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Abstract 
A novel algebraic neural network training technique is 

developed and demonstrated on two well-known architec- 
tures. This approach suggests an innovative, unified 
framew&k for analyzing neural approximation properties 
and for training neural networks in a much simplified way. 
Various implementations show that this approach presents 
numerous practical advantages; it provides a trouble-free 
non-iterative systematic procedure to integrate neural 
networks in control architectures, and it affords deep insight 
into neural nonlinear control system design. 

1. Introduction 
Computational neural networks are massively parallel 

computational paradigms inspired by biological neural 
formations. They are used in a variety of applications 
because they can learn by example and provide excellent 
universal function approximation for multivariate in- 
put/output spaces. Particularly, they afford a general 
approach for modeling, identification, and control of 
nonlinear systems that shows great promise, as neural 
networks can potentially adjust to complex situations on- 
line thanks to their brain-like generalizing and adaptive 
capabilities. 

Considerable effort has gone into the mathematical 
investigation of networks’ approximation properties [ 1-31. 
Whereas these results appear attractive, they provide little 
insight into practical, key questions such as, “What archi- 
tecture should be used”, and “How many nodes are required 
in each layer”? This paper describes a novel training 
technique that provides a general framework for answering 
these questions as well as for incorporating available 
control theory that could later be used “intelligently” [4]. 

The typical search criterion, used in virtually all super- 
vised learning algorithms, consists of minimizing some 
measure of the error between the desired inputloutput 
(and/or’ derivative) information and the actual network’s 
performance. The approach taken here consists of formu- 
lating training as a root-finding problem whose solution 
achieves exact fitting of the training set. Although related 
in principle, the problems of minimization and multidimen- 
sional root finding are substantially different in practice. 
The problem of minimizing some form of neural network 

error appears computationally more tractable, but it may not 
solve the problem of exact fitting. On the other hand, 
solving the corresponding nonlinear equations, here re- 
ferred to as initialization equations, appears virtually 
impossible for any decent-sized network. So what is the 
reason behind attempting to solve a harder version of the 
same problem? As it happens, the initialization equations 
can easily be transformed into linear equations that bring 
about a much simplified training methodology and afford 
deep insight into neural approximators. 

The method is demonstrated by training a fomurd 
neural network that models a transport aircraft’s trim map. 
The approach also proved highly effective and insightful in 
training neural networks to approximate gain-scheduled 
controllers, as described in [4]. The implementations show 
that, in addition to being relevant from a theoretical point of 
view, this methodology presents numerous practical advan- 
tages inherent to the control field. 

2. InpuUOutput Algebraic Training of a Simply 
Connected Neural Network 

Let h : R4 + R denote a smooth scalar function that is 
to be approximated, where 4 is the dimension of its input. 
Suppose the function is not analytically known, but a set of 
input/output samples k k  , u ~ } ~ = ~ , , , . , ,  can be generated such 

that, at any k, u k  = h ( y k ) .  Then, this set of samples 
constitutes what is typically referred to as a network in- 
putloutput training set. A sample, simply connected, scalar- 
output network is shown in Fig. 1. 
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Figure 1. Sample scalar-output network with q-inputs and 
s-nodes in the hidden layer. 
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The same nonlinear function is used in all nodes. Later 
sections demonstrate how the same principles are applica- 
ble to even more general architectures. 
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The output of the network is computed as the nonlinear 
transformation of the weighted sum of the input, p. and a 
bias d 

z = vTa[Wp+d] (1) 

a[*] is composed of sigmoidal functions, such 
asa(n)= (e" -1)/(e" +l), evaluated at all input-to-node 
variables, ni, with i = 1, ..., s, 

a[n]= [a(.,) ... a(ns ) r  

where: 

n=Wp+d (3) 

W and v contain the input and output weights, respectively. 
Together with the input bias, d, they constitute the adjust- 
able parameters of the network. The order of 
differentiability of eq. 1 is the same as that of the activation 
function, a(*). Given that sigmoid functions are infinitely 
differentiable, the derivative of the network output with 
respect to its inputs is: 

a'(.) denotes the derivative of the sigmoidal function with 
respect to its scalar input. wii denotes the element in the 
z&-row and the j6-column of the matrix W, and it represents 
the interconnection weight between the j&-input and the 
i*-node of the network. 

The computational neural network achieves exact fitting 
of the training set when, given the input y', it produces the 
corresponding output ut i.e., z&) = uk, for any k. This is 
equivalent to stating that the neural adjustable parameters 
must satisfy the following nonlinear equations, 

u k  = vTa[Wyk +d], k = 1, ..., p (5 )  

that are referred to as output initialization equations. When 
all the known output elements from the training set are 
grouped in a vector, 

eq. 5 can be written using matrix notation: 

u = s v  (7) 

S is a matrix of sigmoidal functions evaluated at input-to- 
node values, n!, each representing the magnitude of the 

input-to-node variable, ni, to the i"-node for the training 
pair, k: 

Therefore, the nonlinearity of these equations arises purely 
from the implicit dependence of the nonlinear function's 
argument on the input neural parameters. 

The novel technique is based on the idea that if the 
input-to-node values, n:, are known, S is a known matrix, 
and eq. 7 becomes a linear system of equations to be solved 
for v. When the number of nodes, s, is chosen equal to the 
number of training pairs, p, S is square. If it also is non- 
singular, eq. 7 is a full-rank linear system for which an 
exact solution always exists. The input parameters affect 
the solution of the output initialization equations only 
through the input-to-node values and determine the nature 
of S. One of the strategies [4] that can produce a well- 
conditioned S consists of generating the input weights 
according to the following rule, 

where rq is chosen from a normal distribution with zero 
mean and unit variance that is obtained using a random 
number generator. The scalar f is arbitrary and of order 
O( 10); it can be slightly varied based on how closely spaced 
the training pairs are. The input bias, d, is computed to 
center each sigmoid at one of the training pairs, { yk, uk} , 

where Y is a matrix composed of all the input elements 
from the training set: 

This is equivalent to distributing the sigmoids across the 
input space as suggested by the Nguyen-Widrow initializa- 
tion algorithm [5 ] ,  except here it is achieved simply by 
solving a linear system (eq. 10) for the network's input bias. 

The input elements, y", from the training set are n o d -  
ized, and d is computed based on the input weights, 
according to eq. 10. Thus, the scaling factor, f, scales the 
distribution of the input-to-node values, establishing their 
order of magnitude. While p sigmoids are centered, the 
remaining sigmoids come close to being saturated for inputs 
whose absolute value is greater than 5. A variance of order 
O(10) allows a good fraction of the sigmoids to be highly 
saturated, contributing to a smooth approximating function 
and producing a non-singular S .  
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2.1 Incorporating Partial Derivatives in Simply 
Connected Neural Network Training 

The approach previously introduced has proven that 
there exist many p-node networks capable of fitting the 
inputloutput training set exactly. Using derivative informa- 
tion during training can improve the network’s 
generalization properties. Suppose the training set, 
{ y k , u k , ( a h / ~ ] y t } k = l  ,.,,, ,,, consists of ali partial deriva- 

tives of the function h( ) with respect to its inputs along 
with the inputloutput samples. That is, the following 
vectors are known: 

ck 5 [ iyk , k = 1, ..., p 

The gradient, ah I ay , is defined as a row vector. 
The partial derivatives of the neural network‘s output 

with respect to its inputs correspond to the elements of the 
known gradient. Therefore, in addition to the output 
equations (eq. 7), the parameters also must satisfy the 
gradient initialization equations, 

where the symbol “ (8 ” denotes element-wise vector multi- 
plication, and: 

nk = Wyk + d ,  k = 1, ..., p (14) 

a[*] is a vector-valued function whose elements consist of 
the function a’(*) evaluated component-wise at each 
element of its vector argument: 

a’[n] I [a’(n, ) . . . a’(n, )y 
The input weights, W, appear explicitly in the gradient 

equations. If the number of nodes, s, is chosen equal to the 
number of training triads, p, the number of input weights 
equals the number of gradient equations. When input-to- 
node values are known, eq. 7 can be solved for the output 
weights; subsequently, eq. 13 can be written as the follow- 
ing linear systems to be solved for W, 

(ckr  = B k W ,  

where: 

Bk =[vla’(nf) v2a’(n,”) ... v,d(nf) ]  (17) 

It is possible to solve both output and gradient equations 
exactly when the dimension of the inputs for which the 

gradient is unspecified is equal top or in other special cases 
particularly relevant to control applications, such as neural 
modeling of gain-scheduled controllers [4]. 

In the general case, it is found that a suitable way to 
incorporate the gradient equations in the training process is 
to use eq. 16 to obtain a more stringent criterion of forma- 
tion for the input weights. A first estimate of the output 
weights, v, and of the input-to-node values, n:, to be used 
in eq. 16 can be obtained from the solution of the output 
equations, eq. 7, based on the randomized W. This solution 
already fits the inputloutput training data. The input 
weights and the remaining parameters can be refined to 
more closely match the known gradients using a p steps 
node-by-node update algorithm. The underlying concept is 
that the input bias, d;, and the input-to-node values associ- 
ated with the r& node, 

can be computed solely from the input weights associated 
with it: 

At each step, the ?’ sigmoid is centered at the k’ train- 
ing pair through-the input bias d;, i.e., n: = 0, when i = k. 
The k* gradient equations are solved for the input weights 
associated with the i* node, i.e., from eq. 16: 

1 = 1 ,..., (i-1), ( i + l )  ,..., p and 1 # i 

The remaining variables are obtained from the initial 
estimate of the weights. The input bias is computed 
individually, 

and p of the input-to-node values are updated: 

At the end of each step, eq. 7 is solved for a new value of v. 
based on the latest input-to-node values. 

The gradient equations are solved within a user- 
specified gradient tolerance. At each iteration, the error 
enters through v and through the input weights to be ad- 
justed in later steps, wl. with 1 = ( i+ l ) ,  ..., p. The basic 
assumption is that the h’ node input weights mainly con- 
tribute to the k* partial derivatives, w;. because the rh 
sigmoid is centered and v can be kept bounded for a well- 
conditioned S. As other sigmoids approach saturation their 

I 
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slopes approach zero, making the error associated with wu 
smaller. If the gradient with respect to some inputs is 
unknown, the corresponding input weights can be treated 
similarly to the input bias. In the limit of p “free” inputs, 
all initialization equations can be solved exactly for the 
network‘s parameters. 

3. Extension to Fully Connected Feedforward Neural 
Networks 

Fully connected feedforward neural networks, also 
referred to as ordered neural networks, are a class of com- 
putational networks that allow for inner-layer connections, 
but avoid recurrence. The connections among neurons are 
ordered, such that the information flows continuously from 
the network‘s inputs to its output. Neurons are numbered 
sequentially and any neuron is connected only to higher- 
numbered neurons. Outer (i.e., linear) connections between 
the networks’ inputs and output also are allowed; they are 
not treated here because including them would be a trivial 
extension of what follows. A typical ordered architecture 
having s nodes and q inputs is shown (Fig. 2). The inner- 
layer connections are drawn with a dashed line. 

Figure 2. Example of a scalar-output fully connected 
feedforward network (input biases and summation symbols 

are omitted for simplicity). 

The simply connected neural network (Fig. 1) is a special 
case of this ordered architecture. The newly introduced 
parameters, gij, represent the magnitude of the connection 
from thef” to the t“ neuron, thus j < i. 

The input to each neuron, ni, now includes the input 
coming from Iower numbered neurons. Thus, the vector n 
of input-to-node variables is written in terms of the input 
parameters, W and d, as well as the inner-layer weights, G, 

n = Ga[n]+ Wp + d 

where: 

The output of the network is still of the form, 

where the quantities previously introduced are defined 
consistently. The network partial derivatives acquire a 
more complicated form due to the inner-layer connections. 
The derivative of the i* input-to-node variable with respect 
to a network input, pi, is, 

1608 

therefore: 

If the gradient with respect to all of the inputs is known, j = 
I ,  ..., q; if it is known with respect to e of the inputs, j =  I, 
..., e, where e < q. In the latter case, the input weights 
corresponding to the remaining ( q - e )  inputs do not 
appear explicitly in the gradient equations and play only an 
explicit role within the input-to-node equations (eq. 23). 

The output initialization equations can be written as e . 
7. Under the assumption that the input-to-node values, ni , 
are known, these equations also become linear. Hence, 
when S is non-singular, they always have an exact solution 
provided s = p. The gradient initialization equations are 
derived by equating the network partial derivatives (eq. 27) 
to the known gradients: 

9 

The Jacobian &I& is defined as an s x s  matrix 

where the (ij>* element consists of ani I api . When s = p, 

the number of input weights, wg, is equal to the number of 
gradient equations. Here, these equations become linear 
when the inner-layer weights and the input-to-node values 
are both known. They cannot always be solved exactly, but 
a p-step algorithm can be devised to select input and inner- 
layer weights from gradient and input-to-node equations, 
respectively. 

It is found that if none of the gradients are known, the 
inner-layer weights play no significant role and theaetwork 
can be collapsed to the simply connected architecture. 
Hence, the approach helps identifying superfluous connec- 
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tions, based on the given 'training set, without resorting to 
iterative optimization techniques [6]. 

4. Algebraic Training of a Forward Neural Network 
The proposed approach is implemented to train a simply 

connected neural network that approximates the trim map 
of a transport aircraft. The trim map represents an inver- 
sion of the aircraft model and, in series with the aircraft, it 
provides a feed-forward path .[7]. This type of forward 
neural network finds application in the design of neural 
controllers that are motivated by linear control systems. 
Under perfect conditions of exact coincidence between the 
apriori model and the actual plant, the control is provided 
solely by the forward network. Perturbation feedback 
signals that compensate for inaccuracy in the aircraft model 
and for external disturbances also can be processed by 
neural networks [4]. 

It is assumed that a nonlinear differential equation 
describes the aircraft dynamics, 

For simplicity, a reduced-order longitudinal-axis model is 
considered, and disturbance effects and uncertainties in the 
parameters, p, are ignored. The state vector, x, consists of 
airspeed V, flight path angle 3: altitude -z, and pitch angle B. 
The controls are throttle position ST and elevator &, i.e., 

Trim control settings, U,, are defined for a given com- 
I I = [ S T s E J T .  

mand input, y,, 

U, = h(x,,p)= h(Y,) (30) 

such that, 

with x, computed from yc and from the flight conditions p, 
as in [4]. The aircraft trim map, U,, is obtained by solving 
the steady-state equation (eq. 31) numerically p times over 
the aircraft's operational domain 9 : 

Local gradients of this hypersurface can be obtained from 
the linearized equations of motion [4] at each set point 
(qk, IC'), such that the following is known: 

(33) 

The forward neural network, NNF, is trained using a set of 
trim data, b t , ~ t , C k , ] ~ = ~  ,.,,, p ,  that reflects the nonlinear 
characteristics of the aircraft. 

The vector output, U,, is produced by two scalar, simply 
connected networks with input yc = [V ylT: 

(34) 

Every row of C i  provides the gradient, ck, for a control 
element. In this example, the commanded airspeed and 
path angle vary between 300-460 Kt and 1"-2.8", respec- 
tively, and the altitude remains constant at 30,000 ft. 
Figure 3 shows the trim map being approximated; the 
intersections of the solid lines on the surfaces delineate the 
input space grid being plotted (the software interpolates 
between these points). 

3 

Figure 3. Trim map control surfaces and corresponding 
training samples. 

45 samples are used to train the neural networks. They are 
symbolized by asterisks superimposed on the corresponding 
surfaces (Fig. 3). Therefore, each network contains 45 
nodes. 

The weights of NN4 and NNF2 are determined from 
the initialization equations. The gradient tolerances are set 
at 0.05 %/Kt (a(ST,)/aV,), 0.5 %/deg (a(ST,)lay,), 
0.0008 deg/Kt (i3(cEC)laV,), and 0.05 deg/deg 
@(&,)lay,). For N N ,  , the parameters obtained from 
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the output equations produce a lumpy surface (Fig. 4), and 
the gradient tolerances are not immediately satisfied. 

3 

Figure 4. Trim throttle function approximation obtained 
from output initialization equations alone. 

The weights are further refined using the p-step gradient 
algorithm, finally producing the output surface in Fig. 5a. 
For NNq, the weights obtained from the output initializa- 
tion equations alone already satisfy the gradient tolerances; 
therefore, the final parameters (Fig. 5b) are obtained in only 
one step. 

Figure 5. Final trim control function approximation; (a) is 
obtained from output and gradient initialization equations, 

(b) is obtained from output initialization equations. 

The neural output surfaces are plotted over a fine-grid 
input space, to demonstrate the networks’ interpolation 
abilities. The approximating function (Fig. 5 )  could be 
improved by running the p-step algorithm again with 
smaller gradient tolerances, or by increasing the number of 
training pairs, p. The training time is remarkable (a MAT- 

LAB code trained a 45-node network in 0.345 sec) and, in 
some cases, it is even less than the networks’ input/output 
execution time. 

5. Conclusions 
A novel algebraic technique that trains computational 

neural networks and affords a great deal of insight into both 
neural approximation properties and neural control applica- 
tions is developed. The relevant principles and the overall 
approach are described for two feedforward architectures. 
The method allows input/output training data to be matched 
exactly and gradient information to be incorporated in the 
training process simply by solving linear algebraic systems 
of equations for adjustable network parameters. A forward 
neural network is trained algebraically to approximate a 
transport aircraft’s trim map. The results show that training 
is remarkably fast and straightforward, and that the gener- 
alization and interpolation capabilities of the networks are 
preserved. 
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