

detect approach [2]. Only after a hypothetical track is formed

from a consistent set of k detections, the target is declared

detected and tracking capabilities may be deployed.
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The problem of sensor network coverage as it pertains

to detecting a moving target through limited measurements,

such as CPA detections, is referred to as track coverage. It

was first introduced in [3] and formulated using planar geom-

etry. Consequently, the coverage of a network configuration

with respect to a pre-defined area of interest can be rapidly

assessed by a closed-form function of the sensors positions.

The methodology presented in this paper optimizes the time

integral of this track-coverage function, and accounts for

the dynamics of the sensor networks that are caused by

oceanic drift. It has long been recognized in practice that

the drift of sonobuoys can have a detrimental impact on

the effectiveness of mission objectives, such as detection.

The reason is that field integrity is reduced when the local

ocean currents create coverage gaps, cluster too many buoys

together, or move buoys outside of the coverage area of

interest [4]. To minimize the impact that the currents have on

the performance of the sonobuoy system, the current vector

field is modeled and accounted for by the track-coverage

function optimization. One popular approach to measuring

ocean currents, referred to as the Lagrangian approach,

employs a buoy known as a drifter that rides on the ocean

surface and can be tracked by satellite, radar, radio, or sound

[5], [6], [7], [8], [9]. Other methods for obtaining current

measurements include radar-based measurements, such as

Coastal Ocean Dynamics Applications Radar (CODAR) [10],

and satellites [11]. In view of these recent technological

developments, a methodology is developed for optimally

placing a set of proximity sensors whose dynamics are

formulated in terms of the surface currents specified by a

known vector field.

This paper presents a novel sensor placement problem with

the objective of providing maximum track coverage of a

rectangular region of interest over time by means of moving

sensors. The approach developed in this paper leads to a

new problem in dynamic computational geometry pertaining

the geometric transversals of moving families of objects. It

is shown that a state-space representation of the motions of

the individual sensors subject to the current vector field can

be derived from sonobuoys oceanic drift models. When the

sensor networks have no control capabilities, this method

determines the initial sensor positions that will maximize

the cumulative track coverage over a specified period of

time. When sensors have control capabilities (for example,

on-board thrusters), the objective is to determine a suitable

control policy that maximizes the cumulative track coverage.
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II. BACKGROUND

A. Track coverage by means of multiple sensors

The problem of target tracking by a sensor network

arises in many applications, including surveillance systems,

monitoring of endangered species, and manufacturing. As

a result, it is receiving considerable attention. Tracking

refers to the estimation of the state (e.g., position, velocity,

acceleration) of a moving object by means of multiple sensor

measurements. Once a detection is declared by sensors in

search mode, a target track is formed by estimating its

state from the set of measurements acquired over time,

through Kalman filtering. In this paper, it is assumed that a

central fusion center collects only peak energy information

from a set of proximity sensors and then computes all

sensor-target distances as shown in [2]. Using only limited

sensed information, such as closest-point-of-approach (CPA)

detections, it is possible to hypothesize a set of target paths

for one or more targets moving at a constant heading and

non-zero speed through the sensor field [2].

It is shown in [2] that given a set of τi error-free

measurements for each of the sensors located at x ≡
[xT1 ... x

T
i ... x

T
n ]T , the target path is a line that is jointly

tangent to all circles Ci(S) ≡ {χ : ‖χ − xi‖ ≤ ri}, where

χ ∈ ℜ2×1, ‖ · ‖ is the Euclidean norm, and ri is the distance

from the ith sensor to the target. Figure 1 illustrates two

possible tracks formed from two sensor measurements, τ1
and τ2. Reliable target detection typically requires two or

more individual sensor detections that may be used in a track-

before-detect approach.

 * x1

 * x2

 r1

  r2

Interior track 

Exterior track 

   CPA points 

CPA point 

 

Fig. 1. Geometry of two potential interior and exterior tracks formed by
the CPA events for two sensors located at x1 and x2 [2]

B. k-Track coverage for a fixed sensor network

The track-coverage optimization problem consists of max-

imizing the amount of tracks that are intercepted by at least

k sensors in a network of n omnidirectional sensors placed

in polygonal area A. In [12], this problem was formulated

through geometric transversal theory. A set of geometric

objects in ℜd is said to have a j-transversal when all objects

are intersected by a common j-dimensional flat, such as a

track. A function is constructed to measure the space of line

transversals for a family of k circles belonging to a set of n
circles of different size and location in A ∈ ℜ2, which here

is assumed to be rectangular for simplicity.

Consider a sensor located at xi = [x1,i x2,i]
T with a

maximum sensor range ri. Let vi ≡ [x1,i (x2,i − bx2
)]T

denote the sensor position vector relative to the b-intercept

of the x2-axis. The coverage cone, defined as the set of tracks

detected by a sensor at xi with range ri, is bounded by the

following high and a low unit vectors,

ĥi =

[

cos θi − sin θi
sin θi cos θi

]

vi

‖vi‖
= Q+

i v̂i (1)

and

l̂i =

[

cos θi sin θi
− sin θi cos θi

]

vi

‖vi‖
= Q−

i v̂i (2)

Where, θi denotes half the opening angle of the coverage

cone and is easily calculated from xi and ri, because the

sensor detection radius forms a right triangle with the low

and high position vectors, as shown in [3].

For n ≥ k ≥ 1, the high and low unit vectors of each

sensor and b-intercept are ordered according to a positive

counterclockwise orientation [13]. Then, the k-coverage cone

for the sensors positioned at (x1, ..., xk) can be defined by

the ordered pair (̂l∗, ĥ
∗) and is given by,

sinψ = ‖̂l∗ × ĥ
∗‖ =

∣

∣

∣

∣

∣

v̂
T
ℓ Q+

ℓ

v̂
T
j Q−

j

∣

∣

∣

∣

∣

, (3)

where | · | is the matrix determinant, as shown in [3]. It

follows that the track coverage for a rectangular region can be

measured by the sum of the opening angles over its borders,

that is,

T k
A =

L2
∑

bx2
=0

H(ψ) · ψ +

L1
∑

bx1
=0

H(ζ) · ζ

+

L2
∑

bχ2
=0

H(ξ) · ξ +

L1
∑

bχ1
=0

H(ρ) · ρ, (4)

where ψ, ζ, ξ, and ρ denote the opening angles of the

coverage cones defined with respect to x2, x1, χ2, and χ1,

respectively, and these axis are placed along the four borders

of A. H(·) is a heaviside function that ensures that the vector

ordering described earlier is guaranteed [3].

When n > k, (4) may include overlapping coverage cones,

and result into certain tracks being considered more than

once by the coverage function. In order to eliminate the pos-

sibility for redundant coverage, each of the coverage cones

within (4) is formulated using the principle of inclusion-

exclusion [14], [15]. The resulting function methodically

measures the union of possibly non-disjoint sets,

∣

∣

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣

∣

∣

=
n

∑

j=0



(−1)(j+1)
∑

S∈Ij

|S|



 , (5)

where Ik represents the set of k-fold intersections of mem-

bers of C = {A1, A2, ..., An}. For instance, I3 contains all

possible intersections of three sets chosen from C. S is the

union of the jth set combination, and nα is the total number

of set combinations. Therefore, (4) is expanded to

2T k
A =

L2
∑

bx2
=0

nα
∑

j=1

(−1)j+1
∑

ψ∈Ij

H(ψ)|ψ|
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+

L2
∑

bχ2
=0

nα
∑

j=1

(−1)j+1
∑

ρ∈Ij

H(ρ)|ρ|

+

L1
∑

bx1
=0

nα
∑

j=1

(−1)j+1
∑

β∈Ij

H(β)|β|

+

L1
∑

bχ1
=0

nα
∑

j=1

(−1)j+1
∑

ζ∈Ij

H(ζ)|ζ| (6)

Where, the factor of two is used because any track intersect-

ing A always intersects two of its sides.

The upper bound of (6) represents total coverage, which

is provided by a sensor network that detects all tracks in A
at least k times. It is shown in [16] that this upper bound is,

T max
A = π

(

L2 + δbx2

δbx2

+
L1 + δbx1

δbx1

)

(7)

and, thus, it is independent of the number of sensors n or

k, and is a function of both the dimensions of A and the

discretization of the reference axes.

III. TRACK COVERAGE PROBLEM FOR A MOVING

SENSOR NETWORK

A moving sensor network, such as one comprised of

sonar buoys that are floating due to oceanic drift, develops

significant track-coverage holes over time. A coverage hole

is defined as a region in parameter space where tracks

are not detected by at least k sensors. Another undesirable

outcome is the increased redundant coverage, which takes

place when more than k sensors detect the same set of tracks.

If the sensors have no control inputs, e.g., they are non-

maneuverable free-floating sensors, the trajectories of the

sensors that maximize the overall coverage over a period

of time depend only on the initial conditions. If the sensors

can be controlled, e.g., are installed on underwater gliders

or are equipped with thrusters, an optimal control policy and

trajectory can be obtained from the solution of an optimal

control problem. The drift dynamics induced by an oceanic

environment are accounted for by utilizing oceanographic

models and measurements of the ocean current, which pro-

duce a known forcing vector field in the buoy equations

of motion [4]. The result is an optimal control problem

that seeks to optimize sensor network coverage of an area

A, subject to oceanic sensor drift. This paper investigates

the problem of optimally placing a set of moving sensors

in A such that their trajectories maximize the network

track coverage over a desired period of time. The dynamic

sensor network obeys the following assumptions: (i) target

maintains constant heading and speed; (ii) the range of each

omnidirectional sensor is known and can be represented by a

disk centered at the sensor location; (iii) the area of interest

is rectangular.

A. Drift Dynamics

The current velocity profile is acquired by oceanographic

models [4], satellite [11], or by Coastal Ocean Dynamics

Applications Radar (CODAR) [10]. Surface currents can be

measured through oceanographic models from past mea-

surements acquired from previously deployed buoys in the

ocean, as explained in [4]. The measurement of surface

currents by CODAR, a high frequency radar system, employs

a transmitter that sends out radio waves that scatter off the

ocean surface and then return to a receiver antenna. Using

this information and the principles of the Doppler shift,

CODAR is able to calculate the speed and direction of the

surface current.

Another method for obtaining the ocean surface current

vector components utilizes state-of-the-art satellite technol-

ogy. Currently, the most efficient way of deriving the surface

currents consists of performing feature tracking, which over-

laps multiple synthetic aperture radar (SAR) images taken

from different satellites over a short period of time [11].

SAR is a side-looking imaging radar that transmits a series

of short, coherent pulses to the ground. Then, the high-

resolution image is produced by detecting small Doppler

shifts to the moving radar. The image-collecting sensors on

each satellite have very different dynamic ranges of data,

and filtered data with the same dynamic range are essential

for feature tracking. The SAR data obtained from different

satellites is matched by means of a 2-dimensional band-pass

data filter that is localized in both frequency and time, and

employs wavelet transforms [11]. For example, Figure 2(a)

taken from [11], shows the ocean surface drift (green arrows)

derived from the wavelet analysis of two satellites’ SAR data

over the Luzon Strait near the Philippines (Figure 2(b)).

Once a current vector field has been obtained by one of

the above methods, it can be employed in buoy equations

of motion that have been validated through experiments in

the ocean, and are taken from [4]. The sonobuoy response

to a 3-dimensional current profile is represented by a two

orthogonal planar current profile characterized by the drag

equation

D =
1

2
ρCdAV

2 (8)

D is the total drag on a sphere obtained from the steady-state

solution to Stoke’s Problem along the local current velocity

vector. ρ is the fluid density, Cd is the object’s coefficient

of drag, and A is the object’s cross-sectional area. V , the

magnitude of the fluid relative velocity vector past the object,

has the following components,

∆v1 ≡ u1 − v (9)

∆v2 ≡ v − u2, (10)

assuming that the velocity profile in the vertical direc-

tion can be approximated as shown in Figure 3(b). Also,

each velocity vector can be described in the plane as

∆vi = [∆vxi
∆vyi

]T , the water velocity components

ui = [uxi
uyi

]T , and the sonobuoy velocity components

v = [vx vy]
T .

In order to describe the sononbuoy velocity by a differen-

tial equation,

ẋ = v(t, x, y), (11)

a force balance is applied to the upper and lower spheres that
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(a)

(b)

Fig. 2. (a) Ocean surface drift (green arrows) derived from two satellites’
SAR data over the Luzon Strait, and (b) the location map with the SAR
image coverage area shown in the large box taken from [11].

approximate the sonobuoy, as shown in Figure 3. It follows

that the equations in the x and y directions are:

Cd1A1(∆vx1
)2 = Cd2A2(∆vx2

)2 (12)

Cd1A1(∆vy1)
2 = Cd2A2(∆vy2)

2. (13)

Introducing the constant β =
√

(Cd2A2)/(Cd1A1), the

relative velocities can be written as ∆vx1
= β∆vx2

and

∆vy1 = β∆vy2 . Then, the velocity of the buoy is

v =

[

ux1
+βux2

1+β
uy1

+βuy2

1+β

]

(14)

Now, let ux2
= αxux1

and uy2 = αyuy1 , and for simplicity

assume that αx = αy = α, with 0 ≤ α ≤ 1. Then (14) can

be written as,

v =





(

1+βα
1+β

)

ux1

(

1+βα
1+β

)

uy1



 = γ

[

ux1

uy1

]

, (15)

with the constant γ ≡ (1 + βα)/(1 + β) < 1. By assuming

the buoys move with the surface current, i.e., ∆vi = 0 ,

the buoy equation of motion (11) can be simplified to the

u1

u2

  z 

 f1

 f2

 A1

 A2

v

(a)
 

  y  

  v 
 

 sensor 

   x 

(b)

Fig. 3. (a) The upper and lower components of a sonobuoy in which a
force balance of f1 = f2 is applied, (12)-(13), and (b) is the view from
above.

following state space model,

dx(t)

dt
= v = Ax(t), (16)

that is, linear and time-invariant (LTI).

B. Optimal placement of moving sensor networks

The optimization of the track coverage provided by a

sensor network over a period of time consists of optimizing

the space of line transversals of a moving family of circles.

If the sensors are non-maneuverable, the trajectories of the

sensors depend only on their initial conditions, namely, their

initial positions in A. The coverage function (6) is used to

obtain a measure of the cumulative coverage over time in

terms of an integral objective function of the Lagrange type.

This cost function is derived through a dynamic computa-

tional geometry approach that expresses a Lebesgue measure

on the space of line transversals in closed form. Since the

cost function is not quadratic and is composed of several

terms, the solution of this optimal control problem becomes

increasingly difficult as A becomes larger and the number

of sensors increases.

When sensors are maneuverable, the objective is to deter-

mine a suitable control law that maximizes the cumulative

track coverage. For example, the controllable sensor dynam-

ics may be described by the linear ODE

dx(t)

dt
= Ax(t) + Gu(t). (17)

Control power may be introduced to compensate for vari-

ations in the drift that would cause the sensor to deviate

from its desired trajectory, or to maintain a fixed sensor

configuration. The cost function describing the cumulative
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track coverage in terms of the state and control vectors is

J k
A(x,u, t) =

tf
∫

to

T k
A{x(t), ẋ(t),u(t), t}dt (18)

In this paper, the sensor network is assumed to be gov-

erned by (16), and the goal is to find the initial conditions for

which the resulting trajectories provide maximum cumulative

coverage. Through the dynamic equation (16), the cost

function describing the cumulative coverage is formulated

in terms of the sensors initial positions. The optimal strategy

consists of a set of initial sensor position vectors that max-

imize the cumulative coverage over a region of interest A.

The integrand of the cost function, given by (6), is calculated

using the instantaneous high and low unit vectors, ĥi(t = ti)
and l̂i(t = ti), that depend on the sensor position vector

x(ti), as shown in (1) and (2). When applied to a moving

sensor network that is not maneuverable, the cost function

simplifies to

J k
A(x, t) = f(x, ẋ) =

∫ tf

to

T k
A [x1(t), ...,xn(t)]dt. (19)

Since the governing equation (16) is linear, the sensor

positions x(t) can be related to their initial positions by the

transition matrix, Φ(t, to):

x(t) = Φ(t, to)x(to). (20)

Where, Φ = eA(t−to), and the elements of A are constant

parameters obtained from the known current vector field. A

general form for Φ(t, to) is derived in Section III-C . Then,

(20) is substituted in (19), and the integral is maximized with

respect to x(to) = xo in order to obtain the optimal initial

position, x
∗
o.

The optimization problem of maximizing the cumulative

coverage, J , for n sensors and k-required sensor detections

is constrained such that the initial sensors locations (i)

prevent range overlap and (ii) are contained within A, where

A is an L1 × L2 rectangle. Thus, the optimization problem

becomes,

max
xo

J k
A, subject to x(t) = Φ(t, to)x(to) (21)

and subject to (i)-(ii). In order to solve (21) for the initial

sensor positions, the Matlab function fmincon is implemented

to maximize the integral function (19) with respect to xo.

C. Example: Optimization of Dynamic Track Coverage for

n = k = 1

A simple example with n = 1 sensor and k = 1 is

presented in order to illustrate the solution approach outlined

in the previous section. Φ is derived for a general state-space

matrix A representing the vector field and can easily be

applied to n > 1 by increasing the dimensions appropriately.

Assuming the buoys moves in a linear fashion with the

surface current according to (16), A is a 2n × 2n matrix

that for one sensor can be defined as,

A =

[

a b
c d

]

, (22)

where the elements of A are obtained from the current vector

field, as explained in Section III-A. The trajectory of one

sensor can be described in terms of the initial sensor position

using (20) as follows

ẋ = AΦ(t, to)xo (23)

The eigenvalues, or roots, of the characteristic equation

det(sI − A) are found to be,

λ1 =
K1 +

√

K2
1 − 4 ·K2

2
(24)

λ2 =
K1 −

√

K2
1 − 4 ·K2

2
(25)

where K1 = d+a and K2 = ad−bc. Therefore, the transition

matrix becomes,

Φ(t, 0) =

[

(c1e
λ1t + c2e

λ2t) (c3e
λ1t + c4e

λ2t)
(c5e

λ1t + c6e
λ2t) (c7e

λ1t + c8e
λ2t)

]

.

(26)

Because Φ(0, 0) = I and Φ̇(0, 0) = A, a system of eight

simultaneous equations is used to obtain the eight unknowns

in c = [c1, ..., c8]
T in terms of the constants a, b, c, d, λ1,

and λ2, as shown in Table I.

TABLE I

THE CONSTANTS OF Φ

c1 = a−λ2

λ1−λ2

c3 = b
λ1−λ2

c5 = c
λ1−λ2

c7 = d−λ2

λ1−λ2

c2 = a−λ1

λ2−λ1

c4 = b
λ2−λ1

c6 = c
λ2−λ1

c8 = d−λ1

λ2−λ1

Substituting the values in Table I into (26), and substituting

(26) into (23), the optimal initial conditions can be obtained

by maximizing the resulting integral function (19). For

example, for one sensor, the integrand of the cost function

(19) simplifies through the relationship sin θ = r/‖v‖,

J k=1
A =

1

2

tf
∫

0





L2
∑

bx2
=0

r

‖v(t)‖x2

+

L1
∑

bx1
=0

r

‖v(t)‖x1

+

L2
∑

bχ2
=0

r

‖v(t)‖χ2

+

L1
∑

bχ1
=0

r

‖v(t)‖χ1



 dt, (27)

where ‖v‖ is the position vector relative to the axes

indicated by the subscript, for example, ‖v(t)‖x1
=

√

(x1 − bx1
)2 + x2

2.

IV. RESULTS AND APPLICATIONS

The methodology developed in this paper is used to

optimize the track coverage of a moving sensor network with

respect to an area of interest over a period of time. This prob-

lem is relevant to sensor networks floating and drifting in the

ocean subject to the surface currents that are employed for

ThC16.5

4044



detecting moving targets in a region of interest. A cumulative

track coverage function is presented in Section III-B and is

optimized subject to the drift dynamics described in Section

III-A. The (k = 3) - track coverage of a network with n = 10
sensors, and ranges r = [3, 3, 5, 5, 6, 6, 8, 8, 10, 10]T , is

considered. The parameter k represents the number of CPA

detections that are required for declaring a track detected.

For comparison, the sensors are first placed according to

the optimization of the static coverage function (6), without

accounting for the buoys dynamics, as shown in blue in

in Figure 4. When the cumulative track coverage function

(19) is optimized subject to the drift dynamics (16), the

sensor network is deployed at the positions shown in red in

Figure 4. The resulting sensors trajectories, plotted in Figures

5(a) and 5(b), differ significantly due to the diversity in the

ocean currents that are experienced by the individual sensors.

Consequently, the track coverage of the two sensor networks

also differs significantly.

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

x
1

x
2

Initial Sensor Placement for n=10, k=3

Optimal Control

Static Optimization

Fig. 4. Comparing the initial sensor configurations by maximizing the
static and optimal control coverage equations, (6) and (19), respectively.

The time histories of the track coverage provided by the

drifting sensor networks are plotted in Fig. 6. Although the

two sensor networks are comprised of the same number

of sensors and of the same individual performance (range),

the different placement results in significantly different drift

patterns for the sensors over the 7-days mission (Figure 5).

Consequently, it can be seen from Fig. 6 that the coverage

provided by the sensors placed by optimizing the cumulative

coverage function is much improved over time, despite the

initial coverage being higher for the network placed by

the static optimization. The maximum coverage provided

by the sensor network placed by optimal control peaks

at approximately 6 days, and displays a 43% decrease in

coverage from initial deployment to the end of the mission.

Whereas, the sensor network placed according to the static

optimization peaks initially, but then decreases by 86% over

the 7-days period. Finally, the cumulative coverage (Fig. 6)

reveals a 85% increase as a result of the initial placement

accounting for the drift dynamics.
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Fig. 5. For n = 10, k = 3 and mission time of 7 days, the drift trajectories
of sensors placed according to maximizing (a) the static coverage equation
(6) and (b) the optimal control coverage equation (19).
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Fig. 6. Coverage deterioration for sensors placed according to the optimal
control and static coverage equations.
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V. CONCLUSIONS

An approach is presented for formulating and optimizing

track coverage in moving sensor networks that are required to

operate over an extended period of time. The approach is ap-

plicable to proximity sensor networks that are implemented

for the purpose of detecting and tracking moving targets

through limited measurements, such as CPA detections. The

approach is based on the formulation of a novel optimal

control problem in computational geometry. In this paper,

the sensors are assumed to have known and constant ranges

and to move according to linear governing equations that

include knowledge of the ocean currents, as obtained by

CODAR or satellite. The advantage of deploying the sensors

according to their projected drift trajectories is demonstrated

through simulations involving 10 sensors and k = 3 required

detections. The results show that the coverage provided by

the moving sensor network is much improved with respect

to when the sensors are deployed simply by optimizing

their initial configuration without accounting for the dynamic

environment.
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