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Generalizations of traveling salesman problem (TSP) are often found in many robotics
applications where mobile robots with onboard sensors are deployed for a given sensing ob-
jective, such as detection or classification. When the sensor field-of-view is continuous and
bounded, the vehicle routing problems can be approximately formulated as close enough TSP
(CETSP), which is a special case of traveling salesman problem with neighborhoods (TSPN)
and searches for the shortest path to visit a set of given circles. While existing CETSP solutions,
such as exact and heuristic approaches, have limitations on either computational intractability
or poor solution quality depending on the problem scale, machine learning approaches have
been getting attentions due to their expandability. This paper proposes a novel CETSP solution
that is a hybrid of learning-based and heuristic methods. The proposed method is tested in toy
examples, resulting in a better solution compared to the current state-of-the-art heuristic TSP
method and suggesting future works on a more expandable learning-based CETSP solution
approach.

I. Introduction
In many autonomous sensing tasks, mobile robots are deployed with onboard sensors that have continuous and

bounded field-of-view. The robots and sensors are often required to visit multiple regions so that the sensors can obtain
measurements to meet a given sensing objective, such as detection and classification. In order to find the most efficient
path to gather necessary information within a limited operation time, it is essential to find the shortest path that visits
all the given regions. This problem is a generalization of traveling salesman problems (TSPs) referred to as TSPN
with neighborhoods (TSPN). When the geometry of neighborhoods is a uniform circle, the problem is referred to as
close enough TSP (CETSP). Since it is a generalization of TSP, an NP-hard problem, TSPN is also a combinatorial
optimization problem that is even more complex than TSPs.

Due to the high complexity of TSPN, most of the research on TSPN is done with some assumptions on the
neighborhoods, such as convexity, fatness, and disjoint neighborhoods. An exact algorithm was proposed in [1], where
the TSPN was formulated as a mixed-integer nonlinear programming (MINLP) for convex polyhedral or ellipsoidal
neighborhoods. The proposed global non-convex MINLP solver was shown to be computationally feasible up the 16
neighborhoods. Due to the high computational time complexity, a heuristic algorithm for the neighborhoods with
arbitrary shapes that gives a reasonable computation time was proposed in [2] and tested with instances comprised of
less than 17 neighborhoods. Several heuristic methods are developed in the applied math community with a focus on
proving the approximation factors of their solution on TSPN: a constant-factor approximation for the neighborhoods
with comparable diameters [3], a constant-factor approximation for convex, fat, and disjoint neighborhoods [4], and a
O(log n)-approximation for arbitrary neighborhoods [5], where n is the number of neighborhoods. Also, a couple of
evolutionary algorithms were proposed to solve the TSPN such that the neighborhoods are disjoint circles [6, 7].

On the other hand, due to the recent advancement in the machine learning field and its ability and expandability,
learning-based TSP solution approaches have been recently getting attention in the computer science community along
with other combinatorial optimization problems [8]. In [9], the transformer method [10] is proposed so that the trained
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structure can output a promising solution even when the input dimension is unknown. Based on this approach, in [9], the
authors propose a TSP solution approach based on the attention mechanism and refine the solution with reinforcement
learning. Once appropriately trained, the deep learning-based algorithm [9] outperforms the well-known state-of-the-art
heuristic method [11] in the solution optimality. Another approach is to use the Graph Neural Network (GNN) to solve
the structure of the TSP problem. In [12], the authors used the graph convolutional network to find the graph embedding
to solve TSP problems. The recent rise of deep learning approaches in combinatorial optimization has revealed that the
approach can provide more optimal solutions than the heuristics within a shorter inference time than exact methods.
Although there are still limitations on the scalability and generalization of this framework to solve TSPN with wide
range of the problem size, this approach suggests another practical view to solve mixed-integer nonlinear programming
(MINLP) problems.

In this paper, we propose a novel TSPN solution approach that combines a learning-based TSP solver that adapts
attention mechanism and reinforcement learning frameworks and a heuristic algorithm that approximates a CETSP
solution based on the computed TSP solution. Since many real world examples require CETSP solutions when the
circles may overlap, this paper considers test cases with various overlap ratio. As there has not been a learning-based
CETSP solution approach based on our literature review, this paper first focuses on the cases when relatively small
(n < 20) number of uniform circles are distributed over a region of interest. Based on the discussion in this paper, future
work will focus on developing learning-based CETSP algorithms, i.e. without combining the heuristic method, that can
solve CETSP problems even when the number of given circles is unknown.

II. Closed Enough Traveling Salesman Problem
This paper considers close enough TSP (CETSP), which corresponds to the traveling salesman problem with

neighborhood (TSPN) on unit circles as shown in Fig. 1. This TSPN searches for the shortest tour that visits n given unit
circles in Euclidean plane starting from and returning back to a given starting point p0 ∈ R

2. For each circle i = 1, ...,n,
the center position xi ∈ R2 is given such that each circle is defined by

Ci = {x ∈ R2 | ‖x − xi ‖ ≤ r2} (1)

where the radius is r = 1. The set of circle center points is defined by X = {x1, ...,xn}.

Figure 1 An example problem and notations of TSPN on unit circles

Since the starting position is given or set in many robotics application, the starting point is assumed to be given in
this dissertation. This starting point can be considered as another neighborhood, which is a circle with zero radius. A
hitting pointset, or a set of waypoints, is defined by a subset P ⊂

⋃n
i=1 Ci such that P ∩ Ci , ∅ for i = 1, ...,n [13] as

shown in Fig. 1. A hitting point set is defined by P = {p1, ...,pn}, where pi ∈ Ci for i = 1, ...,n. The sequence of visit is
described as a permutation E = (ε1, ..., εn) such that 1 ≤ εi ≤ n and εi , εj for any two εi, εj ∈ {1, ...,n}. Then, the

2

D
ow

nl
oa

de
d 

by
 2

4.
16

9.
97

.2
51

 o
n 

Ja
nu

ar
y 

7,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

2-
22

09
 



shortest tour is computed by finding P and E that minimize the length of the tour

L(P,E) =
n∑
i=1
‖pεi − pεi−1 ‖ + ‖pε0 − pεn ‖ (2)

III. CETSP Solution: Learning-based and Geometric Heuristic Methods
In order to overcome the intractability of exact methods for TSPN due to the intensive computational complexity

[1], we propose a learning based approach to overcome the computation time and provide a better quality of solution
compared to other heuristic methods. First, we propose a modification to the attention mechanism and deep reinforcement
learning based TSP solver, which is proposed in [9], to compute a TSP solution for the circle centers. Then, the CETSP
solution is computed using the TSP solution and a geometric approach that is inspired by Fagnano’s problem to provide
a qualified heuristic solution.

A. Attention Mechanism for TSP
Attention mechanism is the key idea of Transformer architecture [10] which outperforms the previous deep learning

architecture such as CNN, LSTM, and RNN in natural language processing and computer vision domain. Self-attention,
also known as intra-attention, is an attention mechanism relating different positions of a single sequence in order to
compute a representation of the same sequence. Although there exist related work on solving TSP using attention based
encoder-decoder framework [14] , here we modify the attention mechanism based structure for solving TSP problem.
Before getting into each detail structure, TSP can be defined as following mathematical equations. For Euclidean 2
dimensional TSP that we are trying to solve for the path planning algorithm, problem instance s is defined as a graph
with n nodes, where node i ∈ {1,2, · · · ,n} is represented by its position xi ∈ R2. The solution for the TSP can be defined
as a tuple of integers E = (ε1, ε2, · · · , εn) as a permutation of the nodes. Each εi ∈ {1,2, · · · ,n} and εt , εt′∀t , t ′.
For given parameter θ, our goal is to find the probability of the next tour ε given the problem instance s. This can be
formulated and factorized into the following equation using conditional probability.[9]

pθ (ε |s) =
n∏
t=1

pθ (εt |s, ε1:t−1) (3)

B. Encoder
The overall encoder network structure follows the Transformer architecture introduced in [10] with several

modification for TSP. The first layer of the encoder structure is the node embedding layer. From the input features xi
which has dx dimension, the layer computes the dh dimensional node embeddings through a learned parameters Wx and
bx . After the linear embedding layer, extracted node embeddings(h(0)i = W xxi + bx) are fed into the attention layer
which was first introduced in [10]. We denote h(l)i the embedding of node i produced by layer l ∈ {1,2, · · · ,N}. The
mean of all node embedding values at the final layer h̄(N ) = 1

n

∑n
i=1 h(N )i is noted as the graph embedding h(N )i . Both

the node embeddings at the final layer h(N )i and graph embedding h̄(N ) are used in decoder as contextual information.

1. Attention layer
The attention layer has two sublayers of a multi-head attention (MHA) and a node-wise fully connected feed-forward

(FF) layer. The structure is first introduced in the Transformer architecture[10]. Each sublayer adds a skip-connection[15]
and batch normalization (BN)[16] for better training.

ĥi = BNl(hl−1
i +MHAl

i(h
(l−1)
i , · · · ,h(l−1)

i )) (4)

h(l)i = BNl(ĥi + FFl(ĥi)) (5)

2. Attention mechanism
Attention mechanism introduced in [10] can be also interpreted as a message passing algorithm between nodes

in a graph.[9] In high-level understanding, extracted graph embedding and node embedding value can be used to
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compute the attention score that represents the probability of each node to be the next node for TSP solution given the
current node. Formally, we define dk, dv for dimensions and define key, query, value as ki ∈ R

dk ,vi ∈ Rdv ,qi ∈ R
dk .

Then, query, key, and value vector of each node hi can be represented by projecting with learned parameters
WQ ∈ R(dk×dh ),WK ∈ R(dk×dh ),WV ∈ R(dv×dh ).

qi = WQhi, ki = WKhi, vi = WVhi (6)

The compatibility ui j ∈ R of qi,kj of node i and node jas the dot-product[10].

ui j =

{ qT
i k j
√
dk

if i adjacent to j

−∞ otherwise
(7)

With this compatibility, we can compute the attention weights ai j ∈ [0,1] using a softmax and create a vector h′i that is
received by node i with messages vj

ai j =
eui j∑
j′ eui j′

(8)

h′i =
∑
j

ai jvj (9)

3. Multi-head attention
Instead of having a single attention mechanism, multi-head attention improves the result by allowing nodes to receive

different types of messages from different neighbors. The equation in attention mechanism was computed M = 8 times
for creating multiple heads. The result vectors h′i is divided into multiple heads h′im for m ∈ {1,2, · · · ,M} and then
projected with different parameters WO

m ∈ R
(dh×dv ) and the final multi-head attention value for node i is created.

dk = dv =
dh
M
= 16 (10)

MHAi(h1, · · · ,hn) =

M∑
m=1

WO
mh′im (11)

4. Feed-forward layer
The feed forward layer is node-wise projections using a hidden sublayer with learned weights Wff,l , Wff,l−1, bff,0,

bff,l and dimension size of dff = 512 and ReLu activation:

FF(ĥi) = Wff,l · ReLu(Wff,l−1ĥi + bff,l−1) + bff,l (12)

5. Batch normalization
The batch normalization used in this network also has affine transformation with parameters wbn,bbn

BN(hi) = wbn ⊗ B̄N(hi) + bbn (13)

where ⊗ represent for element-wise product and B̄N refers to batch normalization without affine transformation [16].

C. Decoder
Based on the contextual information (h(N )i , h̄(N )) extracted from the encoder, decoding happens sequentially. For

each timestep t ∈ {1,2, · · · ,n}, the node output εt is generated from the decoder based on the node and graph embedding
from the encoder and the previous outputs. With computed graph embedding h̄(N ) and node embedding h(N )i , we can
construct context vector h(N )

(c)
with the node embedding of the first node and the last node of the current sequence and

overall graph embedding vector. v1,v f is the input placeholder for the context vector at the first timestep.
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h(N )
(c)
=

{
[h̄(N ),h(N )εt−1,hε (N ) ] t > 1
[h̄(N ),v1,v f ] t = 1

(14)

The computed context vector is used to compute the probability of each node to be the next node by attention
mechanism[9]. The new context node embedding h(N+1)

(c)
is created using the multi-head attention mechanism described

in equation (11).

q(N )
(c)
= WQh(c), k(N )i = WKhi, v(N )i = WVhi (15)

dk =
dh
M

(16)

u(c) j =


q(N )
(c)

T
k j

√
dk

if j , εt′ ∀t ′ < t

−∞ otherwise.
(17)

Then, the new context node embedding h(N+1)
(c)

is created from the equation (8) to (11) as we did in the encoder part.
However, there are no skip-connections, batch normalization and the feed-forward sublayer in the decoding part for the
maximal efficiency as described in [9]. The result vector is similar to the glimpse described by [8].

1. Compute probabilities for the next node
The output probabilities pθ (εt |s, ε1:t−1) can be computed by the final sublayer of single attention mechanism. The

layer computes the attention score, which represents for the probability of each node i to be the next node given previous
nodes ε1:t−1. Similar to the equation (7) in attention mechanism, we compute the compatibility but now clip the result
using the tanh function and constant C=10.

u(c)j =

{
C · tanh(

qT
i k j
√
dk
) if j , εt′, ∀t ′ < t

−∞ otherwise
(18)

The compatibility value of each node is unnormalized log-probabilities (logits) and compute we can p using a softmax
with the compatibilities.

pi = pθ (εt = i |s, ε1:t−1) =
eu(c)i∑
j eu(c) j

(19)

D. REINFORCE Algorithm for Improving the Encoder-Decoder Structure
After the probability distribution pθ (ε |s) was generated from the encoder-decoder structured network, the overall

network is trained using the reinforcement learning algorithm . The loss function is defined as L(θ |s) = Epθ (ε |s)[L(ε)]
where L(ε) denotes for the tour length of TSP defined in (2). The loss function L is optimized using the REINFORCE
algorithm. The gradient descent of the algorithm is defined as follow with baseline rewards b(s).

∇L(θ |s) = Epθ (ε |s)[(L(ε) − b(s))∇logpθ (ε |s)] (20)

From the above equation, choosing good baseline b(s) reduces the time of learning by reducing its gradient variance.
The baseline is updated by M ←− βM + (1 − β)L(ε) in subsequent iterations. Instead, we are trying to use the baseline
method with LKH3[11] , a state-of-the art heuristic solver for solving TSP problem. This makes the difference from the
supervised learning approaches [14, 17, 18]. For the optimizer, we used Adam optimizer [19] which is widely used
optimization algorithm for machine learning.
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Algorithm 1 REINFORCE
1: Input : number of epochs H, steps per epoch T , batch size B, significance α
2: Initialize : θ, θBL ←− θ
3: for epoch = 1,2, · · ·H do
4: for step = 1,2, . . . ,T do
5: si ←− RandomInstance() ∀i ∈ {1, · · · ,B}
6: εi ←− SampleRollout(si, pθ ) ∀i ∈ {1, · · · ,B}
7: εBL

i ←− GreedyRollout(si, pθBL ) ∀i ∈ {1, · · · ,B}
8: ∇L ←−

∑B
i=1(L(εi) − L(εBL

i ))∇θ logpθ (εi)
9: θ ←− Adam(θ,∇L)
10: end for
11: if OneSidedPairedTTest(pθ, pθBL ) < α then
12: θBL ←− θ
13: end if
14: end for

E. 2-Opt for Improving TSP Solutions in Larger Scale TSPs
Although the previous work of attention based TSP [9] is the current state of the art TSP algorithm in learning-based

approaches, it has a huge limitation of dependency on the size of problem during training. For example, if you train
your algorithm with problem size when N = 10, it outperforms heuristic methods for N=10 but the performance drops
when the size of the problem gets bigger such as N=50 and N=100. In order to resolve the issue for dealing with larger
problem, we first trained the algorithm for N=10 and try to look how it works for N=50 or N=100. Our observation
shows that the algorithm misses the local order of nodes for the larger problem. In order to alleviate the issue, we
applied 2-opt algorithm [20], one of the most popular heuristic methods in TSP solution, to the end of our solution.

F. Virtual Force (VF) Method for Solving CETSP from TSP Solutions
After solution for TSP is generated from the learning-based algorithm, solution for CETSP is generated with its

upper bound with the TSP solution. Although there already exist heuristic methods to approximate TSP solution to
CETSP solution such as [21]. Our method is inspired from Fagnano’s Problem which is to find the inscribed triangle of
minimum perimeter within an acute triangle. This is a simple set TSP problem that each vertex of the inscribed triangle
is selected within a side of the outer triangle. The solution to the Fagnano’s Problem is related to the Lami’s Theorem.

Figure 2 Fagnano’s problem : For a given acute triangle ∆ABC, the solution for the problem is the orthic
triangle ∆DEF. This problem is the one of the earliest forms of set TSP as we can see that each vertex is chosen
from each side of the acute triangle.

Theorem 1 For three coplanar, concurrent and non-collinear vectors ®A, ®B, ®C applied to an object and keep static
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equilibrium and α, β,and γ are the angles directly opposite to the vectors, the following equations holds.

| | ®A| |2
sinα

=
| | ®B | |2
sinβ

=
| | ®C | |2
sinγ

(21)

The Lami’s Theorem was inspired from static equilibrium of forces in Physics. If you put a rubber band around
vertices of the inscribed triangle, position of each vertex will be determined in order to minimize the elastic energy
of the rubber band where the derivative of the total length becomes zero. By using the Lami’s Theorem based on the
Hooke’s Law, the inscribed triangle with minimum perimeter is actually the orthic triangle with vertices at the base
points of the altitudes of the given triangle. By adopting the idea of the theorem, we devised an iterative heuristic
methods to iterative find xi around the original TSP solution ci using virtual force vectors which are the position vector
between the current point xi and adjacent points xi−1,xi+1. For each iteration, force around point xi is computed with its
adjacent point xi−1 and xi+1. Vector summation of the force is treated as the gradient of the update for point xi . For the
stepsize of the algorithm, we put radius

totaliteration in order constrain the maximum move of the point should not go beyond
the radius from the initial center of the neighborhood region.

Algorithm 2 Virtual Force Approximation

1: Input : number of iterations M , radius r , TSP solution c = {c1, · · · , cn}, ci ∈ R2

2: Initialize : x0 ←− c (x0 ∈ R(n×2))
3: for iter = 1,2, · · ·M do
4: Initialize : gradF ∈ R(n×2)

5: for index = 1,2, . . . ,n do
6: prev = mod(i − 1,n), next = mod(i + 1,n)
7: fi = xiter−1

prev − xiter−1
i + xiter−1

next − xiter−1
i

8: fi = fi
| |fi | |2 ∗

r
M | | · | | : L2-norm

9: gradF[i, :] ←− fi
10: end for
11: xiter ←− xiter−1 + gradF
12: end for
13: return xM

IV. Simulation Experiments

A. TSP Performance Comparison
The proposed method, which is named by AttentionRL in this paper, is first compared to the state-of-the-art TSP

heuristic solution approach, LKH3 [11], and the exact TSP solution approach, Concorde [22]. The proposed AttentionRL
method is first trained with small-scale TSPs, specifically N = 10 where N is the number of regions to visit, as that
range of scale is found in many robotic path planning applications. In Fig. 3, the algorithm is trained for 1000 epochs.
The size of the training dataset is 1000 and the size of testing dataset is 200. The loss function of the algorithm is set as
the total tour of TSP problem. As shown in Fig. 3, after about 400 epochs passed, the proposed deep learning based
algorithm shows a smaller optimality gap of the TSP solution compared to that of LKH3.

The TSP solution performance is compared for 1000 instances of randomly generated TSPs (N = 10), and the results
are shown in Table 1. While the exact method results in the most optimal TSP solution, the proposed AttentionRL
method outperforms the heuristic LKH3 method. Moreover, the simulation results show that the proposed learning-based
method can improve the TSP solution while requiring a short inference time compare to the computation time of the
exact method (Table 2). In order to compare runtime, pyconcorde code is used for implementing the exact method, and
elkai module is used for implementing the heuristic LKH3 module. The runtime of each TSP solver is measured by
excluding the pre-processing time for a fair comparison.

B. CETSP Performance Comparison and Overlap Ratio
CETSP solutions were generated by combining the AttentionRL method with the proposed VF approximation. In

order to compare the algorithm with heuristic method [11], VF approximation algorithm is also combined with the
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         LKH3 (Heuristic) 
         Concorde (Exact) 
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Figure 3 Training result for AttentionRL using TSPs size of N = 10.

Algorithm AttentionRL (Proposed) LKH3 (Heuristic) Concorde (Exact)

Average TSP tour length [std] 2.887 [± 0.345] 2.903 [±0.348] 2.870 [±0.343]
Table 1 Average of TSP Solutions for 1000 instances

Algorithm AttentionRL (Proposed) LKH3 (Heuristic) Concorde (Exact)

Runtime (sec) 0.026 0.0239 0.311
Table 2 Runtime for solving 100 TSP instances for each algorithm. Considering its application to path
planning, we measured time after loading the pre-trained weight for Attention RL.
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heuristic method to generate CETSP solutions. As CETSP algorithm performance depends on how much the given
circles overlap, the proposed method and heuristic method are compared in wide range of overlap ratio, which is denoted
by R in this paper. For comparison, a relative length, denoted by η, is defined by dividing the computed CETSP tour
length by the exact TSP tour length, i.e.,

η =
L(P,E)
L(X,E)

(22)

where the notation L is defined in (2), P is a hitting pointset, X is a set of circle center points, and E is the sequence of
visit as defined in Section II.

Overlap Ratio (R)
Relative Length (η) [std]

AttentionRL+VF (Proposed) LKH3+VF (Heuristic)

0.01 0.974 [±0.020] 0.979 [±0.020]
0.05 0.865 [±0.024] 0.869 [±0.023]
0.1 0.754 [±0.033] 0.757 [± 0.032]
0.15 0.655 [±0.040] 0.659 [± 0.040]
0.2 0.560 [±0.048] 0.564 [± 0.048]
0.3 0.373 [±0.063] 0.378 [±0.064]
0.4 0.199 [±0.070] 0.204 [±0.071]
0.5 0.065 [±0.047] 0.069 [±0.049]

Table 3 CETSP solution for various overlap ratio

The comparison is summarized in Table 3, where the performance is compared using the average value computed for
1000 randomly generated instances in each overlap ratio value. The result shows that the proposed method outperforms
the heuristic method for all the given overlap ratios. As the overlap ratio increases, the CETSP tour length computed
by the proposed method decreases the original TSP more effectively compared to the heuristic method. Several
representative examples are shown in Fig. 4, Fig. 5, and Fig. 6 to illustrate the behaviors of the CETSP solutions
computed by the proposed and heuristic methods in various overlap ratios.
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Figure 4 Four examples for CETSP comparison: proposed method (AttentionRL+VF) and heuristic method
(LKH+VF) when the overlap ratio R = 0.1
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Figure 5 Four examples for CETSP comparison: proposed method (AttentionRL+VF) and heuristic method
(LKH+VF) when the overlap ratio R = 0.3
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Figure 6 Four examples for CETSP comparison: proposed method (AttentionRL+VF) and heuristic method
(LKH+VF) when the overlap ratio R = 0.5
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V. Conclusion
In this work, we propose a deep learning-based CETSP solution approach, which is developed by combining a

learning-based TSP solution approach, AttentionRL, and a physics-inspired approximation method, virtual force (VF)
method. The presented method outperforms the state-of-the-art heuristic method [11] in both TSP and CETSP in
terms of optimality of the computed tour length. The results show several promising possibilities of deep learning
algorithms being applied in combinatorial optimization problems in a way to avoid the curse of dimensionality and
provide solutions in real-time while resulting in more optimal solutions compared to the heuristic method. However, the
performance of the proposed deep learning algorithm trained with small problems (N = 10) does not guarantee the
same performance in bigger problems (N > 50). This limitation is the major challenge of deep learning approaches and
should be addressed in the future work. Also, providing the proof of guarantee on the proposed deep learning algorithm
remains as a future work in order to apply the method in real-world applications.
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