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Abstract— In this paper, a novel artificial potential function
is proposed for planning the path of a robotic sensor in a
partially observed environment containing multiple obstacles
and multiple targets. The sensor planning problem considered
in this paper consists of planning the motion of a robot with
an on-board sensor that is deployed in order to support a
sensing objective, such as, target detection and classification,
by gathering sensor measurements over time. An adaptive
potential function approach is presented such that the sensor
path accounts for prior information on the target geometry and
information profit, by traveling a minimum distance.

I. INTRODUCTION
Sensor path planning is concerned with planning the

measurements of a sensor in order to support sensing ob-
jectives, such as target detection, classification and local-
ization. When the sensor’s field-of-view (FOV) or visibility
region is bounded, the sensor’s position and orientation
determine what targets can be measured at any given time.
Therefore, the sensor path must be planned in concert with
the measurement sequence. When sensors are installed on
robotic platforms and are deployed in an obstacle-populated
environment, the sensor path must also avoid collisions
between the platform and the obstacles or other robots
[1]–[3]. The problem of planning the sensor path in order
to maximize the information profit, while minimizing the
distance traveled and avoiding collisions with the obstacles,
is referred to as treasure hunt [4]–[6]. This problem is
relevant to many sensor applications such as, robotic mine
hunting [7], cleaning [1], and robotic games [8], as well
as the monitoring of urban environments [9], manufacturing
plants [10], and endangered species [11]. Cell decomposition
[4], [5] and probabilistic roadmap methods [12] have been
successfully developed for solving geometric sensor path
planning problems, such as the treasure hunt, when a prior
model of the obstacles and the targets is available. In this
paper, a novel potential function approach is presented for
generating sensor paths that can be utilized on-line, i.e., when
obstacles and targets are not all known a priori, but are
sensed during the motion.

Although effective methods, such as potential field, have
been developed for robot motion planning, they are not
directly applicable to geometric sensor path planning be-
cause they do not take into account the geometries of the
targets and of the sensor FOV, and do not consider the
information value of the sensor measurements [13]–[19]. In
the classical potential field method [20]–[23], for example,
the robot’s objective is to navigate the workspace to reach
a goal configuration by following the negative gradient of
a potential function that is designed to provide a repulsive

potential near the obstacles and an attractive potential toward
the goal configuration. Although the potential field method
is well suited to on-line motion planning and to convergence
analysis, its effectiveness is limited by the tendency of the
robot to get stuck in local minima of the potential function
[24]. An effective approach for escaping local minima is to
follow a new local path generated through a random-walk
algorithm.

In this paper, a novel potential function is presented for
generating attractive potentials toward the targets, based
on their geometries and information value. Then, a novel
algorithm for escaping local minima is developed based on
the probabilistic roadmap method (PRM). PRM is a sampling
method where a set of robot configurations, referred to as
milestones, are sampled from a probability density function
defined based on the robot’s and obstacles’ geometries.
Subsequently, using a query-and-search algorithm, a graph
or roadmap is constructed that provides an efficient one-
dimensional representation of the geometry of the free con-
figuration space. Finally, robot paths between an initial and
final configuration are obtained by searching the roadmap for
the shortest path using a search algorithm [25]. PRM is one
of the most efficient and effective path planning algorithms
for planning robot paths off line. Recently, the authors
developed an information roadmap method inspired by PRM,
but applicable to geometric sensor path planning [12], [26].
This method generates a roadmap by sampling a probability
density function defined based on the sensor’s FOV, and
on targets’ geometries and information value modeled from
prior information, such as geophysical maps and prior sensor
measurements.

One of the key results presented in this paper is that
the same adaptive potential function can be used to gen-
erate the navigation potential and the information roadmap,
thereby providing a natural framework for integrating the two
approaches. A method is presented for using the adaptive
information roadmap to escape local minima of the potential
function in place of random-walk algorithms that can lead the
sensor to regions of poor information value. In a cooperative
sensor network, the adaptive information roadmap can also
be exchanged between robots and used to plan the path of
other robots based on the latest sensed information. By defin-
ing a potential function in configuration space, the approach
accounts for the geometries and positions of the obstacles,
targets, sensor’s platform and FOV. The information value of
the targets is represented by defining the potential function
in terms of their expected mutual information or entropy
reduction conditioned on prior sensor measurements. As a



result, the sensor visits targets that offer the best tradeoff
between distance and information value, and when extended
to on-line sensor path planning, it can adapt its path based on
new sensor measurements obtained from targets or obstacles
that were previously undetected.

II. PROBLEM FORMULATION AND
ASSUMPTIONS

This paper addresses the problem of planning the path of a
robotic sensor with a platform geometry A ⊂ R2, and a FOV
geometry S ⊂ R2, that navigates a workspace W ⊂ R2 for
the purpose of making measurements from multiple targets
in a partially observed environment. For simplicity, in this
paper A and S are assumed to be convex polygons. Since the
sensor is installed on-board the robotic platform, S can be
assumed to have a fixed position and orientation with respect
to A. The robotic sensor workspace W is populated with n
fixed obstacles B = {B1, . . . ,Bn} ⊂ W and m fixed targets
T = {T1, . . . , Tm} ⊂ W with Bi ∩ Tj = ∅ for ∀i ∈ IB
and ∀j ∈ IT , where IB and IT are the index sets of B and
T . Prior information, such as airborne sensor measurements
and environmental maps, is used to estimate the geometry
and location of obstacles and targets in B and T (as shown
in [27]).

In standard estimation theory, a sensor that obtains a vector
of measurements Z ∈ Z ⊂ Rr in order to estimate an
unknown state vector x ∈ X ⊂ Rn is modeled as,

Zk = h(xk,λk) (1)

where h : Rn ×R℘ → Rr is a deterministic vector function
that is possibly nonlinear, λ ∈ R℘ is the random vector
representing the sensor characteristics, such as sensor mode,
environmental conditions, and sensor noise or measurement
errors. It is assumed that the sensor model is time invariant
and k is the discrete time index. In many sensor applica-
tions, however, the state, the measurements, and the sensor
characteristics also are random vectors. Therefore, a more
general observation or measurement model that has been
adopted in the literature is the joint probability mass function
(PMF) p(Zk,Xk,λk). This joint PMF may be given by the
factorization,

p(Zk,Xk,λk) = p(Zk | Xk,λk)p(Xk)p(λk) (2)

which includes the conditional PMF p(Zk | Xk,λk), the
priors p(Xk) and p(λk), and assumes that Xk and λk

are independent. Various sensors, including infrared, ground
penetrating radars, and synthetic aperture radars have been
modeled as (2) in target detection, classification, and tracking
applications [28]–[32]. In this paper, the joint PMF in (2) is
considered to be the sensor model, and is assumed known.
Since the sensor model holds for all targets and environmen-
tal conditions, and can be assumed to remain constant over
time, (2) can be written as p(Zi,Xi,λi) for every target
Ti ∈ T .

The purpose for deploying the robotic sensor in W is
to obtain measurements from a subset of targets in T . To
each target Ti ∈ T , there is associated an information

value denoted by Vi that is computed by the information
function defined in Section IV, and represents the expected
benefit of making measurements from Ti, based on the sensor
model and on prior information. Vi can be considered as the
expected uncertainty reduction for target features or classi-
fication. Let FA be a moving Cartesian frame embedded
in A. Then, every point of A and every point of S have
a fixed position with respect to FA, and the configuration
q = (x y θ) ∈ SE(2) is used to specify the position (x, y)
and orientation θ of both A and S with respect to a fixed
inertial frame FW , embedded in W . Obstacles and targets
are also assumed to be fixed and rigid in W , such that every
point of Bi, for ∀i ∈ IB , and every point of Tj , ∀j ∈ IT ,
have a fixed position with respect to FW . Let C denote the
space of all possible robot configurations. Then, the path of
the robotic platform’s centroid is defined as a continuous map
τ : [0, 1]→ C, with q0 = τ(0) and qf = τ(1), where q0 and
qf are the initial and final configurations, respectively. Since
S is mounted on A, the path τ determines the targets in W
that can be measured by the robotic sensor, while traveling
from q0 to qf .

While the platform A must avoid collisions with the
obstacles B, the sensor’s FOV S must intersect Ti in order to
obtain the measurements Zi. Since S is mounted on A, the
platform motion must be planned in concert with the sensor
measurements, and the path τ must simultaneously avoid
obstacles while searching for targets. Let the measurement
set of a robotic sensor along a path τ be defined as Z(τ) =
{Zi | Ti ∩ S(q) 6= ∅, τ(s) = q, s ∈ [0, 1], i ∈ IT }, where
S(q) is the subset of W occupied by S at a configuration q,
along τ . Then, the robotic sensor path τ between q0 and qf
must avoid all obstacles inW , and maximize the information
value of the measurement set Z(τ) by traveling the minimum
distance.

III. BACKGROUND ON POTENTIAL FIELD

The potential field method is a robot motion planning
technique that utilizes an artificial potential function to find
the obstacle-free path of shortest distance in an Euclidian
workspace. The obstacles and the goal configuration, are
considered as sources to construct a potential function U
which represents the characteristics of the configuration
space. Although different approaches have been utilized to
generate U [21]–[23], the potential function always consists
of two components, the attractive potential Uatt generated
by the goal configuration, and the repulsive potential Urep,
generated by the obstacles. The total potential is given by,

U(q) = Uatt(q) + Urep(q) (3)

where q is any configuration in C. The force applied on the
robot is proportional to the negative gradient of U ,

∇U(q) = [
∂U(q)
∂q1

,
∂U(q)
∂q2

, . . . ,
∂U(q)
∂qn

]T (4)

where q = [q1, q2, . . . , qn]T ∈ Rn.
A C-obstacle is defined as the subset of C that causes

collisions with at least one obstacle in B, i.e., CBi ≡ {q ∈



C | A(q) ∩ Bi 6= ∅}, where A(q) denotes the subset of W
occupied by the platform geometryA when the robot is at the
configuration q. The union of all C-obstacles obtained from
B is referred to as the C-obstacle region. Thus, in searching
for targets in W , the robotic sensor is free to rotate and
translate in the free configuration space, which is defined
as the complement of the C-obstacle region CB in C, i.e.,
Cfree = C\CB [20].

As shown in [20], the repulsive potential can be repre-
sented as,

Urep(q) =

{
1
2η(

1
ρ(q) −

1
ρ0

)2 if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0

(5)

where η is a scaling factor, ρ(q) is the distance between the
robot and the nearest obstacle in Euclidean space, and ρ0 is a
constant parameter that is chosen by the user. The attractive
potential is given by,

Uatt(q) =
1
2
ερ2
goal(q) (6)

where ε is a scaling factor, and ρgoal(q) is the distance
between the robot and the goal configuration. In (5) and
(6), only the obstacle closest to q is considered to generate
Urep(q), and the target is assumed to be a single point in
Cfree. This makes the potential function difficult to update
when new obstacles and targets are sensed during the path
execution, because for each value of q, the potential needs
to update by computing its distance from the closest obstacle
and target.

In the following section, a novel potential function is
presented that takes into account the geometries of the
sensor’s FOV and of the targets, as well as the information
value estimated from the sensor model (2).

IV. ADAPTIVE POTENTIAL FIELD METHOD FOR
GEOMETRIC SENSOR PATH PLANNING

A. Artificial Potential Function for Geometric Sensing

The potential function proposed in this paper is additive
with respect to obstacles and targets, i.e.,

U(q) =
m∑
i=1

Ui(q)rep +
n∑
i=1

Ui(q)att (7)

where Ui(q)rep is the repulsive potential generated by the
ith obstacle, Ui(q)att is the attractive potential generated by
the ith target, m is the number of obstacles, and n is the
number of targets that are yet to be measured. By defining
the potential function as shown in (7), it is easy to remove
the potential of a target after it is measured by the sensor
and to add the potential of a new detected obstacle on-line.
Ui(q)rep is similarly defined as,

Ui(q)rep =

{
1
2η1(

1
ρbi (q)

− 1
ρ0

)2 if ρbi (q) ≤ ρ0

0 if ρbi (q) > ρ0

(8)

where η1 is a scaling parameter showing the influence of
obstacles, ρ0 is the influence distance of obstacles, and ρbi (q)

is the distance between q and the ith obstacle.
Since the target geometries are considered, ρti(q), which

is the distance between Ti and q, needs to be first computed
to generate Ui(q)att. The C-target defined as,

CT i = {q ∈ C|Ti ∩ S(q) 6= ∅} (9)

is utilized to describe the set of q in Cfree for which the
robotic sensor can measure Ti, as proposed by the authors
in previous work [5], [12]. The distance ρti(q) is computed
as,

ρti(q) = min
qi∈CT i

||W · (qi − q)|| (10)

where || · || represents the Euclidian norm, and W is a diago-
nal and positive definite matrix representing the importance
of changes in position and orientation.

The information value of each target Ti can be measured
by various information metrics based on prior information.
One way is to use mutual information which is based on
shannon entropy. The uncertainty of the hidden variable for
Ti, denoted by Xi, given the prior information e, can be
represented by the conditional entropy

H(Xi|e) =
∑
xi

P (xi|e)logP (xi|e) (11)

Hence, the expected decrease of uncertainty of Xi by a
posterior measurement Zk

i can be measured by the mutual
information

I(Xi;Zk
i |e) = H(Xi|e)− EH(Xi|Zk

i , e)

= H(Xi|e)−
∑
zk
i

P (zk
i |e)H(Xi|zk

i , e) (12)

In this paper, the information value Vi of the target
Ti, estimated by I(Xi;Zk

i |e) in (12), is used to construct
the potential function, such that the sensor path takes into
account the expected benefit of making measurement from
Ti prior to visiting the target. The attractive potential function
has the following properties.

1) Ui(q)att is an increasing function of the distance ρti(q).
When ρti(q) goes to infinity, the potentials generated by
different targets are the same.

2) At a configuration q having the same distance to two
targets, the target with a higher information value has a
lower potential value and a higher gradient at q.

3) The potential generated by the target with the higher
information value has the bigger distance of influence.

To achieve these objectives, we propose an attractive function
for the ith target that is defined as,

Ui(q)att = η2(1− σV ai e
− ρ

t
i(q)2

2σV a
i ) (13)

where η2 is a scaling parameter representing the influence
of targets, Vi is the information value of the ith target, and
σ is the influence parameter which together with Vi and
parameter a decides the influence diameter of the ith target.
It can be shown that (13) satisfies the above properties. Let
ρi = ρti(q), Ui(ρi)att can also be regarded as a function of



ρi. The first order derivative of Ui(ρi)att is,

g(ρi) =
dUi(ρi)att

dρi
= η2ρie

− ρ2i
2σV a

i (14)

g is positive for all ρi > 0, which shows that Ui(ρ)att is an
increasing function of ρi. Also from (13),

lim
ρi→∞

Ui(ρi)att = η2 (15)

so property 1) is satisfied. For any given q and any positive

parameter a, σV ai e
− ρ

t
i(q)2

2σV a
i is an increasing function of Vi.

Then Ui(q)att is a decreasing function of Vi. Since η2 and
ρi are both nonnegative, (14) shows that for given ρi, the
first derivative of Ui(ρi)att is an increasing function of Vi,
and hence property 2) is satisfied. At last, to demonstrate
property 3), we use the inflection point of Ui(ρi)att as the
influence distance of the ith target. The second derivative of
Ui(ρi)att is as shown in (16),

dg(ρi)
dρi

= η2(1−
ρ2
i

σV ai
)e
− ρ2i

2σV a
i (16)

(16) is a decreasing equation of ρi and setting it to zero will
give us the influence distance of the ith target ρi =

√
σV ai .

Then the proposed attractive function can be combined with
the repulsive potential to generate the potential field.

B. Local Information Roadmap Adaptation

Various methods have been proposed to overcome the
limitations of potential field, in particular to escape the
local minima of the potential function. When the workspace
dimension is low, such as two or three dimensions, robots
can escape a local minimum by filling the well. However,
when the workspace dimension is high, this method is no
longer feasible due to its computational complexity. Then
other methods, usually random methods, are used to help
the robots escape the local minima, for instance randomized
path planning [20]. In this paper, we utilize the potential
function to generate a local information roadmap around a
local minimum to navigate the robotic sensor escaping the
local minimum and achieving its sensing objective. Different
from normal randomized path planning, information roadmap
in our method considers the probability of achieving targets
after escaping the local minima during milestones sampling.
This makes it more applicable in multiple targets problem.
Since PRM has also been proved to be applicable for high
dimensional workspace, by combining potential field and
information roadmap our method will be applicable for high
dimensional space in future work.

Suppose the robotic sensor arrives at a local minimum,
called uloc. The probability density function for sampling
milestones at q is defined as,

f(q) =

{
e−U(q)∫
U e
−U(q)dq

q ∈ U
0 q /∈ U

(17)

where U ⊂ C is a randomly generated subspace around
uloc. By defining f(q) as shown in (17), configurations

which are close to high value targets and far away from
obstacles in U have high probability to be sampled. Then
a specific number of milestones {c1, c2, . . . , ck} can be
sampled with Direct Methods [33]. Call uloc as c0, the
set C = {c0, c1, c2, . . . , ck} together with a local planner
which connects milestones with straight lines in Cfree is used
to construct the roadmap. While the normal roadmap con-
struction method first constructs the roadmap with sampled
milestones and then tries to connect the initial configuration
into the roadmap, this first put the initial configuration
into roadmap and then extend it with the set of sampled
milestones. The reason is that in our problem the purpose is
to escape the local minimum, so we have to first guarantee
uloc is in this roadmap. After uloc is included in the roadmap,
milestones that can be connected to uloc are used to help
the robotic sensor escape the local minimum. The process of
constructing the roadmap is shown in Fig. 1. The roadmap is
initialized as G0 = c0. At the first step, the milestones, which
can be connected to uloc by the local planner, construct the
first step roadmap G1, and the remaining milestones form a
set C1 to construct the roadmap at the next step; then at step
i, the milestones in Ci−1 which can be connected to Gi−1

are added to form Gi. The process stops when Gi−1 = Gi,
and then G = Gi. If G = G0 the construction fails and new
milestones need to be regenerated to construct the roadmap.

(a) (b)

(c) (d)  

Fig. 1. Process to construct the roadmap: (a) initial milestones; (b) first
step; (c) second step; (d) final step. dash circle: local minimum; white circle:
milestones; black area: C-obstacles

After the roadmap is constructed, it is utilized to allow
the robotic sensor to escape the local minimum by checking
whether a milestone in the roadmap can navigate the robotic
sensor to a configuration with lower potential. The process
is as follows:
Step I: A local information roadmap is constructed based on
the local minimum at uloc where the samples are generated
with (17). Let the set Gleft = G.
Step II: If Gleft is empty, go to step IV; otherwise randomly



choose a milestone ci ∈ Gleft and utilize the best-first
motion path planning starting at uloc to generate a path τi
and achieve a new local minimum u

′

loc. Best-first motion is
a path planning method in which the path {q0,q1, . . . ,qn}
is generated by choosing the next configuration qi as the
neighbor of the configuration qi−1 with the smallest potential
value U [20].
Step III: If u

′

loc < uloc, τi is added to the current path τ ,
and then go to step V; otherwise, delete ci from Gleft and
go back to step II.
Step IV: Assume for each ci in G, its corresponding gen-
erated path with step II is τi. τ is the path from the initial
configuration to the local minimum uloc. Select a backtrack-
ing configuration for the robotic sensor path. If τ includes at
least one local minimum, then the backtracking configuration
is up to a random chosen local minimum in τ ; otherwise, it
equals the last configuration in τi with i randomly chosen.
The backtracking configuration is considered as the last
configuration of the updated path.
Step V: The robotic sensor successfully escapes the local
minimum. The path and current configuration are updated.

In our simulation, we assume that, along the path, the
robotic sensor can at most generate m local information
roadmaps, where m is chosen by the author. If the robotic
sensor fails to measure the desired number of targets with
generating no more than m local information roadmaps, the
robotic sensor fails to finish the job.

V. ANALYSIS

The purpose of the proposed method is to find a path
for a robotic sensor in a partially observed environment.
The robotic sensor is assumed to move in the workspace
with a constant speed, and the gradient of the potential U
is used to determine the path of the robotic sensor. If the
potential field is directly used as the input to control the
robotic sensor, some changes may be needed. The following
dynamical model,

M(q)q̈ + f(q, q̇) + g(q) = τ (18)

can be used to describe the robotic sensor [23], [34]. Where
M(q) is the robotic sensor’s inertia matrix, f(q, q̇) is the
fictitious force, g(q) is the gravitational force, and τ is the
control input. By the feedback control law we have,

τ(q, q̇) = −∇U(q) + d(q, q̇) (19)

where d(q, q̇) is an arbitrary dissipative force. In order not
to obtain an infinite repulsive potential when the robotic
sensor approaches the obstacles [23], the potential Ui(q)rep
is modified to as,

Ui(q)rep =

{
1
2η1(

1
ρbi (q)+b

− 1
ρ0

)2 if ρbi (q) ≤ ρ0

0 if ρbi (q) > ρ0

(20)

where b is a small constant.
We assume that no targets are very close to the obstacles,

that is when the robotic sensor approaches the targets, the
repulsive potential generated by the obstacles is zero. Then,

the potential function is given by,

U(q) =
n∑
i=1

Ui(q)att =
n∑
i=1

η2(1− σV ai e
− ρ

t
i(q)2

2σV a
i ) (21)

By differentiating (21), in most cases q ∈ CT i is not a local
minimum for the potential field. However, by choosing σ
much bigger than η2 we can guarantee that for each CT i
there will be a set of local minima close to the targets,
thereby making them measurable by the robotic sensor.
During dynamic control of the sensor, this problem can be
solved by utilizing a smaller dissipative input d.

VI. SIMULATIONS AND RESULTS

In this section, simulations are developed to test the
method proposed above under the following assumptions.
The robotic sensor platform is assumed to be a rectangle;
however, its FOV may have different shapes. The workspace
is also a rectangle. Obstacle geometries, and target geome-
tries and information values are assumed to be known a
priori. The purpose of the robotic sensor is to measure a
specific number of targets in the workspace to obtain high
information values and travel a small distance. The method
developed in Section IV is utilized to generate the potential
field in the simulated workspace. The configuration space C
is decomposed into square bins and time is discretized into
discrete time steps. At each time step, the robotic sensor is
assumed to be able to move to its adjacent bins or stay in
its current bin. Its direction is determined by the potential
function. Results are averaged over 100 trials.

A. Influence of Sensor FOV Geometry

In this subsection, the simulations are used to illustrate
how the geometries of the robotic sensor FOV and targets
influence the path. The goal of the robotic sensor is to take
measurements of two targets in the workspace as shown
in Fig. 2. The robotic sensor is assumed only to be able
to translate in the workspace. Four targets with different
information values are deployed in the field. Some robot
configurations along the path are plotted in this figure. As
can be seen, the robotic sensor chooses to measure T3 after
measuring T1, since to measure T2, which has the second
highest information value, it has to move back and travel
a long distance. However, when the geometry of T1 and S
change as in Fig. (3), the robotic sensor is able to measure T1
and T2 which have the highest two measurement values with
a short travel distance. In this simple example, no undesirable
local minimum exists. The results of this example show how
the geometries of the targets and sensor FOV may affect the
robotic sensor’s decision on path planning.

B. Adaptive Information Roadmap Method

In this subsection, we illustrate how the adaptive infor-
mation roadmap method affects the robotic sensor paths
generated by the potential field. As shown in Fig. 4, a robotic
sensor is trying to measure one target in this workspace.
Starting from the initial configuration, the robotic sensor
will navigate to a local minimum. Then a local information
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Fig. 2. A path generated by the potential field. black area: obstacle; grey
area: targets; information value: T1 = 0.3, T2 = 0.2, T3 = 0.1, T4 = 0.1
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Fig. 3. A path generated by the potential field. black area: obstacle; grey
area: targets; information value: T1 = 0.3, T2 = 0.2, T3 = 0.1, T4 = 0.1

roadmap has to be generated. Fig. 4 shows a generated
path by our method. The path generated by the information
roadmap is shown as dotted lines. Since the local information
roadmap is used in our method, the generated paths are
random. Table I shows the results of 100 runs in this
workspace. From the results we can see that about 80% of
the time, the local information roadmap navigates the robotic
sensor to the target with higher information value.

In the third simulation, we consider a more complicated
field with twelve targets and ten obstacles. The goal of the
robotic sensor is to measure six targets in this field. The
robotic sensor is assumed to be able to both translate and
rotate freely in the workspace. Among the twelve targets,
T1, T5, T7 and T9 have higher information values than
other targets. Two possible geometries of sensor FOV are
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Fig. 4. Local information roadmap effect on the robotic sensor path
planning. black area: obstacle; grey area: targets; information value: T1 =
0.3, T2 = 0.1

TABLE I
NUMBER OF TARGET MEASUREMENTS IN 100 RUNS (σ = 100,

η2 = 0.2, a = 2)

Target number i 1 2
Information Value Vi 0.30 0.10
Measurement Times 78 22

considered in this simulation. A searched path under each
condition is shown in Fig. 5 and Fig. 6. Table II shows the
results of 100 runs in this workspace with each sensor FOV.

From the results we can see high value targets T1 and T5
are measured over 90% of the runs under both conditions.
For T9 when the sensor has a large FOV, about 20% of the
times the sensor moves to measure T9 since it does not take
a long travel to reach it; however, when the sensor FOV is
small, it seems not valuable to measure T9, because the travel
distance is too long and there are few other targets around
T9. Another interesting result is that with a small robotic
sensor FOV, T7 is measured many more times than in the
case of the robotic sensor with a large FOV. The reason
is that in order to measure the high value T5, the robotic
sensor with a small FOV has to travel across the narrow
passage containing T5. This makes it difficult for the sensor
to measure T8. Then after measuring the high value T1, the
sensor will have one more chance to measure a target and
the best choice is the value T7 just below T1. The number of
measurements of T12 also has an obvious difference between
two the robotic sensors. The reason is that with a small FOV,
the influence of T4 and T5 is small compared to the one
of T12 when the robotic sensor is at the initial position.
Therefore the robotic sensor chooses to measure T12 first.
However, when the FOV is large, the influence of T4 and
T5 are high and the robotic sensor is more likely to choose



to measure T4 and T5. These two examples show both how
the geometry of sensor FOV influences the paths and how
the local information roadmap leads the robotic sensor to
configurations that can be navigated to measure high value
targets.
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Fig. 5. A workspace with 10 obstacles, 12 targets, and a searched path
for small sensor FOV. black area: obstacles; grey area: targets; dotted lines:
paths generated by local information roadmap

0 10 20 30 40 50

0

10

20

30

40

50

 

S 

A 

T9 

T1 

T2 

T4 

T3 

T5 

T6 

T7 

T8 

T10 

T11 

T12 

q0 

Fig. 6. A workspace with 10 obstacles, 12 targets, and a searched path
for large sensor FOV. black area: obstacles; grey area: targets; dotted lines:
paths generated by local information roadmap

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a methodology to utilize the informa-
tion value and geometries of targets and the robotic sensor
to construct a potential field for a workspace with multiple
targets and obstacles. The potential field includes the trade
off between the information value and travel distance for

target measurements. The potential function is also used
to construct the local information roadmaps to help the
robotic sensor escape the local minima. Simulation results
show that the proposed potential field can successfully utilize
the knowledge of target geometry and information value to
improve its path. Targets with high information values that
are close to the robotic sensor are more likely to be measured
when the measurement number is limited. Future work will
focus on the following two aspects. First, high dimensional
cases will be studied in measuring multiple targets. Second,
the method will be extended to on-line path planning for
both single robotic sensor and multiple robotic sensors.
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