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a b s t r a c t

This paper presents tractable information value functions for Dirichlet-process Gaussian-process (DPGP)
mixture models obtained via collocation methods and Monte Carlo integration. Quantifying information
value in tractable closed form is key to solving control and estimation problems for autonomous
information-gathering systems. The properties of the proposed value functions are analyzed and then
demonstrated by planning sensormeasurements so as tominimize the uncertainty in DPGP targetmodels
that are learned incrementally over time. Simulation results show that sensor planning based on expected
KL divergence outperforms algorithms based on mutual information, particle filters, and randomized
methods.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bayesian nonparametric models, such as the Dirichlet-process
Gaussian-process (DPGP) mixtures, have been recently developed
for modeling multiple dynamic processes adaptively from data.
When data becomes available over time, DPGP clusters and
parameters are expanded or compacted incrementally, as needed,
to avoid growing the model dimensionality indefinitely as the size
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of the database increases (Rasmussen, 1999). Because of these
characteristics, DPGP mixtures are particularly useful in life-long
learning and sensing problems, and present the opportunity for
planning the measurement sequence so as to optimize the value
of future data.

To date, DPGPs have been shown effective at modeling traffic
patterns (Joseph, Doshi-Velez, Huang, & Roy, 2011), clinical iden-
tification (Ross & Dy, 2013), and gene expression time series anal-
ysis (Hensman, Rattray, & Lawrence, 2015). Although information
theoretic functions have become a common approach for repre-
senting information value in sensing and control problems (Lu,
Zhang, & Ferrari, 2014), they are not directly applicable to DPGPs
because they are defined in terms of finite-dimensional probability
distributions (Rasmussen, 1999). Previous approaches to quantify-
ing information value in GPs consist of inferring the process state
and then determining the differential entropy or mutual informa-
tion between the state and the measurements (Krause, Singh, &
Guestrin, 2008). Similar work in Ny and Pappas (2009) considered
the mutual information between the state of a moving target and
available measurements using a GP model. Previous work by the
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authors proposed using the Kullback–Leibler (KL) divergence ob-
tained by approximating the GPs by probability distributions about
a set of collocation points for a given DP prior (Wei, Lu, & Ferrari,
2012; Wei et al., 2014). However, these GP-based methods are not
applicable to the DPGP mixture models considered in this paper.

Building on the collocation point method in Wei et al. (2012),
this paper presents a systematic approach for obtaining tractable
information value functions, such as the expected KL divergence,
for DPGPmodels ofmultiple dynamic targets. New conditional and
expected information theoretic functions for DPGPs are derived
in Sections 4.2–4.3 to quantify information value in non-myopic
sequential observations. New theoretical results (Section 4.4) are
used to obtain a computationally efficient approximation of DPGP
information value via Monte Carlo integration. The new analysis
in Section 4.4 proves that this approximation is an unbiased
estimator of the original DPGP value function, and is characterized
by an error covariance that decreases linearly with the number
of samples. As a result, it can be used to control moving sensors
in real time while observing dynamic targets. Simulation results
show that using this approximate DPGP KL divergence for sensor
planning is farmore effective than usingDPGPmutual information,
particle filtering (Wang, Yin, & Hong, 2008), or randomized
methods (Fulgenzi, Tay, Spalanzani, & Laugier, 2008).

2. Problem formulation and assumptions

DPGP mixtures have been recently shown to be a new
and useful paradigm for modeling multiple dynamic processes
from data, as exemplified by traffic patterns modeled from
measurements obtained by a helicopter flying over the greater
Boston area (Joseph et al., 2011). The purpose of the information
functions derived and analyzed in this paper is to provide
design objectives for controlling moving sensors such that their
measurement value is optimized over time. Consider the problem
of modeling N unknown and independent targets in a workspace
W ⊂ R2, usingmultiple sensor measurements obtained over time.
Assume each target can be described by a time-invariant nonlinear
ordinary differential equation (ODE),

ẋj(t) = fi[xj(t)] , vj(t), j = 1, . . . ,N(t) (1)

where the vector function fi : R2
→ R2, referred to as a

velocity field (VF), is drawn from a set of continuously differentiable
velocity fields, F = {f1, . . . , fM}, xj ∈ W denotes the jth target
position, vj ∈ R2 denotes the jth target velocity, and t ∈ [t0, tf ].
The number of targets N in W is unknown, time varying, and may
not equalM .

At the initial time, t0, no prior target information is available
and, thus, M and F are to be learned from data. The data consists
of position and velocity measurements,

mj(t) ,


yj(t)
zj(t)


=


xj(t)
vj(t)


+ n(t), j = 1, . . . ,N(t) (2)

forxj(t) ∈ S(t), t > t0, whereS(t) ⊂ W is themoving sensor field-
of-view (FoV), and n ∈ R4 is an additive Gaussian measurement
error with zero mean and known standard deviations σx and
σv (Wei, Ross, Varisco, Krief, & Ferrari, 2013). If xj(t) ∉ S(t), mj(t)
belongs to an empty set. The measurement-target association is
carried out by established data association algorithms (Bar-Shalom
& Blair, 2000; Bar-Shalom & Tse, 1975; Pattipati, Deb, Bar-Shalom,
& Washburn, 1992), and any errors are assimilated in the DPGP
model uncertainty representation.

From (1), it can be seen that a VF, fi, projects a target position,
xj, to a velocity, vj, and, thus, can be viewed as a two-dimensional
spatial phenomenon. Because fi is unknown and is not necessarily
drawn uniformly at random from F , the association of a target
with a VF in F can be represented by a discrete random variable,
Gj, with a range I = {1, . . . ,M} that is possibly infinite. Then,
the event {Gj = i} represents the association of target j with the
velocity field fi ∈ F , as shown in (1), and the N targets can be
modeled as a multioutput GP via nonlinear regression, as follows.

A multioutput GP defines a multivariate distribution over
functions, P(fi), where fi : W → Rn, and here n = 2 and i =

1, . . . ,M (Joseph et al., 2011). Let F = {fi(x1), . . . , fi(xN) | xN ∈

W} be a set of vector function values evaluated at N points in W .
Then, P(fi) is a multioutput GP if for any finite subset {x1, . . . , xN}

the marginal distribution P(F) is a joint multivariate Gaussian
distribution (Rasmussen & Williams, 2006). A multioutput GP is
specified by its mean vector function,

θi(xj) = Evj [fi(xj)], ∀ xj ∈ W (3)

and its covariance matrix function,

Ψ i(xj, x′

j) = Evj

[fi(xj) − θi(xj)][fi(x′

j) − θi(x′

j)]
T (4)

for any xj, x′

j ∈ W , where Evj [·] denotes the expectation operator
with respect to vj (Rasmussen & Williams, 2006). Assuming
stationary covariance functions, the notation,

fi(xj) ∼ GPi

θi(xj), Ψ i(xj, x′

j)

, ∀xj, x′

j ∈ W (5)

or in short fi(xj) ∼ GPi, can beused to indicate that fi is ‘‘distributed
as’’ the Gaussian process GPi, for i = 1, . . . ,M . For simplicity, in
this paper it is assumed that the elements of vj are independent,
such that Ψ i is a diagonal and positive-definite matrix. Also, it is
assumed that the M Gaussian processes, GP1, . . . ,GPM , share the
same covariance matrix Ψ i = Ψ and, therefore, GPi = GP(θi, Ψ),
where Ψ is known a priori.

For N independent targets, the target-VF association variables,
G1, . . . ,GN , can be assumed to be independent and identically
distributed (i.i.d.), such that the probability of event {Gj = i} is

P(Gj = i) = πi, ∀j. (6)

Letting π , [π1 · · · πM ]
T denote a prior probability vector that

satisfies the properties,
M

i=1 πi = 1, and πi ∈ [0, 1], ∀i ∈ I, the
prior distribution of Gj can be represented by an M-dimensional
categorical distribution Cat(π), with probability mass function
(PMF) π (Bogachev & Ruas, 2007). Then, the tuple {F , π} provides
sufficient statistics for modeling all N targets from data.

3. DPGP target modeling and planning

When multiple targets obey the same VF, a prior distribution
on π is required to provide the ability of learning the clustering
of target behaviors from sensormeasurements. Dirichlet processes
(DPs) have been successfully applied to the clustering of data into
an unknownnumber of clusters because they allow for the creation
and deletion of clusters, as necessary, while new data is obtained
over time. Let (A, B) be a measurable space, where B is a σ -algebra
on a set A (Bogachev & Ruas, 2007). A finite measurable partition
{Bi}

n
i=1 of A is a collection of sets Bi ∈ B, such that Bi ∩ Bj = ∅,

if i ≠ j; and ∪
n
i=1 Bi = A. Let H be a finite non-zero measure on

the measurable space (A, B), and let α be a positive real number.
A DP with parameters H and α, denoted by DP(α,H(A)), is the
distribution of a random probability measure P if, for any finite
measurable partition {Bi}

n
i=1 of A, the following holds,

[P(B1) · · · P(Bn)]
T
∼ Dir


αH(B1), . . . , αH(Bn)


(7)

where ‘‘Dir’’ denotes the Dirichlet distribution (Teh, Jordan, Beal, &
Blei, 2006).
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From Section 2, the base distribution H is a GP with zero mean,
or GP0 = GP(0, Ψ), and A is the space of continuously differen-
tiable functions C1(W). Then, the following DPGP mixture (Joseph
et al., 2011),

{θi, π} ∼ DP(α,GP0), i = 1, . . . ,∞
Gj ∼ Cat(π), j = 1, . . . ,N

fGj(x) ∼ GP(θGj , Ψ), x ∈ W, j = 1, . . . ,N,
(8)

can be used to model the dynamic targets (1) from sensor mea-
surements (2) that are obtained incrementally over a period of time
[t0, tf ].

When new sensor measurements become available, (8) can be
updated to make use of the latest target information for tracking,
pursuit, or estimation. Let ∆t denote a small but finite constant
time interval required by the sensor to obtain and process new
target measurements using a finite sampling rate. Then, mj(k)
denotes sensor measurements obtained from the jth target during
the kth sampling interval, [tk, tk + ∆t). Since the sensor FoV is
stationary during sampling, mj(k) is known provided xj(t) ∈ S(k)
for some t ∈ [tk, tk + ∆t). Because DPGP cluster learning depends
on all targets observed over time, all measurements obtained up to
time k, denoted by M(k) , M1(k) ∪ · · · ∪ MN(k), where Mj(k) ,
{mj(ℓ) | 1 ≤ ℓ ≤ k}, are used for the DPGP update at time
k. Assume the DP prior is fixed during ∆t . Then, the VF clusters
can remain unchanged and the VF-target associations learned at
time k, G(k) , {Gj(k) | 1 ≤ j ≤ N}, are also part of the
measurement database, Q (k) , {M(k), G(k)}, used to update (8)
at time k. Furthermore, from Q (k), new sensor measurements can
be planned at tk+1, tk+2, . . . , so as to minimize the DPGP model
uncertainty in future updates.

4. Information value in DPGP mixture models

This section presents a novel approach for evaluating infor-
mation value in DPGP mixture models so that the reduction in
uncertainty brought about by new sensor measurements can be
estimated from past data and a prior DPGP model. Evaluating in-
formation value in closed form is important both for assessing the
benefit of a given database and for planning sensor motions and
parameters. In order to derive information functions for the DPGP
in (8), the M VFs in (1) are evaluated at a finite number of col-
location points in the domain of integration W of the ODEs (1).
The approach is illustrated for the KL divergence because it is typi-
callymost effective for solving sensor planning problems (Kastella,
1997;Wei et al., 2012; Zhang, Ferrari, & Cai, 2012), but can easily be
extended to other information theoretic functions, such as mutual
information (Section 5).

4.1. DPGP KL divergence

Let p(x) and q(x) denote two known probability density
functions (PDFs) of a continuous random variable x ∈ R. Then, the
KL divergence or relative entropy,

D

p(x) ∥ q(x)


=


∞

−∞

p(x) ln
p(x)
q(x)

dx (9)

can be used to represent the ‘‘distance’’ between p(x) and q(x).
Although it does not constitute a true distance metric because
it is nonadditive, nonsymmetric, and does not obey the triangle
inequality, the KL divergence can represent the change in a PDF,
e.g., due to a new measurement or observation (Cover & Thomas,
1991).

Let ξl ∈ W denote the lth collocation point chosen from a
uniform grid of L points in W grouped in a 2L × 1 vector ξ =

[ξT1 . . . ξTL ]
T , as in basic collocation methods (Nobile, Tempone,

& Webster, 2008). Each ODE in (1) is discretized about every
collocation point by evaluating fi at ξl for l = 1, . . . , L, such that,

υi , [fi(ξ1)
T

· · · fi(ξL)
T
]
T

= υi(ξ) (10)

approximates fi in W . Similarly, all M velocity fields in F are
discretized and grouped into a 2LM × 1 vector of random velocity
variables υ , [υ1(ξ)

T
· · · υM(ξ)T ]T .

Now, let p(υ) and q(υ) denote two joint PDFs of the 2LM ele-
ments of the random velocity vector υ, where each PDF is obtained
from the DPGP model (8). Then, the ‘‘distance’’ between the two
DPGP parameterizations can be represented by the DPGP KL diver-
gence

D

p(υ) ∥ q(υ)


,


∞

−∞

· · ·


∞

−∞

p(υ) ln
p(υ)

q(υ)
dυ. (11)

In order to evaluate (11), the joint PDF of p(υ) needs to be ex-
pressed in terms of the DPGP parameters in (8). Given {π, θi, Φ},
the random vector υi has a mixed multivariate Gaussian distribu-
tion with mean and covariance matrix calculated from θi and Φ.
However, the number of components in the mixture model is in-
finite. Therefore, computing (11) is computationally very expen-
sive due to the multiple integrals of the joint PDFs. Thus, the next
subsections present several steps by which the KL divergence can
be simplified and approximated by an information function that
is computationally efficient, using conditional independence as-
sumptions and Monte Carlo integration.

4.2. Conditional DPGP KL divergence

For a non-myopic process, the information value is to be
conditioned on all prior measurements or observations. Thus, as
a first step, the KL divergence is obtained in terms of conditional
probability densities that take into account the measurement
database Q (k) available or given at time tk. The reduction in DPGP
model uncertainty brought about by ameasurementmj(k+1) can
be represented by the conditional KL divergence,

D

υ;mj(k + 1)|Q (k)


, D


p

υ|mj(k + 1),Q (k)


∥ p


υ|Q (k)


(12)

in terms of the joint PDFs of υ obtained from (8). Because the VF
vectors of two targets are conditionally independent given Q (k),
the joint PDF is factorized as,

p(υ|Q (k)) = p(υ1, . . . ,υM |Q (k)) =

M
i=1

p(υi|Q (k)) (13)

where each joint PDF p(υi|Q (k)) can be obtained from the GP
covariance and mean as follows.

From GP regression (Rasmussen & Williams, 2006), given
a database Q (k), υi is characterized by the multivariate joint
Gaussian PDF,

p(υi|Q (k)) =
−

1
2 [υi − µi(k)]T [Σi(k)]−1

[υi − µi(k)]
(2π)L|Σi(k)|

where µi and Σi are the mean vector and covariance matrix of the
measurements associated with the ith VF, respectively, and | · |

denotes the matrix determinant. Both µi and Σi can be computed
from the cross-covariance matrix of the GP regression,

Φ(X,X′) , Eυi,υ
′
i


υi − E[υi]


υ′

i − E[υ′

i]
T

=

Ψ(x1, x′

1) · · · Ψ(x1, x′

n)
...

. . .
...

Ψ(xm, x′

1) · · · Ψ(xm, x′

n)

 (14)

where X = [xT1 · · · xTm]
T and X′

= [(x′

1)
T . . . (x′

n)
T
]
T for any

xj, x′

l ∈ R2. From (10), υi , [fi(x1)T · · · fi(xm)T ]T and υ′

i , [fi(x′

1)
T
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· · · fi(x′
n)

T
]
T are obtained by evaluating fi at every point in X and

X′, respectively.
Now, let Yi(k) = [yT1(·) yT2(·) · · · ]

T and Zi(k) = [zT1(·)
zT2(·) · · · ]

T denote two vectors containing all position and velocity
measurements associated with fi up to time k, respectively. Mea-
surements yj(l), zj(l) are associated with a velocity field fi ∈ F
by the index set G(k) learned using (8). Let A , Φ[Yi(k), Yi(k)] +

σ 2
v I2k denote the cross-covariance matrix obtained by GP regres-

sion (Rasmussen &Williams, 2006). Then, the measurement mean
vector and covariance matrix for a collocation point vector ξ are

µi(k) = Φ [ξ, Yi(k)]A−1Zi(k) , µi,k (15)

Σi(k) = Φ(ξ, ξ) − Φ[ξ, Yi(k)]A−1Φ[Yi(k), ξ] , Σi,k.

Without loss of generality, consider Gj(k+1) = i. Then, sincemea-
surements obtained from one VF do not contain information about
other VFs, it follows that,

D

υ;mj(k + 1)|Q (k)


= D


υi;mj(k + 1)|Q (k)


(16)

as proven in the Appendix. Now, ifmj(k+1) and Gj(k+1) are both
given, υi is characterized by the multivariate joint Gaussian PDF in
(13), and the conditional DPGP KL divergence (12) reduces to the
closed form,

D

υ;mj(k + 1)


=

1
2


tr

Σ−1

i,k Σi,k+1

− ln

Σi,k+1
Σi,k



+
1
2


µi,k+1 − µi,k

T
Σ−1

i,k


µi,k+1 − µi,k


− L

(17)

where tr(·) denotes the trace of a matrix, and, for brevity, condi-
tioning on Q (k) is omitted here and in the remainder of the paper.
When mj(k + 1) is unknown, as in sensor planning problems, the
expected DPGP KL divergence can be derived as shown in the next
subsection.

4.3. Expected DPGP KL divergence

When planning the motion of a sensor, such as a camera
mounted on a helicopter (Joseph et al., 2011), the value of mj(k +

1) is unknown, and Gj(k + 1) cannot be learned from data.
In this case, (17) cannot be evaluated because at time tk+1 the
measurementmean and covariance in (15) are unknown. Then, the
DPGP information value canbe estimatedby taking the expectation
of (12) with respect tomj(k + 1) and Gj(k + 1) as follows

D̂

υ;mj(k + 1)


, Emj


EGj


D

υ;mj(k + 1)


. (18)

Let Lij denote the likelihood of event {Gj(k + 1) = i}, such that,
Lij , p


Mj(k)|Mc

j (k),Gj(k + 1) = i

, where Mc

j = Q\Mj denotes
the complement set of Mj in Q . Then, the posterior probability of
{Gj(k + 1) = i} is,

wij , p

Gj(k + 1) = i|Q (k)


=

πiLij
M
i=1

πiLij

(19)

where πi = p(Gj(k+1) = i), defined in (6), is the prior probability
that the jth target obeys fi.

From (16) and (18), the DPGP expected KL divergence (EKLD)
can be written as,

D̂

υ;mj(k + 1)


=

M
i=1

wijD̂

υi;mj(k + 1)


(20)

and evaluated using the likelihood,

Lij =

k
ℓ=1

exp

−

1
2 [zj,ℓ − ηj,ℓ]

T
[Λj,ℓ]

−1
[zj,ℓ − ηj,ℓ]


2π |Λj,ℓ|
obtained from the ith GP component of the latest DPGP model,
where zj,ℓ = zj(ℓ), and the target velocity mean, ηj,ℓ = ηj(ℓ), and
covariance,Λj,ℓ = Λj(ℓ), at yj(ℓ) are calculated by replacing ξ with
yj(ℓ) in (15).

Then, the expected KL divergence of υi in (20) is obtained by
marginalizing the original KL divergence function over all possible
values ofmj(k + 1),

p

mj(k + 1)|Gj(k + 1) = i


= p(zj(k + 1)|xj(k + 1))p


xj(k + 1)|Gj(k + 1) = i


(21)

where p(zj(k+1)|xj(k+1)) can be calculated from (2). Using Euler
integration and the ODE (1), it follows that,

p

xj(k + 1)|Gj(k + 1) = i


=


R2
p

vj(k)|xj(k)


fX

xj(k + 1) − vj(k)∆t


dvj(k) (22)

where fX (·) is the PDF of xj(k) obtained via filtering tech-
niques (Wei et al., 2014). The conditional joint probability dis-
tribution of the target speed, p


vj(k)|xj(k)


, is a multivariate

Gaussian distribution with mean and covariance calculated from
(15) by replacing ξ with xj(k). Thus, the information value of a fu-
turemeasurementmj(k+1) can be estimated using Eqs. (19)–(22).

When multiple target measurements can be obtained during
one sampling interval [tk, tk+∆t), saym(k) = [mT

j (k)m
T
l (k) · · · ]

T ,
the DPGP-EKLD is given by,

D̂ (υ;m(k + 1)) =


j, xj∈S(k+1)

D̂

υ;mj(k + 1)


=


j,i

wij


S(k+1)


R2

D

υi;mj(k + 1)


p

zj(k + 1)|xj(k + 1)


× p


xj(k + 1)|Gj(k + 1) = i


dzj(k + 1)dxj(k + 1) (23)

where all quantities are defined and calculated as shown in
(19)–(22). Because the DPGP-EKLD function in (23) involves a 6th-
order integral, its computation is typically very burdensome. Using
the methodology presented in the next subsection, it is possible to
simplify the DPGP-EKLD to a double integral, a form that can be
implemented in real-time for sensor planning (Section 5).

4.4. DPGP expected KL divergence approximation

The theoretical results presented in this subsection allow for
the analytical approximation of the inner double integral in the
DPGP-EKLD function (23), and provide performance guarantees
for the subsequent Monte Carlo (MC) integration required to
evaluate the DPGP-EKLD approximation. Since the probability
p

xj(k + 1)|Gj(k + 1) = i


is constant with respect to zj(k + 1),

(23) can be simplified to,

D̂ (υ;m(k + 1)) =


j,i

wij


S(k+1)

hi[xj(k + 1)]

× p

xj(k + 1)|Gj(k + 1) = i


dxj(k + 1) (24)

where

hi[xj(k + 1)] ,


R2


D

υi;mj(k + 1)


× p


zj(k + 1)|xj(k + 1)


dzj(k + 1). (25)

Then, the above second-order integral can be solved analytically
according to the following proposition.



364 H. Wei et al. / Automatica 74 (2016) 360–368
Proposition 1. Consider a Gaussian process GPi with known covari-
ance matrix function Ψ i, and assume the target position is xj(k + 1).
Then, the second-order integral in (25) affords the analytical solution,

hi[xj(k + 1)] =
1
2


tr

Σ−1

i,k Σi,k+1

− ln


|Σi,k+1Σ

−1
i,k |


− 2L + tr(Q−1RTΣ−1
i,k RQ

−1)σ 2
v


(26)

where Σi,k and Σi,k+1 are the velocity covariance matrices at times k
and k + 1, respectively, and,

A , Φ[Yi(k), Yi(k)] + σ 2
v I2k (27)

B , Φ[Yi(k), xj(k + 1)] (28)

D , Φ[xj(k + 1), xj(k + 1)] + σ 2
v I2 (29)

R , Φ[ξ, xj(k + 1)] − Φ[ξ, Yi(k)]A−1B (30)

Q , D − BTA−1B (31)

for any xj(k+1) ∈ S(k+1), where ξ is a vector of collocation points,
Yi is a vector of all past position measurements, and Φ is the cross-
covariance matrix of GPi.

Proof. Using the matrix inversion lemma, [Σi,k+1]
−1 can be

written as, 
A−1(I2k + BQ−1BTA−1) − A−1BQ−1

Q−1BTA−1 Q−1


whereA,B,D, andQ are defined from (27)–(31). SubstitutingΣ−1

i,k+1
in the GP mean vector expression (15), the change in the mean
during two consecutive time steps can be written as,

µi(k + 1) − µi(k) = RQ−1z′

j(k + 1) (32)

where z′

j(k + 1) , zj(k + 1) − E[zj(k + 1)] is a Gaussian random
vector with zero mean and covariance matrix σ 2

v I2. Substituting
(32) into (25), the integral (26) can be simplified to

hi[xj(k + 1)] =
1
2


tr

Σ−1

i,k Σi,k+1

− ln


|Σi,k+1Σ

−1
i,k |


− 2L + tr(Q−1RTΣ−1
i,k RQ

−1)σ 2
v


. �

Even with the above simplification, the computational complexity
of evaluating hi[xj(k+1)] isO(L3+k3), where L is the number of col-
location points and k is the time index. Thus, it may be infeasible to
evaluate (24) for all possiblemeasurements. Because the integrand
of (24) goes to zero when p


xj(k + 1)|Gj(k + 1) = i


goes to zero,

and hi[xj(k+ 1)] is finite, this computation can be significantly re-
duced by the approach known as Monte Carlo integration (Press,
2007). Let ξ(1), . . . , ξ(S) denote S values of xj(k + 1) drawn iden-
tically and independently from p


xj(k + 1)|Gj(k + 1) = i


in (22).

Then, the integral in (24) can be computed numerically by evalu-
ating its integrand at each sample with nonzero probability, i.e.,

D̂ (υ;m(k + 1)) ≈


j,i

wij

S

S
l=1

hi(ξ
(l))1S(k+1)(ξ

(l)) (33)

where,

1S(k+1)(ξ
(l)) ,


1, ξ(l)

∈ S(k + 1)
0, ξ(l)

∉ S(k + 1)
(34)

is the indicator function. Similarly to the collocation points used
to discretize the DPGP information value, these samples represent
points in W . But, unlike collocation points, which are chosen from
a uniform grid, the Monte Carlo integration samples are chosen by
sampling a known distribution.

The remainder of this subsection proves that, based on the
following three lemmas, the approximation in (33) is an unbiased
estimator of the DPGP-EKLD in (24), and its error variance
decreases linearly with S.

Lemma 2. The velocity covariance matrix Q, defined in (31), obeys
the element-wise inequality Ψ 0 +


σ 2

v /[k tr(Ψ 0) + σ 2
v ]

I2 ≼ Q ≼

Ψ 0 + σ 2
v I2, where Ψ 0 = Ψ(0, 0) is a constant matrix obtained by

evaluating the stationary covariance matrix function at zero, σv ∈ R
is the standard deviation of the measurement noise of velocity, and
k ∈ Z+ is the time index.

Proof. From (27), the matrix A is symmetric and positive definite
(A > 0) because it is the sum of a real, symmetric, positive semi-
definite matrix, Φ[Yi(k), Yi(k)], and a real, symmetric, positive
definite matrix, σ 2

v I2k. Then, A
−1 > 0 and BTA−1B ≻ 02×2, where

B is defined in (28), and ≻ denotes element-wise inequality. From
(31), the following also holds,

Q ≼ Ψ [xj(k + 1), xj(k + 1)] + σ 2
v I2 (35)

and since the covariance matrix function is stationary, Ψ [xj(k +

1), xj(k + 1)] = Ψ(0, 0) = Ψ 0 for any xj ∈ W , and thus Q ≼

Ψ 0 + σ 2
v I2.

Since Φ[Yi(k), Yi(k)] is real, symmetric, and positive semi-
definite, there exists an eigenvalue decomposition, Φ[Yi(k), Yi(k)]
= UΛU−1, with orthogonal eigenvectors, where Λ is a diagonal
matrix obtained by placing the k eigenvalues of Φ[·] on the
diagonal, and U is a k × k matrix whose columns are the
eigenvectors of Φ[·], i.e.,

Λ , diag[λ1 · · · λk] and U , [u1 · · ·uk]
T (36)

and, thus, UTU = I. Since the kth column of Yi(k) is equal to xj(k),
the matrix B defined in (28) can be written as, B = UΛuk. By
substituting B into in (31), the matrix Q can be written as,

Q = Ψ 0 +


σ 2

v −

k
ℓ=1

λℓ

λℓ + σ 2
v

λℓ(U(ℓ,k))
2


I2 (37)

where λℓ is the ℓth eigenvalue ofΦ[Yi(k), Yi(k)], andU(ℓ,k) denotes
the element in the ℓth row and kth column of U. Because Φ[·] is
symmetric and positive semi-definite, λℓ ≥ 0 for all ℓ, and, since
uT
kΛuk = 1, it follows that

k
ℓ=1 λℓ(U(ℓ,k))

2
= 1, which can be

substituted into (37) to show that,Q ≽ Ψ 0+


σ 2

v −
maxℓ{λℓ}

maxℓ{λℓ}+σ 2
v


I2.

Because the trace of a real, symmetric matrix equals the sum of
its eigenvalues, and that the diagonal blocks of Φ[Yi(k), Yi(k)] are
equal to Ψ(yl, yl) = Ψ 0, then

k
ℓ=1 λℓ = k tr(Ψ 0). Furthermore,

maxℓ{λℓ} ≤ k tr(Ψ 0), and thus,

Q ≽ Ψ 0 +


σ 2

v

k tr(Ψ 0) + σ 2
v


I2 ≽ Ψ 0 ≻ 0 (38)

which completes the proof. �

The above result is used in the following lemma to establish
a matrix inequality on consecutive covariance matrices Σi,k and
Σi,k+1.

Lemma 3. Under the assumptions in Proposition 1, two consecutive
covariance matrices Σi,k and Σi,k+1, defined according to (15), obey
0 ≺ Σi,k+1 ≼ Σi,k.

Proof. Under the assumptions in Proposition 1, Σi,k, Σi,k+1 > 0
because they are Gaussian covariance matrices. From the block
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matrix inversion of Σi,k+1 the difference between two consecutive
covariance matrices can be written as

Σi,k − Σi,k+1 = RQ−1RT . (39)

From Lemma 2, Ψ 0 ≼ Q and, since Q is a diagonal positive-definite
matrix, it follows that Q−1 is diagonal and positive definite. Then,
there exists a diagonal positive-definitematrix, V, such thatQ−1

=

VVT and

Σi,k − Σi,k+1 = RVVTRT
= (RV)(RV)T ≽ 0. �

The third and final lemma provides a bound on the trace of the
quadratic form RTR that is later used to show that the Monte Carlo
integration (33) is an unbiased estimator of the DPGP-EKLD in (24).

Lemma 4. Under the assumptions in Proposition 1, the cross-
covariance matrix R, obtained from the target velocity and position
estimates at the collocation points, and defined in (30), obeys the
inequality 0 ≤ tr(RRT ) ≤ 4k[(Ψ 0) + 2σ 2

v ], where Ψ 0 = Ψ(0, 0)
is a constant matrix obtained by evaluating the stationary covariance
matrix function at zero, σv ∈ R is the standard deviation of the
measurement noise, and k ∈ Z+ is the time index.

Proof. Since RTR is a positive semi-definite matrix, it has pos-
itive or zero eigenvalues, and tr(RRT ) ≥ 0. From GP regres-
sion, the joint probability distribution of a vector [υT

i vj(k +

1)T fi(y1)T fi(y2)T · · · ]
T , comprised of target velocities at the

collocation points (10) and at the measured target positions, is a
multivariate Gaussian distribution with covariance matrix,Φ(ξ, ξ) + σ 2

v I2L Φ[ξ, xj(k + 1)] Φ[ξ, Yi(k)]

Φ[xj(k + 1), ξ] D BT

Φ[Yi(k), ξ] B A


where A, B,D are defined in (27)–(29). Then, the conditional
marginal distribution of the vector [υT

i vj(k+1)T ]T , given the vec-
tor of target position measurements Yi(k), is a multivariate Gaus-
sian distribution with covariance matrix


Σi,k R
RT Q


, where R and Q

are defined in (30)–(31). Because the covariancematrix is symmet-
ric positive definite, the off-diagonal elements ofR are smaller than
the corresponding diagonal elements ofQ, orR(i,j) < Q(j,j) < tr(Q),
for all i, j. From Lemma 2, Q ≼ Φ0 + σ 2

v I2, therefore it follows that
R(i,j) < tr(Ψ 0) + 2σ 2

v and, from the properties of quadratic forms,
tr(RRT ) =


ij[R(i,j)]

2 < 4k[tr(Ψ 0) + 2σ 2
v ], completing the proof.

�

We are now ready to prove the following theorem on the
properties of the DPGP-EKLD approximation:

Theorem 5. Under the assumptions in Proposition 1, theMonte Carlo
(MC) integration (33) is an unbiased estimator of the DPGP-EKLD (24),
and the variance of the difference between (24) and (33) decreases
linearly with the number of samples, S, that are drawn independently
and identically from the target state distribution (22).

Proof. From the linearity of the expectation operation, the
expected value of the DPGP-EKLD obtained via Monte Carlo
integration in (33) is given by

D̄ = Eξ(l){D̂ (υ;m(k + 1))}

=

N
j=1

M
i=1

wij

S

S
s=1

Eξ(l)

hi(ξ

(l))1S(k+1)(ξ
(l))

. (40)

Since MC samples are iid, the following holds,

Eξ(l)

hi(ξ

(l))1S(k+1)(ξ
(l))


= Eξ(l)

hi

xj(k + 1)


1S(k+1)[xj(k + 1)]


(41)
for all l = 1, . . . , S, where hi

xj(k+ 1)


is defined in (26), and thus

the estimator (33) is unbiased. Also, the variance of the DPGP-EKLD
in (40) can be written as,

var(D̂) = E{(D̂ − D̄)2}

=

N
j=1

M
i=1

wij
1
S2

S
l=1

E


hi

ξ(l)1S(k+1)


ξ(l)

− E

hi

xj(k + 1)


1S(k+1)


xj(k + 1)

2
=

1
S
var

hi

xj(k + 1)


1S(k+1)


xj(k + 1)


(42)

where it can be proven that var

hi

xj(k + 1)


1S(k+1)


xj(k + 1)


is a finite constant because hi[·] is finite-valued as follows.

As a first step,we prove that hi[·] is greater than or equal to zero.
From (25), hi[·] is the integral of the KL divergence weighted by
a Gaussian distribution. Since the KL divergence is always greater
than or equal to zero, and p(zj(k+1)|xj(k+1)) ≥ 0, it also follows
that hi[·] ≥ 0. As a second step, we prove that hi[·] is finite by
showing that every term of hi[·] is finite. The first term in (26) is
finite-valued because from Lemma 3,

tr(Σ−1
i,k Σi,k+1) = tr(I2L − Σi,kRQ−1RT ) ≤ 2L (43)

where L is the number of collocation points in W . The second
term in (26) is also finite because from Lemma 3 |Σi,k| > 0
and |Σi,k+1| > 0, since the two covariance matrices are positive
definite. Since Σi,k and Σi,k+1 are Hermitian and Σi,k ≽ Σi,k+1,
then |Σi,k| > |Σi,k+1| and 0 < |Σi,k+1|/|Σi,k| < 1, such that 0 <
− ln(|Σi,k+1|/|Σi,k|) < ∞. Since the trace of a product of matrices
is invariant under cyclic permutations, and the trace of the product
of positive semi-definite matrices is less than or equal to the
product of the individual traces (Bernstein, 2005), it follows that,

tr(Q−1RTΣ−1
i,k RQ

−1)σ 2
v = tr(Σ−1

i,k )[tr(Q−1)]2

×tr(RRT )σ 2
v ≤ 4tr(Σ−1

i,k )

4ktr(Φ0) + 2σ 2

v


σ 2

v (44)

where the last inequality is the result of Lemmas 2–4. Now that ev-
ery term in (26) has been proven finite, hi[·] is finite-valued for all
xj(k + 1) ∈ R2. Also from (34), the variance in (42) is a definite
integral of hi[·] over S(k + 1), and thus a finite constant. Then, the
error variance of the MC estimator in (33) is proportional to 1/S
(Caflisch, 1998). �

5. DPGP sensor planning

The DPGP-EKLD approximation in (33) is used to plan the
sensor measurements in the target modeling problem formulated
in Section 2. The performance obtained by planning the motion of
the sensor FoV, S(k+1), using a DPGP-EKLDmaximizing algorithm
is compared to an algorithm based on DPGP mutual information
(MI), derived by the approach in Section 4, a particle filter (PF)
algorithm (Wang et al., 2008), and a randomizedmethod (Fulgenzi
et al., 2008). The workspace is W = [0, 10] × [0, 10] m2, and the
camera FoV is a square of side s = 0.5 m2 and variable position
in W . The sensor measurements are characterized by σx = σv =

0.1 (m/s) and ∆t = 0.3 s. The unknown target ODEs are,

f1[·] =

− sin


[0.1 π/20]xj


sin

[π/12 1]xj + π/4

T
f2[·] =


− cos


[0 π/8]xj


sin

[π/4 0]xj

T
f3[·] =


−0.5 sin


[π/4 0.3]xj

T
f4[·] =


− cos


[π/8 − 0.5]xj


1
T (45)

such that F = {f1, f2, f3, f4}, and π = [0.25 0.25 0.25 0.25]T .
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Fig. 1. Diagram of DPGP-EKLD sensor planning algorithms.

Fig. 2. Example target trajectories (red), collocation points (yellow) and velocity
variance (contour plot) for the four velocity fields in (45). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

The performance of the DPGP-EKLD algorithm is evaluated for
t0 = 0, tf = 300 s. During this time, N = 500 targets enter
and exit W following a VF in F selected randomly from Cat(π).
The target VFs and statistics {F , π} are learned from data, using
Ψ(xj, x′

j) = exp

−∥xj − x′

j∥
2
2/2ℓ

2

I2 and ℓ =

√
10 based on

the size of W . An example of target trajectories used to learn the
DPGP model is shown in Fig. 2, superimposed on a contour plot
of var(vj). At the onset of the simulation, the DP concentration
parameter is chosen as α = 1. Subsequently, the DPGP model is
updated at every time tk, based on the complete database Q (k). As
schematized in Fig. 1, the target-VF associations G(k) are obtained
from the DPGP using a particle filter (Wei et al., 2014). Based on
the latest DPGP, the position of the camera FoV in W is computed
so as to maximize EKLD and obtain the target measurements mj
with the highest information value.

From (3), the DPGP targetmodel can be evaluated by comparing
its estimate of target velocity, v̂j(k) = θi(xj) = E[fi(xj)], to the
actual velocity vj(k) such that, at tk, the average rootmean squared
error (RMSE) is,

εk =
1
N

N
j=1

M
i=1

wij

 1
Kj

Kj
k=1

vj(k) − v̂j(k)
2
2 (46)
Fig. 3. Mean and (±) standard deviation of the VF RMSE in (46) resulting
from EKLD, MI, PF, and random camera planning, for the case of medium prior
information.

Table 1
Average RMSE of DPGP model.

Algorithms: EKLD MI PF Random

Low prior information 0.35% 0.79% 3.31% 5.16%
Medium prior information 0.11% 0.25% 2.46% 3.32%
High prior information 0.09% 0.21% 0.56% 1.34%

where Kj is the number of time intervals spent in W by target j,
and wij is the target-VF association probability in (19). The EKLD
algorithm is compared to an MI algorithm that maximizes DPGP
mutual information, a PF algorithm that places S(k + 1) to track
the nearest target, and a random algorithm that places S(k + 1)
by sampling a uniform multivariate distribution with support W .
Three cases with low, medium, and high prior information are
considered, obtaining the results in Table 1. It can be seen that
the EKLD information function is the most effective at improving
RMSE, or reducing model error, over time.

The time history of RMSE and its variance for all four
planning algorithms is plotted in Fig. 3, for the case of medium
prior information. These results, obtained for a sample of fifty
simulations performed under the same DPGP statistics, illustrate
the performance robustness of the EKLD algorithm. The MI
algorithm also displays good performance at the onset of learning,
because the medium prior is approximately equally informative
about all four VFs. However, as more target measurements of
targets are obtained over time, the EKLD function is more effective
because it prioritizes targets characterized by VFs with higher
uncertainty. Finally, the results in Fig. 4 show that the posterior
probabilities of target-VF association defined in (19), and obtained
from the updated DPGP via PF, converge to their true values (dash-
dotted lines) over time. The snapshots in Fig. 4(a)–(c) show that,
by planning the camera movements via EKLD, the FoV is able to
intersect PF clusters with high information value and, thus, rapidly
improve their posterior probability distributions.

6. Conclusion

This paper presents an approach for deriving tractable infor-
mation value functions for nonparametric DPGP mixture mod-
els. Although information theoretic functions are a common
approach for representing information value in sensing and con-
trol problems, they are not directly applicable to DPGP models of
stochastic processes because they are typically defined in terms
of finite-dimensional probability distributions. The proposed ap-
proach is demonstrated by deriving efficient representations of KL
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Fig. 4. Time history of target-VF posterior probabilities updated over time by the
DPGP and PF algorithms in Fig. 1.

divergence in DPGP models via collocation methods and MC inte-
gration. In particular, the EKLD approximation, useful for planning
and control of mobile sensors, is proven to be an unbiased estima-
tor of the original information function, with an error variance that
is guaranteed to decrease linearly with the number of MC samples.
The effectiveness of the approach is demonstrated through a sen-
sor planning problem in which the motion of the camera FoV is
planned by optimizing the DPGP-EKLD value function over time.
The results show that the EKLD sensor planning algorithm outper-
forms algorithms based on DPGP mutual information, particle fil-
ter, and randomized methods.

Appendix. Proof of Eq. (16)

Proof. When Gj(k + 1) = i,

p(υ|Q (k + 1)) = p(υi|Q (k + 1))


1≤l≤M, l≠i

p(υl|Q (k)) (A.1)

since υi = υi(ξ) and υl = υl(ξ) are conditional independent given
Q (k+1). Substituting (A.1) into (12), the conditional KL divergence
can be written as

D

υ;mj(k + 1)|Q (k)


=


R2LM

ln


p(υi|Q (k + 1))


1≤l≤M, l≠i

p(υl(ξ)|Q (k))

2M
ℓ=1

p(υℓ(ξ)|Q (k))


× p


υ|Q (k + 1)


dυ

=


R2M

ln


p

υi|Q (k + 1)


p

υi|Q (k)

 
p

υi|Q (k + 1)


dυi

= D

υi;mj(k + 1)|Q (k)


. � (A.2)
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