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Abstract— Control and optimization of acoustic sensors can 
significantly impact the effectiveness of sonar deployment in 
variable and uncertain underwater environments. On the other 
hand, the design of optimal control systems requires tractable 
models of system dynamics, which in this case include acoustic-
wave propagation phenomena. High-fidelity acoustic models 
that capture the influence of environmental conditions on wave 
propagation involve partial differential equations (PDEs), and 
are computationally intensive. Also, by relying on the 
numerical solution of PDEs for given boundary and initial 
conditions, they do not provide closed-form functional forms 
for the propagation loss or other output variables.  In this 
paper, a simple Bayesian network (BN) model of acoustic 
propagation is presented for use in sonar control. The 
performance of the BN model compares favorably to that of a 
radial basis function neural network. Additionally, the sensor 
range dependency on spatial and temporal coordinates can be 
estimated and utilized to compute optimal sonar control 
strategies. 

I. INTRODUCTION 
On-going developments in acoustic sensor technologies 

and signal processing are producing sonar systems with 
capabilities for automatic reconfiguration and deployment. 
The tactical objectives of these systems, such as, target 
detection, classification and tracking, can benefit 
significantly from automatic sonar control and optimization 
techniques that account for the environmental influence on 
the acoustic measurements performance. A typical 
configuration for the control of a sonar system, such as, a 
towed array or a sonobuoy network [1,2], is shown in Fig. 1.  
The control system requires the use of acoustic and 
environmental models to quantify the effects that the ocean 
environment has on the propagation of acoustic waves. 

Acoustic models play a critical role in the control process 
and must be chosen carefully depending on the control 
objectives, because their applicability is limited by what 
environmental conditions are observable. A comprehensive 
review of the literature on acoustic propagation models is 
provided in [1]. These models include Parabolic Equation 
Models, Ray Models, Normal Mode Models and Fast Field 

Models. The parabolic equation approach replaces the 
elliptic-reduced wave equation with a parabolic equation 
(PE) and is the most accurate approach for modeling range-
dependent 3D ocean acoustic propagation [4-7]. Range-
dependent Acoustic Model (RAM) is a FORTRON code 
based on the split-step Padé approximation solutions [6,7]. 
Recently developed techniques in PE modeling are very 
effective for solving range-dependent acoustic propagation 
loss problems for passive sonar systems.  However, they 
cannot be used for designing optimal control and decision 
strategies because they rely on numerical integration. 

 
Fig. 1. A typical configuration of sonar controller 

In this paper, a Bayesian network (BN) model of acoustic 
propagation is trained using RAM to obtain a closed-form 
representation of the environmental conditions influence on 
sonar measurements. Another advantage over existing 
acoustic models is that it rapidly approximates acoustic 
model calculation, with a reasonable tradeoff between 
computational complexity and model accuracy. 
Consequently, the sensor range dependency on spatial and 
temporal coordinates can be estimated and utilized to 
compute optimal deployment strategies for the sonar system. 

II. BACKGROUND 

A.  Acoustic Propagation Models and RAM Software 
Acoustic propagation models are based on a three-

dimensional, time-dependent wave equation [1]. In 
cylindrical coordinates, a simplified linear, hyperbolic, 
second-order, partial differential equation is,  

This work was supported by the Office of Naval Research Young Investigator Program (Code 321). 

3451-4244-1262-5/07/$25.00 ©2007 IEEE IEEE SENSORS 2007 Conference



0)(1 2
2

2

2

2
=+

∂
∂+

∂
∂+

∂
∂ pzk

z
p

r
p

rr
p  (1) 

where p is acoustic field pressure, r is the horizontal distance 
from a point source, z is the depth below the ocean surface, k 
= 2πf/c = 2π/λ is the wave number, λ is the wavelength, f = 
ω/(2π), and ω is source frequency. Equation (1) is referred to 
as the elliptic-reduced wave equation. Using the reference 
value of 1 µPa, the propagation loss (dB) can be computed as 

ppPL log20)log(10 12 −== −  (2) 
The geometrical assumptions and solution type chosen 

for p produce different canonical models. In RAM, p = 
),,(02/1 zrFer rik θ− , where k0 = 2πf / c0, and c0 is the 

reference sound speed. Away from the source, the following 
far-field equation [6] holds in range-independent region, 
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where, ρ is the fluid density, k1 = (1+iηβ)ω/c is the complex 
wave number, c is the sound speed, β is the attenuation 
(dB/λ), and η is a constant. As can be seen from eq. (3), 
propagation loss is a function of range (r), and depth (z), and 
is influenced by source frequency (f), sound speed profile, 
and environmental variables such as density and sea floor. 

B. Background on BN Inference and Estimation 
A BN model is a directed acyclic graph (DAG) 

comprised of a set of nodes representing the system 
variables, and a set of arcs representing relationships 
between the nodes [8]. In this paper, capital letters denote 
variables and lowercase letters denote the states or 
instantiations of the variables, e.g., Xi is said to be in its jth 
instantiation when Xi = xi,j.  If there is an arc from A to B, B 
is said to be a child of A, and A is a parent of B. A 
conditional probability table (CPT) lists in tabular form the 
conditional probabilities of each node, Xi, P[Xi|pa(Xi)], 
where pa(Xi) denotes the parents of Xi. Let µi denote the 
instantiations of the children of Xi. Then, Bayes’ rule is 
utilized to infer the posterior probability distribution of an 
unknown variable Xi, i.e., P[Xi| µi]. 

Since continuous BNs currently support only Gaussian 
distributions, the sonar variables are discretized and 
assumed finite and countable. Existing discretization 
methods include but are not limited to equal-width 
discretization (EWD), equal-frequency discretization (EFD), 
fuzzy discretization (FD), and lazy discretization (LD) [10]. 
Both EWD and EFD sort the data values of a continuous 
variable Xi from its minimum to its maximum values, [xi

max, 
xi

min]. EWD divides the number line [xi
max, xi

min] into n 
intervals of equal width, w. The number of intervals is also 
referred to as the instantiation number of Xi. EFD divides 
the sorted values into n intervals so that each interval 
contains approximately the same number of training 
instances. Since the instantiation number n is chosen 
without considering the properties of the data set, both 
EWD and EFD may lose some attribute information. 
However, their advantages are that they are very simple, and 

often perform surprisingly well. Thus, in this paper, EWD 
and EFD are used to discretize the continuous variables 
required by the BN acoustic model presented in Section III. 

A BN model can be obtained from data, by learning its 
structure and, then, its parameters or CPTs [11]. In this paper, 
the data set, O, is obtained from RAM and is complete. Thus, 
structural learning is performed using the greedy search 
algorithm known as K2 [11, 12]. For parameter learning, the 
Expectation-Maximization (EM) algorithm is used to 
maximize the posterior distribution P(Θ | O, G) with respect 
to the parameters, Θ, given the learned BN structure, G, and 
the data set, O.  

III. METHODOLOGY 

A. BN Acoustic Model 
The universe U of the BN model is obtained from the list 

of input and output variables of the RAM software. A 
description of these variables is provided in Table 1.  As can 
be seen from the variable instantiations (Table 1), the data 
for the input nodes, R, Z, SF, BD, and F, are generated 
uniformly. With these inputs, there are 40,000 possible 
instantiations for the output, PL. The non-uniformity of PL 
information requires careful discretization of the training 
and validation data used to obtain the BN model.  Since the 
discretization technique can greatly affect the BN model 
performance, training is performed using both EWD and 
EFD, and the results are compared in Section IV. After the 
variables are discretized and the data set O is generated with 
RAM, 75% of the data is randomly selected to form the 
training set, T, and the remaining data, comprised of 10,000 
cases, is used to form the validation set, υ. The learned BN 
model is shown in Fig. 2. 

An important advantage of this methodology, is that 
after the BN model is trained, any of its nodes can be 
inferred given evidence from other node(s). 

TABLE 1 LIST OF NODES IN BN ACOUSTIC MODEL 

Node Type Node Instantiations and ranges 

Range (m): R depends on application, e.g., 
[100:100:1000] 

Position 
Depth (m): Z depends on application, e.g., 

[50:50:500] 

Sea Floor: SF flat; uphill; downhill; up and 
down  

Bottom Density 
(g/cc): BD 10 instantiations: [1.5:0.1:2.4],  

Environment 

Bottom Sound 
Speed (m/s): V 

quadratic experiential function 
of BD [13], 10 instantiations 

Source Source Frequency 
(HZ): F 

depends on source 
characteristics, e.g., [10:20:200]  

Output Propagation Loss 
(dB): PL  

depends on discretization 
method, 10 or 20 instantiations 
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Fig. 2. Learned structure of BN acoustic-wave propagation model. 

B. BN Performance Metrics 
The outcome of an inferred variable Xi ∈  U is a 

posterior probability distribution over its domain, dom(Xi), 
representing the set of all of its possible instantiations 
(Table 1).  The instantiation with the maximum posterior 
probability is typically chosen as the estimate for Xi, based 
on the available evidence e, i.e.: 

                  )}|({maxargˆ ,
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The confidence level (CL) of the estimate is the 
maximum posterior probability, P(Xi = x̂  | e), and is a 
measure of the BN confidence in the accuracy of the value 
x̂ . Let the classification accuracy (CA) be a Boolean metric 
that is equal to one when the estimate x̂  is correct and is 
equal to zero otherwise. The CA metric has the following 
disadvantages, it neglects CL and does not account for the 
discretization error. 

We introduce the expected distance metric (EDM) to 
overcome the disadvantages of CA. The discretization 
induces the error interval Ij, j = 1, …, n, where n is the 
number of variable instantiations, Ij =[xj

min, xj
max], and jx  ≡ 

(xj
min + xj

max) / 2.  Let xi
* denote the true value of Xi, which 

could be available from either T or υ, depending on 
whether the BN is being trained or validated.  Then, the 
EDM of the estimate for Xi is 
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,
*
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As can be seen from the above definition, EDM accounts for 
CL and has the same units as Xi, in the continuous domain. 
The smaller is the value of EDM, the higher is the accuracy 
of the BN estimate for Xi. 

IV. RESULTS 
The BN model performance over the validation data υ, 

which is not used for training, is illustrated in Tables 2-3.  
The BN is used to infer variables PL, Z, and R under a wide 
variety of environmental conditions, and its estimates are 
compared to the true values obtained by RAM.  As can be 
seen from Tables 2-3, the results show that in this application 
EWD generates training data more effectively than EFD.  
The BN acoustic model learned by EWD predicts the PL 
with an accuracy ranging from 84.6% to 94.8%, as shown in 
Table 2. Also, as an example, the spatial distribution of PL 
predicted by the BN (Fig. 3.b) is compared to the PE model 
output in Fig. 3.a, leading to the EDM error shown in Fig. 
3.c. The resulting BN model is found to outperform an 
equivalent neural network model implementing radial basis 

functions (see Table 4), and can be easily integrated in sonar 
control algorithms, such as in [14]. 

TABLE 2 AVERAGE CA METRIC FOR DIFFERENT DISCRETIZATION 
METHODS AND INFERRED VARIABLES (OUTPUT) 

Discretization 
Method EWD EFD 

Number of PL 
instantiations, n 10 20 10 20 

Output: PL 0.95  0.85  0.60  0.48  

Output: Z 0.17  0.28  0.41  0.49  
Output: R 0.17  0.27  0.42  0.51  
Outputs: 

R & Z 
0.14(Z) 
0.14(R) 

0.19(Z) 
0.19(R) 

0.25(Z) 
0.24(R) 

0.28(Z) 
0.28(R) 

TABLE 3 AVERAGE EDM METRIC FOR DIFFERENT DISCRETIZATION 
METHODS AND INFERRED VARIABLES (OUTPUT) 

Discretization 
Method EWD EFD 

Number of PL 
instantiations, n 10 20 10 20 

Output: PL [dB] 6.52 5.70  14.31 8.08 
Output: Z [m] 104.72  93.90 82.34 73.43 
Output: R [m] 223.65 189.81 147.65 129.39 

Outputs: 
R & Z 

111.13(Z) 
234.38(R) 

103.95(Z) 
208.16(R) 

99.75(Z) 
183.63(R) 

96.92(Z) 
178.80(R) 
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Fig. 3: An example of BN prediction of PL from RAM (a), the BN model 
(b), and absolute error between the two (c). 

TABLE 4 COMPARISON OF BAYESIAN AND NEURAL NETWORK MODELING 
Method: BN Modeling RBN Modeling 

Discretization: EWD EFD EWD 
Number of PL 

instantiations, n 10 20 10 20 10 20 

PL Prediction 
CA (%): 95% 85% 60% 48% 82% 75% 

The maximum detection range of an acoustic sensor is 
known to be influenced by its environmental conditions, 
because the latter influence propagation loss. Hence, the 
environment characteristics that influence sound-wave 
propagation in the ocean (Table 1), also influence the sensor 
performance. Since sonar control strategies require an 
estimate of maximum sensor range [14,15], the BN model is 
used here to determine this range as a function of the sensor 
position within an area of interest. 

R 

Z 
SF 

F PL 

V 

BD 

Bottom profile 

(dB) (dB) 

(dB) 
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It is assumed that all parameters and conditions are time 
invariant. The target strength (TS) and detection threshold 
(DT) are assumed as given and are location invariant. The 
noise level (NL) over the area is assumed to have a Gaussian 
distribution, a range [66, 78] dB, and is estimated using the 
data on average deep-water ambient-noise spectra in [16], 
based on moderate-to-heavy ship traffic. According to the 
passive sonar equation,  

                  SL + DIs − PL − (NL − DI) = DT (6) 

the maximum value of PL leading to a detection above the 
threshold can be determined for a sensor with known 
directivity index (DI) and target-source directivity (DIs).  
Subsequently, this value of PL together with any available 
environmental conditions can be provided as evidence to the 
BN model to infer the maximum value of the range variable, 
Rmax.  A plot of this range with respect to the latitude and 
longitude coordinates is shown in Fig. 4.  It can be seen that, 
within the same area of interest, the sensor performance can 
vary significantly and in a highly nonlinear fashion. The 
range obtained by the BN as a function of sensor position is 
of great value to algorithms for control and sensor 
placement [14]. 

 
Fig. 4. Sensor detection range over an oceanic area of interest. 

V. CONCLUSION AND FUTURE WORK 
A Bayesian network model of acoustic-wave propagation 

is presented for use in sonar control applications.  The BN 
can be used to predict propagation loss when a compromise 
between modeling accuracy and computation burden must be 
achieved.  Unlike high-fidelity acoustic models based on 
numerical integration of PDEs, the BN model provides a 
closed-form representation of the process and can be used to 
infer any variables in its universe.  In order to achieve better 
accuracy, two different continuous variable discretization 
methods, EWD and EFD, are compared. The BN model is 
shown to outperform a radial basis neural network trained 
with the same data, and to provide reasonable accuracy over 
an extensive validation set. In addition, the BN model is 
combined with the sonar equation to estimate the maximum 
range of an acoustic sensor as a function of its position in an 

oceanic area of interest.  Consequently, the BN is of great 
value to algorithms aimed at placing and deploying sonar for 
coverage, target detection, classification, and tracking. 
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