
Proceedings of the American Control Conference
Arlington, VA June 25-27, 2001

Algebraic Training of a Neural Network

Silvia Ferrari* and Robert F. Stengel+

Princeton University
Department of Mechanical and Aerospace Engineering

Princeton, NJ 08544

Abstract
A novel algebraic neural network training technique is

developed and demonstrated on two well-known architec-
tures. This approach suggests an innovative, unified
framew&k for analyzing neural approximation properties
and for training neural networks in a much simplified way.
Various implementations show that this approach presents
numerous practical advantages; it provides a trouble-free
non-iterative systematic procedure to integrate neural
networks in control architectures, and it affords deep insight
into neural nonlinear control system design.

1. Introduction
Computational neural networks are massively parallel

computational paradigms inspired by biological neural
formations. They are used in a variety of applications
because they can learn by example and provide excellent
universal function approximation for multivariate in-
put/output spaces. Particularly, they afford a general
approach for modeling, identification, and control of
nonlinear systems that shows great promise, as neural
networks can potentially adjust to complex situations on-
line thanks to their brain-like generalizing and adaptive
capabilities.

Considerable effort has gone into the mathematical
investigation of networks’ approximation properties [1-31.
Whereas these results appear attractive, they provide little
insight into practical, key questions such as, “What archi-
tecture should be used”, and “How many nodes are required
in each layer”? This paper describes a novel training
technique that provides a general framework for answering
these questions as well as for incorporating available
control theory that could later be used “intelligently” [4].

The typical search criterion, used in virtually all super-
vised learning algorithms, consists of minimizing some
measure of the error between the desired inputloutput
(and/or’ derivative) information and the actual network’s
performance. The approach taken here consists of formu-
lating training as a root-finding problem whose solution
achieves exact fitting of the training set. Although related
in principle, the problems of minimization and multidimen-
sional root finding are substantially different in practice.
The problem of minimizing some form of neural network

error appears computationally more tractable, but it may not
solve the problem of exact fitting. On the other hand,
solving the corresponding nonlinear equations, here re-
ferred to as initialization equations, appears virtually
impossible for any decent-sized network. So what is the
reason behind attempting to solve a harder version of the
same problem? As it happens, the initialization equations
can easily be transformed into linear equations that bring
about a much simplified training methodology and afford
deep insight into neural approximators.

The method is demonstrated by training a fomurd
neural network that models a transport aircraft’s trim map.
The approach also proved highly effective and insightful in
training neural networks to approximate gain-scheduled
controllers, as described in [4]. The implementations show
that, in addition to being relevant from a theoretical point of
view, this methodology presents numerous practical advan-
tages inherent to the control field.

2. InpuUOutput Algebraic Training of a Simply
Connected Neural Network

Let h : R4 + R denote a smooth scalar function that is
to be approximated, where 4 is the dimension of its input.
Suppose the function is not analytically known, but a set of
input/output samples k k , u ~ } ~ = ~ , , , . , , can be generated such

that, at any k, u k = h (y k) . Then, this set of samples
constitutes what is typically referred to as a network in-
putloutput training set. A sample, simply connected, scalar-
output network is shown in Fig. 1.

PI

P2

1

Figure 1. Sample scalar-output network with q-inputs and
s-nodes in the hidden layer.

Graduate Student.
‘Professor. Fellow IEEE, AIAA.
Presented at the 2001 American Control Conference,
Arlington. VA, June 2001.

The same nonlinear function is used in all nodes. Later
sections demonstrate how the same principles are applica-
ble to even more general architectures.

0-7803-6495-3/01/$10.00 0 2001 AACC 1605

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on October 16, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

The output of the network is computed as the nonlinear
transformation of the weighted sum of the input, p. and a
bias d

z = vTa[Wp+d] (1)

a[*] is composed of sigmoidal functions, such
asa(n)= (e" -1)/(e" +l), evaluated at all input-to-node
variables, ni, with i = 1, ..., s,

a[n]= [a(.,) ... a(ns) r

where:

n=Wp+d (3)

W and v contain the input and output weights, respectively.
Together with the input bias, d, they constitute the adjust-
able parameters of the network. The order of
differentiability of eq. 1 is the same as that of the activation
function, a(*). Given that sigmoid functions are infinitely
differentiable, the derivative of the network output with
respect to its inputs is:

a'(.) denotes the derivative of the sigmoidal function with
respect to its scalar input. wii denotes the element in the
z&-row and the j6-column of the matrix W, and it represents
the interconnection weight between the j&-input and the
i*-node of the network.

The computational neural network achieves exact fitting
of the training set when, given the input y', it produces the
corresponding output ut i.e., z&) = uk, for any k. This is
equivalent to stating that the neural adjustable parameters
must satisfy the following nonlinear equations,

u k = vTa[Wyk +d], k = 1, ..., p (5)

that are referred to as output initialization equations. When
all the known output elements from the training set are
grouped in a vector,

eq. 5 can be written using matrix notation:

u = s v (7)

S is a matrix of sigmoidal functions evaluated at input-to-
node values, n!, each representing the magnitude of the

input-to-node variable, ni, to the i"-node for the training
pair, k:

Therefore, the nonlinearity of these equations arises purely
from the implicit dependence of the nonlinear function's
argument on the input neural parameters.

The novel technique is based on the idea that if the
input-to-node values, n:, are known, S is a known matrix,
and eq. 7 becomes a linear system of equations to be solved
for v. When the number of nodes, s, is chosen equal to the
number of training pairs, p, S is square. If it also is non-
singular, eq. 7 is a full-rank linear system for which an
exact solution always exists. The input parameters affect
the solution of the output initialization equations only
through the input-to-node values and determine the nature
of S. One of the strategies [4] that can produce a well-
conditioned S consists of generating the input weights
according to the following rule,

where rq is chosen from a normal distribution with zero
mean and unit variance that is obtained using a random
number generator. The scalar f is arbitrary and of order
O(10); it can be slightly varied based on how closely spaced
the training pairs are. The input bias, d, is computed to
center each sigmoid at one of the training pairs, { yk, uk} ,

where Y is a matrix composed of all the input elements
from the training set:

This is equivalent to distributing the sigmoids across the
input space as suggested by the Nguyen-Widrow initializa-
tion algorithm [5] , except here it is achieved simply by
solving a linear system (eq. 10) for the network's input bias.

The input elements, y", from the training set are n o d -
ized, and d is computed based on the input weights,
according to eq. 10. Thus, the scaling factor, f, scales the
distribution of the input-to-node values, establishing their
order of magnitude. While p sigmoids are centered, the
remaining sigmoids come close to being saturated for inputs
whose absolute value is greater than 5. A variance of order
O(10) allows a good fraction of the sigmoids to be highly
saturated, contributing to a smooth approximating function
and producing a non-singular S .

1606

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on October 16, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

2.1 Incorporating Partial Derivatives in Simply
Connected Neural Network Training

The approach previously introduced has proven that
there exist many p-node networks capable of fitting the
inputloutput training set exactly. Using derivative informa-
tion during training can improve the network’s
generalization properties. Suppose the training set,
{ y k , u k , (a h / ~] y t } k = l ,.,,, ,,, consists of ali partial deriva-

tives of the function h() with respect to its inputs along
with the inputloutput samples. That is, the following
vectors are known:

ck 5 [iyk , k = 1, ..., p

The gradient, ah I ay , is defined as a row vector.
The partial derivatives of the neural network‘s output

with respect to its inputs correspond to the elements of the
known gradient. Therefore, in addition to the output
equations (eq. 7), the parameters also must satisfy the
gradient initialization equations,

where the symbol “ (8 ” denotes element-wise vector multi-
plication, and:

nk = Wyk + d , k = 1, ..., p (14)

a[*] is a vector-valued function whose elements consist of
the function a’(*) evaluated component-wise at each
element of its vector argument:

a’[n] I [a’(n,) . . . a’(n,)y
The input weights, W, appear explicitly in the gradient

equations. If the number of nodes, s, is chosen equal to the
number of training triads, p, the number of input weights
equals the number of gradient equations. When input-to-
node values are known, eq. 7 can be solved for the output
weights; subsequently, eq. 13 can be written as the follow-
ing linear systems to be solved for W,

(ckr = B k W ,

where:

Bk =[vla’(nf) v2a’(n,”) ... v,d(nf)] (17)

It is possible to solve both output and gradient equations
exactly when the dimension of the inputs for which the

gradient is unspecified is equal top or in other special cases
particularly relevant to control applications, such as neural
modeling of gain-scheduled controllers [4].

In the general case, it is found that a suitable way to
incorporate the gradient equations in the training process is
to use eq. 16 to obtain a more stringent criterion of forma-
tion for the input weights. A first estimate of the output
weights, v, and of the input-to-node values, n:, to be used
in eq. 16 can be obtained from the solution of the output
equations, eq. 7, based on the randomized W. This solution
already fits the inputloutput training data. The input
weights and the remaining parameters can be refined to
more closely match the known gradients using a p steps
node-by-node update algorithm. The underlying concept is
that the input bias, d;, and the input-to-node values associ-
ated with the r& node,

can be computed solely from the input weights associated
with it:

At each step, the ?’ sigmoid is centered at the k’ train-
ing pair through-the input bias d;, i.e., n: = 0, when i = k.
The k* gradient equations are solved for the input weights
associated with the i* node, i.e., from eq. 16:

1 = 1 ,..., (i-1), (i + l) ,..., p and 1 # i

The remaining variables are obtained from the initial
estimate of the weights. The input bias is computed
individually,

and p of the input-to-node values are updated:

At the end of each step, eq. 7 is solved for a new value of v.
based on the latest input-to-node values.

The gradient equations are solved within a user-
specified gradient tolerance. At each iteration, the error
enters through v and through the input weights to be ad-
justed in later steps, wl. with 1 = (i+ l) , ..., p. The basic
assumption is that the h’ node input weights mainly con-
tribute to the k* partial derivatives, w;. because the rh
sigmoid is centered and v can be kept bounded for a well-
conditioned S. As other sigmoids approach saturation their

I

1607

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on October 16, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

slopes approach zero, making the error associated with wu
smaller. If the gradient with respect to some inputs is
unknown, the corresponding input weights can be treated
similarly to the input bias. In the limit of p “free” inputs,
all initialization equations can be solved exactly for the
network‘s parameters.

3. Extension to Fully Connected Feedforward Neural
Networks

Fully connected feedforward neural networks, also
referred to as ordered neural networks, are a class of com-
putational networks that allow for inner-layer connections,
but avoid recurrence. The connections among neurons are
ordered, such that the information flows continuously from
the network‘s inputs to its output. Neurons are numbered
sequentially and any neuron is connected only to higher-
numbered neurons. Outer (i.e., linear) connections between
the networks’ inputs and output also are allowed; they are
not treated here because including them would be a trivial
extension of what follows. A typical ordered architecture
having s nodes and q inputs is shown (Fig. 2). The inner-
layer connections are drawn with a dashed line.

Figure 2. Example of a scalar-output fully connected
feedforward network (input biases and summation symbols

are omitted for simplicity).

The simply connected neural network (Fig. 1) is a special
case of this ordered architecture. The newly introduced
parameters, gij, represent the magnitude of the connection
from thef” to the t“ neuron, thus j < i.

The input to each neuron, ni, now includes the input
coming from Iower numbered neurons. Thus, the vector n
of input-to-node variables is written in terms of the input
parameters, W and d, as well as the inner-layer weights, G,

n = Ga[n]+ Wp + d

where:

The output of the network is still of the form,

where the quantities previously introduced are defined
consistently. The network partial derivatives acquire a
more complicated form due to the inner-layer connections.
The derivative of the i* input-to-node variable with respect
to a network input, pi, is,

1608

therefore:

If the gradient with respect to all of the inputs is known, j =
I , ..., q; if it is known with respect to e of the inputs, j = I,
..., e, where e < q. In the latter case, the input weights
corresponding to the remaining (q - e) inputs do not
appear explicitly in the gradient equations and play only an
explicit role within the input-to-node equations (eq. 23).

The output initialization equations can be written as e .
7. Under the assumption that the input-to-node values, ni ,
are known, these equations also become linear. Hence,
when S is non-singular, they always have an exact solution
provided s = p. The gradient initialization equations are
derived by equating the network partial derivatives (eq. 27)
to the known gradients:

9

The Jacobian &I& is defined as an s x s matrix

where the (ij>* element consists of ani I api . When s = p,

the number of input weights, wg, is equal to the number of
gradient equations. Here, these equations become linear
when the inner-layer weights and the input-to-node values
are both known. They cannot always be solved exactly, but
a p-step algorithm can be devised to select input and inner-
layer weights from gradient and input-to-node equations,
respectively.

It is found that if none of the gradients are known, the
inner-layer weights play no significant role and theaetwork
can be collapsed to the simply connected architecture.
Hence, the approach helps identifying superfluous connec-

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on October 16, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

,

tions, based on the given 'training set, without resorting to
iterative optimization techniques [6].

4. Algebraic Training of a Forward Neural Network
The proposed approach is implemented to train a simply

connected neural network that approximates the trim map
of a transport aircraft. The trim map represents an inver-
sion of the aircraft model and, in series with the aircraft, it
provides a feed-forward path .[7]. This type of forward
neural network finds application in the design of neural
controllers that are motivated by linear control systems.
Under perfect conditions of exact coincidence between the
apriori model and the actual plant, the control is provided
solely by the forward network. Perturbation feedback
signals that compensate for inaccuracy in the aircraft model
and for external disturbances also can be processed by
neural networks [4].

It is assumed that a nonlinear differential equation
describes the aircraft dynamics,

For simplicity, a reduced-order longitudinal-axis model is
considered, and disturbance effects and uncertainties in the
parameters, p, are ignored. The state vector, x, consists of
airspeed V, flight path angle 3: altitude -z, and pitch angle B.
The controls are throttle position ST and elevator &, i.e.,

Trim control settings, U,, are defined for a given com-
I I = [S T s E J T .

mand input, y,,

U, = h(x,,p)= h(Y,) (30)

such that,

with x, computed from yc and from the flight conditions p,
as in [4]. The aircraft trim map, U,, is obtained by solving
the steady-state equation (eq. 31) numerically p times over
the aircraft's operational domain 9 :

Local gradients of this hypersurface can be obtained from
the linearized equations of motion [4] at each set point
(qk, IC'), such that the following is known:

(33)

The forward neural network, NNF, is trained using a set of
trim data, b t , ~ t , C k ,] ~ = ~ ,.,,, p , that reflects the nonlinear
characteristics of the aircraft.

The vector output, U,, is produced by two scalar, simply
connected networks with input yc = [V ylT:

(34)

Every row of C i provides the gradient, ck, for a control
element. In this example, the commanded airspeed and
path angle vary between 300-460 Kt and 1"-2.8", respec-
tively, and the altitude remains constant at 30,000 ft.
Figure 3 shows the trim map being approximated; the
intersections of the solid lines on the surfaces delineate the
input space grid being plotted (the software interpolates
between these points).

3

Figure 3. Trim map control surfaces and corresponding
training samples.

45 samples are used to train the neural networks. They are
symbolized by asterisks superimposed on the corresponding
surfaces (Fig. 3). Therefore, each network contains 45
nodes.

The weights of NN4 and NNF2 are determined from
the initialization equations. The gradient tolerances are set
at 0.05 %/Kt (a(ST,)/aV,), 0.5 %/deg (a(ST,)lay,),
0.0008 deg/Kt (i3(cEC)laV,), and 0.05 deg/deg
@(&,)lay,). For N N , , the parameters obtained from

1609

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on October 16, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

the output equations produce a lumpy surface (Fig. 4), and
the gradient tolerances are not immediately satisfied.

3

Figure 4. Trim throttle function approximation obtained
from output initialization equations alone.

The weights are further refined using the p-step gradient
algorithm, finally producing the output surface in Fig. 5a.
For NNq, the weights obtained from the output initializa-
tion equations alone already satisfy the gradient tolerances;
therefore, the final parameters (Fig. 5b) are obtained in only
one step.

Figure 5. Final trim control function approximation; (a) is
obtained from output and gradient initialization equations,

(b) is obtained from output initialization equations.

The neural output surfaces are plotted over a fine-grid
input space, to demonstrate the networks’ interpolation
abilities. The approximating function (Fig. 5) could be
improved by running the p-step algorithm again with
smaller gradient tolerances, or by increasing the number of
training pairs, p. The training time is remarkable (a MAT-

LAB code trained a 45-node network in 0.345 sec) and, in
some cases, it is even less than the networks’ input/output
execution time.

5. Conclusions
A novel algebraic technique that trains computational

neural networks and affords a great deal of insight into both
neural approximation properties and neural control applica-
tions is developed. The relevant principles and the overall
approach are described for two feedforward architectures.
The method allows input/output training data to be matched
exactly and gradient information to be incorporated in the
training process simply by solving linear algebraic systems
of equations for adjustable network parameters. A forward
neural network is trained algebraically to approximate a
transport aircraft’s trim map. The results show that training
is remarkably fast and straightforward, and that the gener-
alization and interpolation capabilities of the networks are
preserved.

Acknowledgement
This research has been supported by the Federal Avia-

tion Administration and the National Aeronautics and
Space Administration under FAA Grant No. 95-G-0011.

References
[l] Baron, A. R. (1993) “Universal Approximation Bounds for
Superposition of a Sigmoidal Function,” IEEE Transactions on
Informution Theory, V 39, no. 3, pp. 930-945.
[2] Kolmogorov, A. N. (1957) “On the Representation of Con-
tinuous Functions of Several Variables by Superposition of
Continuous Functions of One Variable and Addition,” DOH. A M
Nauk SSSR, V 114, pp. 953-956.
[3] Hunt, K. J.. Sbarbaro, D.. Zbikowski, R., Gawthrop, P. J.
(1992) “Neural Networks for Control Systems - A Survey.”
Automatica, V 28, no. 6, pp. 1083-1112.
[4] Ferrari, S.. Stengel, R. E. (2000) “ClassicaVNeural Synthesis
of Nonlinear Control Systems,” Proceedings of the AlAA Guid-
ance, Navigation, and Control Conference, August 14-17, Denver,
CO.
[5] Nguyen, D., Widrow, B. (1990) “Improving the Learning
Speed of 2-Layer Neural Networks by Choosing Initial Values of
the Adaptive Weights,” Proc. Intl. Joint Con$ on Neural Net-
works. San Diego, CA, V III, pp. 21-26.
[6] KrishnaKumar, K. (1993) “Optimization of the Neural Net
C o ~ e ~ t i v i t y Pattem Using a Backpropagation Algorithm,”
Neurocomputing, V 5 , pp.273-286.
[7] Cicolani, L. S., Sridhar, B.. Meyer, G. (1979) “Configuration
Management and Automatic Control of an Augmentor Wing
Aircraft with Vectored Thrust,” NASA Technical Paper, TP-1222.

1610

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on October 16, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

