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This paper presents a new approach for autonomous taxiing that can potentially improve
the efficiency and safety of ground operations in commercial or military airports. Research
on airport automation so far has focused primarily on scheduling and coordination of piloted
aircraft for improved overall efficiency and lower operational costs. This paper develops a novel
vision-guided path planning and control approach that could potentially lead to unmanned
taxiing and takeoff. Autonomous taxing is a challenging problem because on-board perception
algorithmsmust be capable of translating verbal commands provided by theAir TrafficControl
(ATC) tower and, at the same time, react to a wide range of possible runway incursions, taxiway
and runway conditions, andground crewbehaviors, in order to operate safely in complex airport
environments without human intervention. In this paper, the autonomous taxiing problem is
formulated as a hybrid planning and control problem that can be solved by an approach based
on vision-based perception, obstacle avoidance, and feedback control theory. By harnessing
convolutional neural networks (CNNs) for computer vision, the information obtained by on-
board cameras about surrounding environments can be integrated with prior information –
such as airport maps – and ATC commands to compute motion plans, while simultaneously
detecting and adapting to dangerous situations such as runway incursions. Simulation results
obtained using the photo-realistic physics-based Unreal EngineTM simulation tool show that
the proposed approach can be potentially used some day to automate airport ground operations,
even in crowded environments populated with ground crew, vehicles, and other aircraft.

Nomenclature

s = hybrid system continuous state
µ = hybrid system discrete state
u = hybrid system continuous control input
ξ = hybrid system discrete control input
c = Air Traffic Control command
x, y = x−, y− coordinate in the world frame
υ = aircraft speed
θ = aircraft yaw angle
β = aircraft acceleration
φ = aircraft steering angle
∆T = sampling interval
L = distance between front and rear axles of the aircraft
z = camera measurement
l = a binary variable indicating whether an object is inside the camera’s field of view
dl = the distance between the aircraft and the object on the ground
G = graph generated from airport diagram
J = objective function for continuous control law
ds = user-specified safety margin between the aircraft and the object
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Figure 1. Simulated airport environment using Unreal Engine. (a) The airport has three taxiways (“A”, “B”,
“C”) and a runway (with two labels “02” and “20”). (b) Terminal region has six gates (1, . . . 6). (c) Standard
airport signs and ground markings are included in the simulated airport. (d) The sign for a hold-short line.

I. Introduction
The automation of airport ground operations has received increasing attention in recent years as aerodromes are

becoming increasingly complex and crowded due to heavier traffic flows. Prior research has focused on intelligent
air traffic management by automating the scheduling and coordination of flights to reduce overall operation time and
fuel consumption [1, 2]. With the advent of powerful speech-recognition and computer-vision algorithms, as well
as other real-time sensor processing and fusion capabilities [3], research on autonomous perception [4] and control
[5, 6] has opened new potential applications, such as autonomous taxiing [7, 8]. Because Air Traffic Control (ATC)
in commercial airports is coordinated by human operators, planning and control algorithms must take verbal ATC
commands into account and translate them into aircraft decision making and control policies. Additionally, in order
to operate safely in a broad range of environmental conditions, obstacles and unforeseen conditions, such as runway
incursions, must be detected and avoided in situ by the autonomous taxiing algorithms and promptly reported to the
ATC tower. Corrective control must be automatically generated and implemented on-board the aircraft in order to avoid
accidents. The approach developed in this paper is demonstrated in a medium-sized airport in which incursion objects,
including moving pedestrians, vehicles, or animals, are simulated within airport movement areas, i.e. runways and
taxiways, without ATC authorization. This situation, referred to as runway/taxiway incursion by the Federal Aviation
Administration (FAA) [9], requires the aircraft to autonomously recognize situations involving unauthorized pedestrians
and vehicles, modify the motion plan accordingly, and communicate with the ATC tower to obtain revised commands.

The autonomous taxiing approach developed in this paper systematically combines scene perception, path planning,
and safety-critical control capabilities. An on-board aircraft perception system is developed using a CNN-based object
detection and recognition algorithm for incursions by animals, vehicles, or people that can potentially cause dangerous
collisions during takeoff, landing, or taxiing. The approach is developed and tested using a simulated aircraft and
airport environment created in Unreal EngineTM (UE) [10], which is a high-fidelity physical simulation software with
photo-quality rendering, as shown in Fig. 1. Verbal ATC commands are used to generate a nominal path plan, and
corresponding centerline reference trajectory, using a topological graph. A hybrid system model [11, 12] of aircraft
decision and control is developed for following the nominal path plan under both normal and unforseen conditions
by means of five discrete operation modes applicable to normal taxiing and risk handling. The autonomous taxiing
algorithm controls mode switching based both on the feedback from on-board vision algorithms and on the ATC
commands so that the aircraft is able to follow ATC commands when appropriate, or stop to avoid collisions when
incursion detection is above a desired confidence level. An optimal control law is developed for each discrete mode and
used for aircraft control as indicated by the mode switching algorithm.
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Figure 2. Airport diagram of Syracuse Hancock International Airport.

The paper is organized as follows. Section II develops an airport model and formulates the autonomous taxiing
problem using a hybrid system model. Section III describes the CNN object detection and recognition approach for scene
perception in airport environments. Section IV presents a graph-based path planning approach for translating verbal
ATC commands into a high-level reference path, based on available airport maps (Fig. 2). The hybrid autonomous
taxiing decision and control algorithm is described in Section V, and demonstrated in Section VI where the aircraft is
shown capable of following the reference path, while simultaneously handling dangerous situations if needed.

II. Problem Formulation
This paper considers the problem of automating the taxiing process of aircraft operating in medium-sized commercial

airports without human intervention. The autonomous taxiing algorithm is assumed to have access to the airport diagram,
typically provided online according to FAA rules and conventions [13]. As shown in Fig. 2, the airport diagram must
always include information about all runways, taxiways, and terminal regions, conditions (e.g. nearby equipment), with
corresponding labels utilized by the ATC operators to provide pilots with standardized verbal commands on the path to
follow for landing, taxiing, and takeoff. Under normal conditions, defined as airport environments in which perceived
elements of the scene match the published airport diagram, the autonomous taxiing system must follow the Air Traffic
Control (ATC) commands and navigate to the specified destination for departure or arrival, while guaranteeing the safety
of the aircraft by avoiding collisions with authorized airport vehicles and personnel or agents. This is accomplished by
generating a feasible reference path based on the ATC commands and the available airport diagram, and by labeling
authorized agents in the CNN database. Under normal conditions, the aircraft controller visually tracks the reference
path corresponding to runway centerlines and connecting arcs, while avoiding collisions based on visual feedback.
Under unforeseen conditions, defined as deviations from the published airport diagram and authorized agents, such
as runway/taxiway incursions, the autonomous taxiing system switches modes to immediately cope with potentially
dangerous situations, e.g. stop, and then re-plan the reference path by communicating to the ATC tower and request
new commands. A block diagram of the autonomous autonomous taxiing system is shown in Fig. 3, and each block is
described in detail in the following sections.

3



ATC Commands

Path Planner Feedback 
Controller

Perception

𝑐𝑐𝑐𝑐

𝒛𝒛

𝒔𝒔𝒖𝒖𝒒𝒒∗

Figure 3. Block diagram of the autonomous autonomous taxiing system, in which first generates a feasible
reference path for the aircraft based on ATC commands and airport diagram and a controller performs
centerline tracking based on visual feedback and ATC commands. When incursion objects are detected by the
perception algorithm, the autonomous autonomous taxiing system controls the aircraft to avoid colliding with
these objects.

A. Airport Model
The airport model is constructed by generating a topological graph from the airport diagram and geographic

information about runways, taxiways, and terminal gates. LetW ∈ �2 represent a planar airport in 2-D space. A
taxiway is a path that connects runways with aprons, hangars, terminals and other facilities. Taxiways are always labeled
by a finite set of upper-case letters from English alphabet, e.g. A = {A,H,F, . . . ,M}, which can be generated from the
airport diagram. A taxiway is defined by a connected compact setWa ∈ W labeled by a letter (or index) a ∈ A, and
representing the corresponding gray region in Fig. 2. Each taxiway has a centerline clearly marked on the pavement as a
single continuous yellow line (Fig. 4(a)) indicating the reference path to be followed by all aircraft while taxiing. Let
the centerline of taxiway a be denoted by the equation of a line in 2D,

ha(q) = 0, for q = [x y]T ∈ Wa (1)

where ha : R2 → R is a continuous, differentiable function defined onWa. By using the chain rule, the total derivative
of the implicit function in (1) can be obtained as follows,

0 =
∂ha

∂x
dx +

∂ha

∂y
dy ∴

dy
dx
= −

∂xha

∂yha
, (2)

where the short-hand notation ∂xha denotes the partial derivative of ha with respect to x [14].
When multiple taxiways join at an airport intersection, the region of intersection is denoted by the subsetWQ ⊂ W,

where Q = {a1, . . . ,am} is the index set of the intersecting taxiways for
m⋂
i=1
Wai , ∅, and

m⋂
i=1
Wai ⊂ WQ. In an

intersection region, yellow circular arcs (Fig. 4(a)) are painted on the taxiway pavement, smoothly connecting the
centerline of one taxiway to another. Let an arc segment hA denote the line connecting a pair of centerlines labeled by
the pair A = (a1, a2), where hA : R2 → R is a continuous, differentiable function that obeys the following properties:

1) C1 =
{
q ∈ W | hA(q) = ha1 (q)

}
and C′1 =

{
q ∈ W | hA(q) = ha2 (q)

}
are singleton sets

2) Two intersecting taxiway centerlines have equal curvature at the intersection point, namely:

∂xhA

∂yhA

����
q
=
∂xha1

∂yha2

����
q
∀q ∈ C1 and

∂xhA

∂yhA

����
q
=
∂xha2

∂yha2

����
q
∀q ∈ C′1

Property (1) ensures that the connecting arc intersects each centerline at a single intersection point, and property (2)
guarantees smoothness.

Airport runways are labeled by a positive integer p ∈ P = {1,2, . . . ,36} that represents the magnetic azimuth of the
runway’s heading to the nearest deca-degrees [15]. Thus, a runway label p indicates the orientation of the runway is
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within the range [10p − 5,10p + 5) (deg), such that during takeoff or landing the aircraft yaw angle is within this range.
Every runway can typically be used for takeoff and landing in both directions and has separate labels for each one, e.g.
10–28 indicates two opposite directions (100◦ and 280◦) an aircraft can use for takeoff and landing on a runway . A
runway is represented by a connected compact setWp ⊂ W for all p ∈ P whose enclosure is mutually disjoint with
respect to all taxiways, i.e.,Wp ∩Wa = ∂Wp ∩ ∂Wa, where ∂W denotes the boundary ofW. The centerline of a
runway is marked by a white dashed line painted on the pavement that indicates the path for takeoff or landing (Fig. 1).
Let the centerline of runway p be represented by the equation of a line in 2D,

hp(q) = 0, for q = [x y]T ∈ Wp (3)

where hp : R2 → R is a continuous, differentiable function. When a taxiway a connects to a runway p, a circular arc
connects the taxiway centerline to the runway centerline (Fig. 4(b)), whereWa∩Wp , ∅ andWa∩Wp = ∂Wa∩∂Wp .
Let an arc segment hP denote the line connecting the centerlines of the pair P = (a, p). The function hP : R2 → R is
continuous and differentiable and obeys the following properties:

1) C2 = {q ∈ W | hP(q) = ha(q)} and C′2 =
{
q ∈ W | hP(q) = hp(q)

}
are singleton sets

2) Intersecting taxiway and runway centerlines have equal curvature at the intersection point, namely:

∂xhP

∂yhP

����
q
=
∂xha

∂yha

����
q
∀q ∈ C2 and

∂xhP

∂yhP

����
q
=
∂xhp

∂yhp

����
q
∀q ∈ C′2

Because of its safety-critical role in airport operations, any taxiway-runway intersection, referred to as hold-short
position, is marked by a unique hold-short line painted on the pavement, as shown in Fig. 1(d)), where all taxiing aircraft
must stop and hold for instructions until authorized to proceed onto the runway by the ATC tower. In this paper, a line
segment hD is used to denote every hold-short line between taxiway a and runway p in the airport, where D = (a, p).

A terminal gate region, labeled by g ∈ Z+ and illustrated in Fig. 4(d), is modeled as a connected compact set
Wg ⊂ W whose enclosure is mutually disjoint with any runways or taxiways in the airport and, thus, when a taxiway a
connects to a terminal region g it follows thatWa ∩Wg = ∂Wa ∩ ∂Wg. Let a line segment hT denote the smooth
curve that connects the centerline of taxiway ha to the terminal regionWg, for the pair T = (a,g), where hT : R2 → R
is a continuous, differentiable function that obeys following properties:

1) C3 = {q ∈ W | hT (q) = ha(q)} is a singleton set
2) ∂xhT

∂yhT

���
q∈C3

=
∂xha

∂yha

���
q∈C3

,
3) ∃q ∈ WG such that hT (q) = 0

The gate area is characterized by a yellow line segment painted on the pavement (Fig. 4(d)). Let the center position of
the line segment represent the position of gate g, denoted by qg ∈ Wg. Then, from the airport diagram (Fig. 2), the
label sets of all taxiways, runways, and terminal gates in the airport, denoted by L�, L�, and L�, respectively, and the
sets of all corresponding regions,W�,W�, andW�, can be extracted by simple image processing algorithms. As
an example, the label sets of the Syracuse Hancock International Airport model based on Fig. 2 is shown in Table
1. Then, the finite set H� = {hD | D = {a, p}, ∀a ∈ L�, ∀p ∈ L�} represents the set of all hold-short positions in the
airport. Similarly, H� denotes the set of all runway and taxiway centerlines, and the set of curves connecting taxiways
to taxiways, runways, and terminal gate regions is denoted by H�. Finally, the airport model M is defined as a tuple,
M = (L�,L�,L�,W�,W�,W�,H�,H�,H�) that can be used to construct a topological graph of the airport to be
used for path planning (Section IV).

Table 1 Label Sets for the Syracuse Hancock International Airport in Fig. 4

Label set Elements

L� (Taxiways): A, B, C, D, E, F, G, H, J, K, L, M, N, P, Q, R, S, T, V, Y

L� (Runways): 10, 28, 15, 33

L� (Gates): 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27
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Figure 4. Satellite images of Syracuse Hancock International Airport from Google MapTM showing (a) connect-
ing curves between taxiways (taxiway labels shown); (b) taxiway-runway connecting curves; (c) taxiways and
terminal-gate region connecting curves; (d) yellow gate lines at terminal gates.

B. Aircraft Motion Model
Several kinematic models have been proposed for modeling ground aircraft motion, in which the pilot can manipulate

the nose gear steering wheel, throttle lever, and brake pedals to control the steering angle φ and linear acceleration β over
time [7, 16–19]. Let qe(k) = [x(k), y(k)]T ∈ W denote the x, y-coordinates of the aircraft rear-axle center in inertial
frame, at a discrete time step indexed by k. Let θ(k) and υ(k) denote the aircraft yaw angle and speed, respectively. The
aircraft ground state and control inputs can be defined as s(k) = [qT

e (k), θ(k), υ(k)]
T ∈ S and u(k) = [φ(k), β(k)]T ∈ U,

respectively, where S andU are the admissible state and control spaces. Then, the aircraft kinematics adopted in this
paper can be modeled by the difference equation in the form,

s (k + 1) = f(s (k) ,u (k)) (4)

given here by the non-holonomic simple car model,

f(s(k),u(k)) =


x(k)
y(k)
θ(k)
υ(k)


+


υ(k) cos θ(k)
υ(k) sin θ(k)
υ(k)
L tan φ(k)
β(k)


∆T (5)

where L is the distance between the front and rear axles of the aircraft, and ∆T is the sampling interval [20]. For
simplicity, in this paper it is assumed that the aircraft state is known from on-board GPS and inertial measurement unit
(IMU). However, the approach could be easily extended to GPS-denied environment by including the use of visual
SLAM algorithms [21].

C. Sensor Measurement Model
The aircraft is equipped with RGB-D cameras that provide on-board environmental perception in real time. Define

the projection of camera’s field of view (FOV) ontoW as F (k) ⊂ W. By utilizing computer vision techniques, two
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types of information are extracted from the camera for aircraft decision making: recognition of objects and a depth
map encoding distances between the camera and objects in the camera’s FOV. For simplicity, this paper focuses on
recognizing three semantic classes of incursion objects, namely “People”, “Animals”, and “Ground Vehicles”, where
a “Ground Vehicle” here refers to all ground vehicles operating in the aerodrome except other aircraft. The distance
between an object l and the aircraft, denoted by dl ≥ 0, can be obtained by on-board sensors, such as range finders, or
by stereo-vision. Then, the camera measurement can be described by a nonlinear observation model,

z(k) = [l(k), dl(k)]T , k = 1,2, . . . (6)

where the index l(k) labels the semantic class of any object in the camera FOV. In this paper, l(k) = 1,2,3 if the detected
object belongs to “People”, “Animal”, and “Ground Vehicle” class, respectively, and l(k) = 0 means no incursion object
is detected. Every object detection is also accompanied by a classification performed by a CNN algorithm (III) and a
corresponding confidence level.

D. ATC Commands Classification
The ATC verbal commands consist of concise and structured terminologies devised to ensure unambiguous and

intelligible communication between the air traffic controllers and aircraft pilots, even under noisy backgrounds and
mispronunciation [22]. To avoid communication ambiguity, ATC towers and aircraft pilots use a set of 26 English words
to indicate taxiways, the initials of which correspond to the taxiway labels. A summary is shown in the Appendix. For
tractability, the approach developed in this paper classifies ATC terminologies defined by the FAA into three categories
{c1, c2, c3}, corresponding to “Cruise”, “Traffic Following”, and “Holding” commands. Detailed descriptions and
examples of verbal commands for the taxiing phase are summarized in Table 2. The approach can be easily extended to
landing or takeoff phases, excluded here for simplicity.

Table 2 Classification of ATC Commands

Command Category c Description Examples [23]

c1 = “Cruising” Instruct tomove along certain taxiways
to a specified runway. Accelerate when
needed.

• “Cross Runway One-Six Left and Runway
One-Six Right at Taxiway Bravo.”

• “Runway Three-Six Left, taxi via Taxiway
Alpha, hold short of Taxiway Charlie.”

• “Taxi without delay.”

c2 = “Traffic Following” Instruct to follow traffic.
• “Follow (traffic), cross Runway Two-Seven
Right, at Taxiway Whiskey.”

c3 = “Holding” Instruct to hold short of a runway or
hold in position on a runway. • “Hold short of runway Two-Seven.”

• “Hold in position.”

E. Hybrid System Modeling of Autonomous Taxiing
Hybrid system theory allows for the modeling and control of processes that include both discrete and continuous

states and control inputs in order to optimize overall system performance. In this paper, a scalar discrete state variable ξ
with finite range E is used to represent the autonomous taxiing system mode. A scalar discrete control variable with the
same range, denoted by µ ∈ E, represents the decision on the next system mode. Then, the autonomous taxiing aircraft
can be modeled as a discrete-time dynamical system,

s(k + 1) = fξ [s(k),uξ (k)], ξ(k + 1) = µ(k), k = 1,2, . . . (7)

7



where the continuous state kinematic equation, fξ , is shown in Eqn. 5. In the above model, s ∈ S is the continuous state
of the aircraft, uξ ∈ Uξ is the continuous control input, andUξ is the space of admissible control inputs for mode ξ.
It is assumed that mode switching can occur immediately at any time step k and is determined solely by the discrete
decision, µ. Also, the system state s and ξ are assumed fully observable and error free.

Letting Φ : �4 ×�2 × E → � denote an instantaneous cost function, and φ : �4 → � denote the terminal cost, the
total system cost function over a fixed planning horizon [k, k f ] is given by,

J = φ(s(k f )) +

k f −1∑
j=k

Φξ [s( j),uξ ( j), µ( j)] (8)

and is to be minimized with respect to continuous and discrete control laws,

uξ ( j) = πu,ξ (s( j), j), and µ( j) = πµ(s( j), c( j),z( j), ξ( j), j), j = k, . . . , k f , (9)

respectively, where ξ ∈ E and the command category c( j) ∈ {c1, . . . , c3} corresponds to one of three types of ATC
commands, as defined in Table 2.

Five salient aircraft modes can be identified during taxiing operations, namely, “Cruising” (ξ1), “Traffic Following”
(ξ2), “Holding” (ξ3), “Incursion” (ξ4), and “Idle” (ξ5)modes, such that the discretemode range is given byE = {ξ1, . . . , ξ5}.
Mode switching is triggered by ATC commands or detection of incursion objects. In the “Cruise” mode, the aircraft
follows the reference path that is generated by the high-level path planner by keeping track of the centerline of routes.
When the ATC issues a “Holding” command, the aircraft switches to the “Holding” mode to decelerate to a full stop at
the hold-short position. Once the speed reaches zero, the aircraft enters the “Idle” mode, and stays in this state until
receiving further instructions from ATC. In many cases, the ATC will request the aircraft to accompany or follow
another aircraft on a taxiway. In this case, the aircraft operates in the “Traffic Following” mode and maintains a similar
speed as the aircraft in front. If incursion objects are detected, the aircraft immediately switches to the “Incursion” mode
to avoid colliding with the object. The discrete control laws πµ for all five modes are presented in Section V.

III. Object Detection and Recognition using Convolutional Neural Network
CNN algorithms have recently been shown to outperform sparse feature and other computer vision methods for

applications in image and video processing and recognition [24]. A CNN is an artificial neural network architecture that
employs multiple cascaded layers, where each layer is comprised of filters that have adjustable weights and biases. The
CNN input consists of an image matrix from which a high-dimensional feature vector, referred to as embedding or
convolutional feature vector, is generated as a compact (though high-dimensional) representation of the image. When
combined with additional layers or classifiers such as support vector machines, CNN image embeddings are extremely
effective at solving many computer vision tasks such as image classification [24–28], object detection [29–31], semantic
segmentation [32, 33], and action recognition [34, 35]. A variety of CNN architectures have been proposed in the
literature, including but not limited to AlexNet [24], VGG [25], and ResNet [26]. These and other CNN architectures
share several core components that include convolutional layers, rectified linear unit, pooling layers, and fully connected
layers, reviewed in this section and schematized in Fig. 5.

The convolutional layer, a core building block of CNNs, is comprised of K convolutional filters of size F × F and
a bias term. Each layer uses a 3D volume X of size nW1 × nH1 × nD1 as input, and outputs a 3D volume O of size
nW2 × nH2 × nD2. Here the dimension of volume is specified in the order of width, height, and depth. A convolutional
filter has the same depth as the input volume. For example, a 256× 256 RGB image is a 3D volume of size 256× 256× 3,
where the depth corresponds to three color channels. The size F × F is usually referred to as the receptive field of the
filter. In order to control the spatial size of the output volume, the input volume is usually padded with P zero elements
on the boarder, as shown in Fig. 6. Define S as the stride with which the filter is slid along the width-height 2-D slice.
Given P and S, the input and output dimensions of the convolutional layer are related by the algebraic equations

nW2 = (nW1 − F + 2P)/S + 1 (10a)
nH2 = (nH1 − F + 2P)/S + 1 (10b)
nD2 = K (10c)
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Convolution + ReLU Pooling

Convolution + ReLU

Pooling

…

Fully-Connected 
(FC) Layer

Input Image Embedding

Figure 5. CNNs accept images as inputs and outputs feature vectors (embeddings). A CNN is usually composed
of interleaving convolution layers, ReLU, and pooling layers. fully-connected Layers are appended at the end of
the network.

The output volume of a convolutional layer is obtained via convolutional operations,

O(i, j, k) =
nD1∑
d=1

F∑
ι=1

F∑
ζ=1

ωk ,d,ι,ζ X̃ (i(S − 1) + ι, j(S − 1) + ζ, d) , k = 1, . . . ,K, (11)

where X̃ is the volume that is extended from X by zero-padding, and ωk ,d,ι,ζ is the learnable weighting parameter of the
(ι, ζ) element of the kth filter used in the dth layer convolution. To overcome difficulties associated with a large number
of adjustable parameters, a strategy known as parameter sharing can be used to constrain the filters in each depth slice to
use the same weights and bias, as follows:

ωk ,d,ι,ζ = ωk ,d,ι′,ζ ′, ∀ι, ι
′ = 1, . . . ,F, ∀ζ, ζ ′ = 1, . . . ,F

After the convolution operation, nonlinear activation functions are used to apply element-wise activation. The use
of nonlinear activation functions enables CNNs to capture the nonlinear relationship between the input image and
the output embedding. The rectified linear unit (ReLU) is commonly used as activation function in order to apply
element-wise hinge operation, i.e. g(x) = max(0, x).

A common practice in CNNs is to periodically insert a pooling layer between successive convolutional layers to
progressively reduce the spatial size of the representation and, therefore, the amount of parameters in the network. This
improves computation efficiency and also gives an effective way for controlling overfitting. The pooling Layer operates
on every slice along the depth dimension of the input and resizes it spatially, usually with the “max” operation that
retains the local maximum input values. The depth dimension remains unchanged. Specifically, assume a max pooling
filter with the receptive field size of F × F and the stride S, then the dimensions of the input and output volumes are
determined by

nW2 = (nW1 − F)/S + 1
nH2 = (nH1 − F)/S + 1
nD2 = nD1

After a series of convolutional and pooling operations, fully connected (FC) layers that have full connection between
elements of the input and output volumes are used to generate extract an output feature vector. Multiple FC layers are
usually used to improve learning performance and prevent underfitting. The output of the final FC layer is used as the
embedding.

In this paper, the aircraft autonomous taxiing algorithm utilizes a Mask R-CNN [33], a state-of-the-art CNN-based
object detector, for detecting and classifying incursion objects. The Mask R-CNN constructs and combines two networks,
a region proposal network and a binary mask classifier using aforementioned layers, so that given an RGB image, a class
label, bounding box, and segmentation mask can be generated for every object in the image, along with a corresponding
confidence level. In general, training a CNN requires a large amount of data that may be difficult to obtain only from

9
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5

1

Bias (size 
1 x 1 x 1)

Figure 6. Example of convolutional operation. Since the input volume has depth nD1 = 3, the convolutional
filter has depth 3. Zero padding is used, shown as the shared squares in the input volume. As only one filter is
applied, the output depth is nD2 = 1.

airport environments. Therefore, in the proposed approach, Mask R-CNN is pre-trained on COCO dataset [36], which
contains more than 200K labeled images and 80 classes of objects, and then overtrained as needed and applied to the
airport environment. As shown in Fig. 7, animals, ground vehicles, and people in the UE simulated airport environment
are detected and recognized with excellent accuracy.

IV. ATC-based Path Planning
This section presents a high-level path planning approach that translates ATC commands into a feasible aircraft

reference path. The airport model M, developed in Section II.A, is first used to build a directed topological graph
G = (Ξ,V), where Ξ is the directed edge set andV is the node set. A node v ∈ V is defined as tuple v = (α,q), where
α ⊂ L� ∪ L� ∪ L� is the node label and q ∈ W� ∪W� ∪W� is the node position. Nodes represent one of the
following regions: (1) connection of two regions (denoted byV1), including runways, taxiways, and the terminal region,
(2) aircraft current position (denoted byV2), or (3) terminal gates (denoted byV3). In particular, the setV1 is defined

   
 

 

 

 

 

Label: Fox 
Confidence Level: 0.974 

Label: Truck 
Confidence Level: 0.999 

Label: Person 
Confidence Level: 0.994 

Figure 7. Examples of incursion objects simulated in UnrealEngineTM (UE). Object detection and recognition
results obtained by Mask R-CNN are shown along with semantic label, bounding box, and confidence level.
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as the set of points where connecting curves intersect with centerlines or with the terminal region, i.e.:

V1 =
{
(γ,q) | γ = {a0,a1, . . . ,al}, ∀a0,a1, . . . ,al ∈ L�, such that ha0 (q) = 0, hA={a0 ,ai }(q) = 0, ∀a0 , ai, i = 1, . . . , l

}
∪

{
(γ,q) | γ = {a, p}, a ∈ L�, p ∈ L�, ha(q) = 0, hP={a,p}(q) = 0

}
∪

{
(γ,q) | γ = {a,G0}, a ∈ L�, ha(q) = 0, hT={a,G0 }(q) = 0

}
.

The first set refers to all intersection points where a taxiway intersects with a connecting curves that connect to other
taxiways. The second set represents the intersection points where a taxiway connects to a connecting curve that leads to
a runway. The third set is comprised of intersection points where a taxiway centerline is connected to a connecting
curve that ends up in the terminal region at the other end

Given an aircraft position qe, the node setV2 is determined by the current region and position of aircraft,

V2 = {(i,qe) | i ∈ L� ∪ L� ∪ L�, such that qe ∈ Wi} .

and the node setV3 is comprised of terminal gates,

V3 =
{
(g,qg) | g ∈ L� \ {0}

}
,

where \ is the set minus operator. The entire node set of the topological graph is then given byV = V1 ∪V2 ∪V3. The
edge set Ξ encodes the connectivity of different regions and can be determined from airport diagram, such that

Ξ = {γ1 ∩ γ2 | γ1 ∩ γ2 , ∅, and ∃v1, v2 ∈ V such that v1(1) = γ1, v2(1) = γ2} .

Then, the autonomous taxiing problem requires translating verbal ATC commands into an ordered sequence of nodes
(or branch) in the airport topological graph G so as to plan a feasible path to the desired destination.

In the approach presented in this paper, ATC commands are first converted into a label sequence by a speech
recognition algorithm, producing a goal destination in the topological graph (e.g. runway, taxiway, or terminal
gate), as well as required intermediate taxiways that are dictated sequentially by the ATC operators to guide the
aircraft on how to arrive at the goal destination, based on other airport traffic. Consider an ATC command sequence
Ψ = (ψ1,ψ2, . . . ,ψn−1,ψn), where ψ1, . . . ,ψn−1 ∈ L� and ψn ∈ L� ∪ L� ∪ L� correspond to the labels of intermediate
taxiways and the goal destination, respectively. This command structure includes many common ATC commands
for “Cruising” purpose. For example, the ATC command “Runway Two-eight, taxi via Taxiway Alpha and Golf”, as
provided in the FAA manual [23], can be converted into the ATC command sequence Ψ = (A,G,28). Subsequently,
Algorithm 1 is used for generating an ATC command-consistent reference path q∗, referred to as Path Generation from
ATC Commands (PGATC). The algorithm starts from the aircraft’s current position node (line 6), expands neighboring
nodes (line 13), selects nodes that are consistent with ATC commands (line 15–22), and, then, repeats this procedure
until all ATC commands are “translated” into a node sequence τ∗ (line 25). From τ∗, a waypoint sequence q∗ is
produced in aircraft configuration space (W) to connect the positions of sequential nodes in τ∗ pairwise (line 30) by
sampling centerline segments and connecting curves. The final waypoints coordinates are obtained using the airport
diagram and prior geophysical information that is later communicated to the on-board IMU and GPS.

V. Hybrid Control of Autonomous Taxiing Aircraft
A hybrid aircraft control system is developed to coordinate the ground taxiing modes, such as “Cruising”, “Traffic

Following”, “Holding”, “Incursion”, and “Idle”, and to track the reference path q∗ generated from ATC commands
using PGATC, while keeping the aircraft safe based on visual feedback. The first three modes, i.e. “Cruising”, “Traffic
Following” and “Holding” are directly determined from the ATC commands (see Table 2). The mode “Incursion” is
triggered by the CNN perception algorithm, when it recognizes incursion objects in the RGB frames obtained by the
on-board aircraft camera. In this event, the controller drives the aircraft to stop before colliding with these objects. The
“Idle” mode refers to an aircraft in a full stop, as due to holding at a hold-short position or to the detection of incursion
objects. The hybrid continuous and discrete control laws for the autonomous aircraft taxiing system, shown in Eqns. 8
and 9, are described in the following subsections.

A. Continuous State Control Law
Centerline tracking strategy is used for controlling the continuous state of the aircraft. Since the reference

path q∗ is a sequence of waypoints, at kth planning step, waypoints within the on-board camera’s FOV, denoted as
[(xr (k), yr (k))T , . . . , (xr (k f ), yr (k f ))

T ] ∈ F (k) ∩ q∗, will be considered for the tracking control.
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Algorithm 1 Path Generation from ATC Commands (PGATC)
1: Input: Ψ = (ψ1,ψ2, . . . ,ψn), G = (Ξ,V), M , sample point number I.
2: Output: reference path q∗.

3: function q∗=PathFinder(Ψ, G, M, I)
4: Get the node for the current position of the aircraft vs ∈ V.
5: Define ι(v) as the label of the region where v belongs, i.e. ι(v) = { j |v ∈ Wj, j ∈ L� ∪ L� ∪ L�}
6: Initialize root set R = {vs}.
7: Initialize child set of each node as empty set, i.e. D(v) = ∅, ∀v ∈ V
8: Initialize an empty path q∗.
9: while Ψ , ∅ do
10: Get the next ATC command ψ from Ψ, remove ψ from Ψ

11: while R , ∅ do
12: Read a node v from R, remove v from R
13: Define the set of neighboring nodes of v: Nv = {v

′ |(v, v′) ∈ Ξ}
14: Initialize a new root set R ′ = ∅
15: for v′ ∈ Nv do
16: if ψ = ι(v′) then
17: R ′ = R ′ ∪ {v′}, D(v) = D(v) ∪ {v′}.
18: else if ι(v) = ι(v′) then
19: (D(v′), v∗) = SubPathFinder(G, M, ψ, v′)
20: D(v) = D(v) ∪ {v′} ∪ D(v′), R ′ = R ′ ∪ {v′}
21: end if
22: end for
23: end while
24: R = R ′

25: end while
26: Compute a node sequence τ∗ = [v1, . . . , v

′
n], where v1 = vs and vi ∈ D(vi−1), i = 1, . . . ,n′.

27: for j = 1 : n′ − 1 do
28: Define qj = vj(2), qj+1 = vj+1(2)
29: Find h ∈ H� such that h(qj) = 0, h(qj+1) = 0.
30: Sample I points on h, i.e., q′ = {qj1, . . . ,qjI }, with qj1 = qj and qjI = qj+1.
31: Append q′ to the end of q∗.
32: end for
33: return q∗.
34: end function

35: function (D, v∗) = SubPathFinder(G, M, ψ, v)
36: for v′ ∈ Nv = {v

′ |(v, v′) ∈ Ξ} do
37: if ψ == ι(v′) then
38: return ({v′}, v∗)
39: end if
40: if ψ , ι(v′) then
41: return ∅
42: end if
43: if i′v == iv then
44: (D, v∗) = SubPathFinder(G, M, ψ, v′)
45: if D == ∅ then
46: continue
47: else if D , ∅ then
48: D = {v′} ∪ D

49: return (D, v∗)
50: end if
51: end if
52: end for
53: return ∅
54: end function 12



“Cruising” mode. The aircraft is controlled to follow the reference path and maintain a desired cruise speed vc .
Without loss of generality, it can be assumed that the waypoints coordinates and hold-short lines are all known in the
inertial frame. Given a desired aircraft cruise speed vc , the cruising objective function is defined as,

Jµ1 = ‖[x(k f ), y(k f ), v(k f )]
T −[xr (k f ), yr (k f ), vc]

T ‖22 +

k f∑
j=k

‖[x( j), y( j), v( j)]T −[xr ( j), yr ( j), vc]T ‖22 + ‖uµ1 ( j)‖
2
2 (13)

in order to penalize deviations from the centerline and control usage. Then, the optimal control problem to be solved at
time step k can be stated as follows,

min
x1

Jµ1

subject to s(k) = s0

s( j + 1) = f(s ( j) ,uµ1 ( j)), j = k, . . . , k f − 1
s( j) ∈ S, j = k, . . . , k f − 1
uµ1 ( j) ∈ Uµ1, j = k, . . . , k f − 1

where s0 is the known state of the aircraft at time k, and the optimization variables are lumped into the vector

x1 ,
[
sT (k), . . . , sT (k f ),uT

µ1 (k), . . . ,u
T
µ1 (k f − 1)

]T
“Traffic Following” mode. In this mode, the aircraft motion is similar to the “Cruise” mode except that it also

requires the aircraft to maintain a speed similar to that of the aircraft in front, v f , which may be easily estimated by
on-board sensors. Therefore, the traffic-following objective function can be defined as,

Jµ2 = ‖[x(k f ), y(k f ), v(k f )]
T −[xr (k f ), yr (k f ), v f ]

T ‖22+

k f −1∑
j=k

‖[x( j), y( j), v( j)]T −[xr ( j), yr ( j), v f ]T ‖22+‖uµ2 ( j)‖
2
2 (14)

and the optimization problem to be solved at time step k can be stated as follows,

min
x2

Jµ2

subject to s(k) = s0

s( j + 1) = f(s ( j) ,uµ2 ( j)), j = k, . . . , k f − 1
s( j) ∈ S, j = k, . . . , k f − 1
uµ2 ( j) ∈ Uµ2, j = k, . . . , k f − 1

where
x2 ,

[
sT (k), . . . , sT (k f ),uT

µ2 (k), . . . ,u
T
µ2 (k f − 1)

]T
“Holding” mode. In this mode, the aircraft starts decelerating to stop at the hold-short position. Let the waypoint

for the incoming hold-short position be equal to [xr (k f ) yr (k f )]
T . Then, the holding objective function is defined as,

Jµ3 = ‖[x(k f ), y(k f ), v(k f )]
T − [xr (k f ), yr (k f ),0]T ‖22 +

k f −1∑
j=1
‖[x( j), y( j), v( j)]T − [xr ( j), yr ( j),0]T ‖22 + ‖uµ3 ( j)‖

2
2 (15)

and the optimization problem to be solved at time step k can be stated as follows,

min
x3

Jµ3

subject to s(k) = s0

s( j + 1) = f(s ( j) ,uµ3 ( j)), j = k, . . . , k f − 1
s( j) ∈ S, j = k, . . . , k f − 1
uµ3 ( j) ∈ Uµ3, j = k, . . . , k f − 1
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and the optimization variables are

x3 ,
[
sT (k), . . . , sT (k f ),uT

µ3 (k), . . . ,u
T
µ3 (k f − 1)

]T
“Incursion” mode. When an aircraft detects an incursion object on its route, the aircraft enters the “Incursion”

mode and decelerates to avoid colliding with the object. Let ds > 0 represent a user-specified safety margin between the
aircraft and the object. Let the vector [xo yo]

T ∈ W represent the coordinates of the incursion object estimated from
on-board depth measurement that are integrated with the on-board camera feedback. Then, the incursion objective
function is defined as,

Jµ4 = ‖[x(k f ), y(k f ), v(k f )]
T − [xr (k f ), yr (k f ),0]T ‖22 +

k f −1∑
j=1
‖[x( j), y( j), v( j)]T − [xr ( j), yr ( j),0]T ‖22 + ‖uµ4 ( j)‖

2
2 (16)

and the optimization problem to be solved at time step k can be stated as follows,

min
x4

Jµ4

subject to s(k) = s0

s( j + 1) = f(s ( j) ,uµ4 ( j)), j = k, . . . , k f − 1
s( j) ∈ S, j = k, . . . , k f − 1
uµ4 ( j) ∈ Uµ4, j = k, . . . , k f − 1
‖[x( j), y( j)]T − [xo, yo]T ‖2 ≥ ds, ∀ j = k, . . . , k f − 1 (17a)

and the optimization variables are

x3 ,
[
sT (k), . . . , sT (k f ),uT

µ4 (k), . . . ,u
T
µ4 (k f − 1)

]T
The constraint in Eqn. 17a is used to ensure that the aircraft does not collide with the incursion object.

“Idle” mode. The aircraft starts with the “Idle” mode. It re-enters this mode again whenever its speed drops to zero,
waiting for further commands from ATC tower. The continuous controller in this mode is trivial, i.e.

uµ5 = 0.

B. Mode Switching Control Law
“Cruising” mode. The discrete controller µ(k) decides when to switch the system state from “Cruising” to other

modes if the ATC tower instructs the aircraft to follow traffic or hold short, or if incursion objects are detected. In fact,
when the aircraft approaches a holding short position (usually at the entrance to a runway), the ATC tower will issue
a command to instruct the aircraft to hold short. Upon receiving the command, the aircraft enters “Holding” state,
where the aircraft starts decelerating to a full stop at the hold-short position. If the ATC tower instructs the aircraft to
follow the traffic flow, the aircraft switches to the “Traffic Following” mode. Once an incursion object is detected, i.e.
l(k) ∈ {1,2,3}, the system immediately enters the “Incursion” mode to avoid collision. The discrete control is therefore
defined as

µ(k) =


µ4 if l(k) ∈ {1,2,3}
µ2 if l(k) = 0 and c(k) = c2

µ3 if l(k) = 0 and c(k) = c3

µ1 otherwise

. (18)

“Traffic Following” Mode. The discrete controller switches the system state out of “Traffic Following” mode if the
ATC tower issues a “Cruising” or “Holding” command, or when incursion objects are detected. Besides, when the front
aircraft stops, the aircraft stops as well and switches to the “Idle” state after the speed reduces to zero. Consequently, the
discrete control law is defined as

µ(k) =



µ4 if l(k) ∈ {1,2,3}
µ1 if l(k) = 0 and c(k) = c1

µ3 if l(k) = 0 and c(k) = c3

µ5 if l(k) = 0 and υ(k) = 0
µ2 otherwise

. (19)
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“Holding” Mode. In “Holding” mode, the aircraft decelerates to stop at the hold-short position identified by the
ground markings. The mode is switched to “Idle” once the aircraft speed reduces to 0. If the ATC tower issues “Cruise”
or “Traffic Following” commands, the aircraft switches to the corresponding state. The system enters the “Incursion”
mode once incursion objects are detected, and implements the discrete control law

µ(k) =



µ4 if l(k) ∈ {1,2,3}
µ1 if l(k) = 0 and c(k) = c1

µ2 if l(k) = 0 and c(k) = c2

µ5 if l(k) = 0 and υ(k) = 0
µ3 otherwise

. (20)

“Incursion” Mode. Once entering the “Incursion” Mode, the aircraft will stay in this mode until the speed drops to
0, when the system switches into the “Idle” mode. If an ATC command is issued in this process, the system will enter
the corresponding mode. The discrete control law is defined as:

µ(k) =



µ1 if c(k) = c1

µ2 if c(k) = c2

µ3 if c(k) = c3

µ5 if υ(k) = 0
µ4 otherwise

, (21)

“Idle” Mode. The discrete controller decides to switch the system into other modes if the ATC tower instructs the
aircraft to cruise or follow traffic. The discrete control law is defined as

µ(k) =


µ1 if c(k) = c1

µ2 if c(k) = c2

µ5 otherwise
. (22)

VI. Simulation Results
The effectiveness of the autonomous taxiing approach presented in this paper is demonstrated by conducting

simulations in an airport environment generated, observed, and controlled using the UnrealEngineTM (Fig. 1), which
consists of six terminal gates (1, . . . ,6), three taxiways (“A”, “B”, “C”), and a runway with labels “02” and “20”. An
illustrative airport map with centerlines, connecting curves, and nodes is shown in Fig. 8. A commercial aircraft
model is used with front-rear axle distance L = 15m, acceleration β ∈ [−10m/s2,10m/s2], and yaw rate θ ∈ [− π2 ,

π
2 ].

The maximum speed is assumed to be 10m/s. The on-board RGB-D camera used for environmental perception is
characterized by an angle-of-view equal to 90◦, and a maximum detection range equal to 20 (m). A planning horizon of
10 steps is used for controlling the aircraft, with a sampling interval equal to ∆T = 0.3 (sec). The optimization problems
presented in the previous sections are all solved by the open-source nonlinear optimization solver “Ipopt" [37].

In the first simulation study, shown in Fig. 10, a normal taxiing situation preceding takeoff is considered. At the
onset of the simulation, the ATC tower issues the command “Runway Two-Zero, taxi via Taxiway Alpha and Bravo” and
the reference path is generated by Algorithm 1. Based on the airport graph, shown in part in Fig. 9, the reference path
connecting these nodes is,

vs → v8 → v9 → v13 → v14 → v15

where vs corresponds to the aircraft initial position. Given the reference path, the aircraft first enters the “Cruising”
mode (Fig. 10(a)) to taxi along the reference path. As the aircraft approaches the entrance to the runway, ATC issues the
command for holding short (Fig. 10(b)), causing the aircraft to switch to the “Holding” mode, and to decelerate to stop
before the hold-short line, where it enters the “Idle” mode. After the ATC tower issues a clearance command (“Clear for
Runway Two-Zero”), the aircraft enters the “Cruising” mode (Fig. 10(c)) to taxi onto the runway (Fig. 10(d)). The
aircraft actual trajectory is compared to the centerline in Fig. 11(a), and the aircraft control inputs and speed are plotted
in Fig. 11(b)-(c). It can be observed that the aircraft successfully tracks the centerline. As shown in Fig. 11(c), the
aircraft velocity drops to 0 at k = 100, which shows that the aircraft stops at the hold-short position before entering the
runway, as instructed by the ATC tower.
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Figure 8. Illustration of the simulation airport. Orange circles represent all nodes in the airport graph. Orange
lines represent taxiway centerlines and dashed lines represent the runway centerline. Orange curves show the
connecting curves between different regions.
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Figure 9. A generated airport graph. For clarity, only part of the whole graph is shown by removing all directed
edges from runway nodes to other nodes and the edges thereafter.
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Figure 10. Simulated autonomous taxiing under normal conditions. ATC commands and mode switch of the
aircraft is shown on the top left corner.
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Figure 11. The aircraft trajectory, control inputs, and velocity profile, under normal taxiing conditions.
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Label: Truck 
Confidence level: 0.814 
 

Figure 12. Simulated autonomous taxiing involving object incursion. (a) The aircraft starts taxiing. (b) The
detected target by the on-board camera. Both label and confidence levels are provided. (c) When the aircraft
detects the incursion object, it reports to ATC tower and switches to “Holding” mode. (d) After the ATC tower
instructs to change route, the aircraft generates a new path and begins cruising.

The second simulation study considers incursion events during the aircraft taxiing to the runway for takeoff, as
shown in Fig. 12. Based on the ATC command “Runway Two-Zero, taxi via Taxiway Alpha and Charlie” (Fig. 12(a)),
the reference path is generated by Algorithm 1. The aircraft enters the “Cruising” mode to taxi along the reference
path. As soon as the aircraft detects an incursion object (a truck) in its camera FOV (Fig. 12(b)), it switches into the
“Incursion” mode and decelerates to stop (Fig. 12(c)). After the ATC tower issues a new command (“Runway Two-Zero,
taxi via Taxiways Alpha and Bravo.”), the aircraft re-generates its reference path and switches to “Cruising” mode (Fig.
12(d)). The aircraft then follows the new path to taxi to the runway. The aircraft actual trajectory is compared to the
centerline in Fig. 13(a), and the aircraft control inputs and speed are plotted in Figs. 13(b)-(c). It can be seen that its
velocity drops to zero around times k = 130 and k = 210, which correspond to the times at which the aircraft comes to
a full stop after detecting the incursion object and upon arrival at the hold-short position before entering the runway,
respectively.
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Figure 13. The aircraft trajectory, control inputs, and velocity profile, under incursion conditions.
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VII. Conclusion
This paper develops a systematic autonomous taxiing approach based on vision-guided hybrid planning and control

and convolutional neural networks. The approach integrates real-time aircraft perception, obstacle avoidance, and
feedback control theory with ATC commands in the loop. The Mask R-CNN is utilized for detecting and recognizing
incursion objects that can cause dangerous situations in airports. A graph-based path planning approach is proposed
to generate reference paths based on verbal ATC commands. A hybrid system controller is developed to track
taxiway/runway centerlines under normal conditions to complete taxiing tasks. When incursion objects are detected,
the controller drives the aircraft to a full stop to ensure safety and, then, re-generates a safe path based on new ATC
commands. The effectiveness of this autonomous taxiing approach is demonstrated by conducting simulations in an
airport environment generated, observed, and controlled using the UnrealEngineTM during both normal and unforeseen
airdrome conditions.

Appendix

Table 3 Aviation Phonetic Alphabet [38]

English Phonetic English Phonetic English Phonetic

A Alpha J Juliet S Sierra

B Bravo K Kilo T Tango

C Charlie L Lima U Uniform

D Delta M Mike V Victor

E Echo N November W Whiskey

F Foxtrot O Oscar X Xray

G Golf P Papa Y Yankee

H Hotel Q Quebec Z Zulu

I India R Romeo
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