
A Cell Decomposition Approach to Cooperative Path Planning and

Collision Avoidance via Disjunctive Programming

Ashleigh Swingler and Silvia Ferrari

Abstract— This paper presents a novel approach for planning
the minimum-distance path of multiple robotic vehicles with
discrete geometries in an obstacle-populated workspace. The
approach utilizes approximate cell decomposition to obtain a
disjunctive program representation of C-obstacles for obsta-
cles that are not necessarily convex polyhedrons, and robot
geometries that are capable of rotating and translating in a
Euclidian workspace. In order to produce programs that are
computationally tractable, this approach derives a subset of
all possible inequality constraints by pruning the connectivity
graph based on adjacency relationships between cells, and the
principle of optimality. The approach overcomes the limitations
of existing approaches by simultaneously planning the paths
of multiple robots, subject to any kinodynamic constraints,
in environments populated by a large number of non-convex
non-polyhedral obstacles. The approach is implemented using
readily-available software, such as TOMLAB/CPLEX, and is
illustrated here through several numerical simulation examples.

I. INTRODUCTION

Robot path planning typically refers to the problem of

determining the shortest trajectory between two robotic

configurations in an obstacle-populated environment, while

avoiding collisions between the robot’s discrete geometry

and the obstacles. Classical robotic path planning techniques,

such as, cell decomposition [1]–[4], probabilistic roadmap

methods [5], [6], and potential field methods [7], [8], take

into account the geometries of the robot and the obstacles,

while assuming that the robot is a free-flying object, or

that it can be modeled by linear dynamics that are often

holonomic. Although several of these approaches have been

modified to account for nonholonomic dynamic constraints,

they continue to suffer from several limitations. For example,

cell decomposition is generally not applicable to systems

involving multiple robots that must avoid collisions with each

other, and it does not allow the incorporation of other classes

of constraints, such as control and communication bounds.

Mixed-integer linear programming and decentralized control

have been used for planning the paths of multiple vehicles

represented by point masses and linear dynamic equations,

which can be found in [9], [10], and [11]. As shown in [12],

[13], the advantages of the disjunctive programming (DP)

approach over other robot motion planning techniques are

that it can be used to account for nonholonomic and non-

linear robot dynamics, to avoid collisions with other robots,

and to incorporate communication and control bounds.

A. Swingler and S. Ferrari are with the Laboratory for Intelligent Systems
and Controls (LISC), Department of Mechanical Engineering, Duke Uni-
versity, Durham, NC 27708-0005, {ashleigh.swingler, sferrari}@duke.edu

On the other hand, while they can be used to account

for convex polyhedral obstacles via disjunctive inequalities,

existing DP approaches do not account for the robot ge-

ometry or for the geometry of non-polyhedral non-convex

obstacles. Although it has been proposed in [13] that the

robot geometry could be considered by augmenting the

obstacles’ geometries, effectively obtaining C-obstacles, in

many applications C-obstacles consist of three-dimensional

non-polyhedral objects that cannot be represented by a clause

of disjunctive inequalities. Another disadvantage of existing

approaches is that, in the presence of many obstacles or

long time horizons, the solutions becomes computationally

prohibitive. Moreover, existing DP approaches cannot be

used to find paths in environments containing concave ob-

stacles or narrow passages, because the corresponding linear

boundary constraints can give rise to an infeasible mixed-

integer program [14], [15].

The approach presented in this paper utilizes approxi-

mate cell decomposition to obtain a feasible mixed-integer

program that can be used to overcome the limitations of

both classical cell decomposition and DP approaches to path

planning. A connectivity tree approach is presented that

minimizes the computation time without loss of solution

precision, and can be utilized for online and randomized

path planning applications. In this approach, approximate cell

decomposition is first used to decompose the obstacle-free

configuration space of robots and obstacles, of any geometry,

into convex rectangloid cells. The union of rectangloid cells

and adjacency relationships are then used to generate a

connectivity graph that can be pruned and transformed into

a connectivity tree based on cell adjacency relationships and

the initial configuration of the robot, using the principle of

optimality. The connectivity tree specifies a subset of in-

equality constraints that is guaranteed to contain the optimal

path, yet is significantly reduced compared to the set of all

possible DP constraints that represent the workspace. The

DP is then transformed into a mixed-integer program and

solved using readily-available software.

The paper is organized as follows. The problem formu-

lation and assumptions are described in Section II. The

classical cell decomposition approach and disjunctive pro-

gramming approach to path planning are reviewed in Section

III, and the novel methodology is presented in Section IV.

The numerical results, presented in Section V, illustrate that

this methodology can be applied to account for rotations of

discrete geometries, representing the robot, in order to avoid

collisions with concave obstacles and other moving robots,

while minimizing the distance traveled.

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 6329

II. PROBLEM FORMULATION AND ASSUMPTIONS

The path planning problem considered in this paper is to

find the shortest paths of N mobile robots with geometries,

Ai, that consists of a compact (i.e., closed and bounded)

subset of a two-dimensional Euclidian workspace denoted

by W ⊂ R
2. The robots must simultaneously avoid mutual

collisions, i.e., Ai ∩ Aj = ∅ for all i, j = 1, . . . , N ,

i $= j, and collisions with n fixed obstacles B1, . . . ,Bn,

whose geometries and positions are estimated from prior

sensor measurements and, in this paper, are assumed known

a priori. The approach can be easily extended to higher-

dimensional workspaces, and to online path planning, using

an approximate dynamic programming approach [16]. The

ith robot configuration, qi, specifies the position and orien-

tation of a moving Cartesian frame FAi
, embedded in Ai,

with respect to a fixed Cartesian frame FW . It is assumed

that the robots’ paths can be planned in concert, based on

a set of given and fixed initial and final goal configurations,

Q = {q0i ,qfi | i ∈ IA}, where IA is the set of unique

identifiers representing the N robots.

In this problem formulation, the robot state or configura-

tion is defined as qi = [xi yi θi]
T ∈ R

3, where (xi, yi)
and θi are the coordinates and orientation of FAi

with respect

to FW , respectively. The robot’s rotation θ, defined in Fig.

1, is restricted to the range Θ = [θmin, θmax]. Without loss

of generality, the method is presented for C = W×Θ, where

W ⊂ R
2.

!!

!!

"!

#!

"!#!"$

Fig. 1. Robot geometry and reference frames.

It is assumed that minimal distance can be represented by a

convex cost function modeled by the square of the L2-norm,

J =

∫ T

0

N
∑

i=1

(qi(t)− qi(t− 1))
2

(1)

Based on the above assumptions, the coordinated geometric

path planning problem can be formulated as a mixed-integer

linear program (MILP) that can be readily solved using the

TOMLAB/CPLEX software, using the approach presented in

the following sections. As will be shown in a separate paper,

this problem formulation can also be extended to account for

control and communication bounds, and for optimizing fuel

efficiency subject to nonlinear vehicle dynamics.

III. BACKGROUND

A. Review of Cell Decomposition for Robot Path Planning

Cell decomposition is a well-known obstacle avoidance

method that decomposes the obstacle-free robot configura-

tion space into a finite collection of non-overlapping convex

polygons, known as cells, within which a robot path is easily

generated. Let the configuration space C denote the space of

all possible robot configurations. A C-obstacle is a subset of

C that causes collisions between the ith robot and at least

one obstacle in W , i.e., CBj ≡ {qi ∈ C | Ai(qi)∩Bj $= ∅},

where Ai(qi) denotes the subset of W occupied by the

platform geometry Ai when the robot is in the configuration

qi [17]. Then, the union
⋃n

j=1 CBj is the C-obstacle region,

and the obstacle-free robot configuration space is defined as

Cfree ≡ C \

n
⋃

j=1

CBj = {qi ∈ C | A(qi) ∩ (

n
⋃

j=1

Bj) = ∅}

(2)

In classical cell decomposition, the union of the cells repre-

senting Cfree is obtained by implementing a line-sweeping

algorithm, and by constructing a one-dimensional represen-

tation of the free-space geometry known as a connectivity

graph. The connectivity graph can then be searched for the

shortest path between the two cells containing the desired

initial and final robot configurations.

One advantage of cell decomposition over existing mixed-

integer programming methods is that it guarantees collision

avoidance between a robot with any discrete geometry Ai,

and obstacles of any shape, that are not necessarily convex.

Using an approach known as approximate-and-decompose

[1], an approximate cell decomposition of Cfree can be

obtained for robot geometries that are not restricted to planar

objects, three-dimensional convex polytopes, or polyhedral

objects [2]–[4]. In this approach, cells of a predefined

rectangloid shape are used to decompose the bounding and

bounded approximations of the obstacles, until the connectiv-

ity of Cfree is properly represented [1]. By requiring all cells

to have the same rectangloid shape, this approach simplifies

the implementation and reduces the sensitivity to numerical

approximations, achieving a precision that can be made

arbitrarily small at the expense of running time. Therefore, in

the approximate cell decomposition case, there is a tradeoff

between running time and solution completeness. Then, the

union of the cells that are strictly outside the C-obstacle

region is used to construct a connectivity graph, which

represents the adjacency relationships between the cells.

The disadvantages of cell decomposition are that it is

computationally intensive in high-dimensional configuration

spaces (e.g. robot manipulators), and that it does not typically

allow the user to incorporate other motion constraints, such

as, nonholonomic dynamics, or communication constraints.

Also, it is not directly applicable to cooperative networks,

in which the path of one robot is influenced by that of the

other agents in the network. By combining approximate cell

decomposition with disjunctive programming, as shown in

this paper, these limitations can be overcome, while retaining

the classic features of completeness and obstacle avoidance.

B. Review of Disjunctive Programming for Robot Path Plan-

ning

Disjunctive programming (DP) includes logical constraints

in discrete and continuous optimization problems [18] by

6330

representing constraints as a conjunction
∧

= AND of r
clauses, with each clause being a disjunction of mℓ inequal-

ities. Therefore, a cost function f(x) can be minimized as

follows,

min f(x)

subject to
∧

ℓ=1...r

∨

j=1...mℓ

Cℓj (x) ≤ 0

 (3)

with respect to a vector x of decision variables that satisfy

one or more of the mℓ inequalities. As reviewed in [13],

[15], if the cost function and the constraints are linear (or

quadratic) with respect to x, then the DP can be formulated

as a mixed-integer linear (or quadratic) program using mℓ

binary slack variables whose sum is less than or equal to

(mℓ − 1), such that at least one inequality is satisfied in

each clause.

This technique has been recently applied to robot motion

planning in obstacle populated environments in which the

robot can be modeled as a point mass, and the obstacles can

be represented by convex polyhedral objects [12], [13], [15],

[19]. Under these assumptions, a disjunction of mℓ inequality

constraints can be used to guarantee that the robot position

lies outside a two-dimensional polyhedral obstacle with mℓ

boundaries. Then, the ith robot is said to avoid all obstacles

if its configuration qi satisfies the constraints,
∧

ℓ=1,...,r

∨

l=1,...,mℓ

a
T
lℓqi(t) > blℓ (4)

at any time t ∈ [0, T], where mℓ is the number of sides of

Bℓ, and alℓ and blℓ are coefficients representing the obstacle’s

linear boundaries.

As shown in [12], [13], the advantages of the DP ap-

proach over classical motion planning techniques, such as

cell decomposition (in its traditional form) and probabilistic

roadmap methods, is that it can be used to account for non-

holonomic robot dynamics, and to avoid collisions in multi-

agent systems. The disadvantages of existing DP approaches

are that it cannot account for robot geometry or for the

geometries of non-polyhedral non-convex obstacles, and that,

in the presence of many obstacles or long time horizons, the

solutions becomes computationally prohibitive. Although it

has been proposed in [13] that the robot geometry can be

considered by augmenting the obstacles’ geometries, effec-

tively obtaining C-obstacles, it can be easily shown that in

the presence of rotations, C-obstacles are three-dimensional

non-polyhedral objects that cannot be represented by a clause

of disjunctive inequalities. Moreover, classical DP cannot

be used to find paths in environments containing concave

obstacles or narrow passages because the corresponding

linear boundary constraints can give rise to an infeasible

mixed-integer program [14], [15]. The approach presented

in the next section utilizes cell decomposition to obtain a

feasible mixed-integer program that can be used to overcome

the limitations of both classical cell decomposition and

DP approaches to path planning. Also, a connectivity tree

approach is presented that minimizes the computation time

without loss of solution precision, and can be utilized for

online and randomized path planning applications.

IV. METHODOLOGY

The methodology presented in this paper can be out-

lined as follows. After computing the three-dimensional C-

obstacles in C = W×Θ for a discrete set of rotation intervals,

the obstacle-free configuration space, Cfree, is decomposed

into rectangloids using an approximate-and-decompose ap-

proach, described in Section IV-A. From the decomposition,

a connectivity tree is formed using the adjacency relation-

ships between the cells, and the initial robot configuration,

q0i (Section IV-B). Each branch in the connectivity tree

represents a collision-free channel connecting q0i to qfi ,

where each cell can be modeled by a clause in a disjunctive

program that represents a set of configurations that the robot

can occupy to avoid collisions. The approach presented in

this paper differs from prior literature in the manner by which

the disjunctions are utilized, and in its implementation of

approximate cell decomposition in combination with DP. In

this paper, a DP clause of conjunctions represents a cell,

i.e., a convex set of robot configurations that are allowed,

as opposed to using a DP clause of disjunctions to represent

a convex set of robot configurations that are not allowed.

Finally, the optimal paths of N robots can be determined

from the connectivity tree by solving a mixed-integer linear

program using the CPLEX optimization software with a

TOMLAB/Matlab interface.

A. Approximate-and-Decompose Approach and Connectivity

Trees

In the cell decomposition approach, the free configuration

space, Cfree, is decomposed into a set of convex, non-

overlapping polygons, known as cells, denoted by Kvoid, such

that a path between any two configurations in a cell can

be easily generated. For special classes of planar objects,

and for three-dimensional convex polytopes or polyhedral

objects an exact decomposition can be obtained [2]–[4] such

that the union of the cells in Kvoid is exactly the free

configuration space, Cfree. When the robots and the obstacles

do not fall into one of these special classes, an approximate

cell decomposition method can be utilized that decomposes

a subset of the free configuration space into non-overlapping

predefined rectangloids. As a result, all cells are convex

polyhedrals that can be represented by a conjunction of

inequalities defined in the configuration space. Approximate

cell decomposition is necessary when representing the free

configuration space of robots that are capable of rotating.

Although for a purely-translating robot the obstacles can be

augmented by its geometry, as shown in Fig. 2, to obtain

polyhedral C-obstacles in W , for a rotating robot in R
2, the

C-obstacles are three-dimensional non-polyhedral compact

subsets of C = W × Θ, even when the robot geometry is

a convex polyhedral. An example of three-dimensional C-

obstacles is shown in Fig. 3 for a workspace. This workspace

is revisited in Section V, and can be seen in Figs. 8 and 9.

6331

!"#

$#

%
$

"#

(b) (c) (a)

Fig. 2. Example of C-obstacle CB (c) obtained for a robot geometry A
(a) and an obstacle with geometry B (b).

0
2

4
6

8
10

0

2

4

6

8

10

−50

0

50

A
n
g
le

 o
f
R

o
b
o
t
R

o
ta

ti
o
n

xy

Fig. 3. Representation of a 3D C-Obstacle for a 2D robot A, and 2D
obstacles B.

The approximate-and-decompose method is applicable

to C-obstacles and robots of any shape, and obtains a

decomposition Kvoid of obstacle-free disjoint rectangloids

whose union is an approximation of Cfree. A rectangloid

is used to represent a closed region in C, defined as

κ = [xκ, x
′

κ] x [yκ, y
′

κ] x [θκ, θ
′

κ]. Due to their predefined

shape, the cells’ boundaries do not always coincide with

the boundaries of C-obstacles. Therefore, a subset of cells,

referred to as mixed, may contain configurations from Cfree,

as well as from the C-obstacle region. Mixed cells are

excluded from the connectivity graph because they may

lead to collisions with the obstacles. Their volume can be

minimized by approximating C-obstacles as unions of non-

overlapping rectangloids, before performing the decomposi-

tion [1]. C-obstacle approximations are used to determine

which rectangloids to exclude from the connectivity graph.

Definition 4.1: A bounding rectangloid approximation of

CBj [κ] = CBj∩κ, denoted by RBj [κ], is a collection of non-

overlapping rectangloids Rjv, v = 1, . . . , p, whose union

contains CBj [κ].
The n bounding rectangloid approximations of the C-

obstacles are used to calculate Kvoid according to the fol-

lowing procedure:

1) Discretize the range of rotations Θ = [θmin, θmax] into

ν non-overlapping intervals Iu = [γu, γu+1], where u =
1, . . . , ν, γ1 = θmin and γv+1 = θmax, and such that

κu = [xκ, x
′

κ] x [yκ, y
′

κ] x Iu.

2) Compute CBj [κ
u], for j = 1, . . . , n, and for every u =

1, . . . , ν, by discretizing Iu into ku fixed values γu +
l∆θ, for 0 ≤ l ≤ ku, and ∆θ = (γu+1 − γu)/ku.

3) For every rotation interval, indexed by u = 1, . . . , ν,

and every obstacle indexed by j = 1, . . . , n, the

outer projection of the C-obstacles, compute the outer

projection,

OCBj [κ
u] = {(x, y) | ∃θ ∈ Iu : (x, y, θ) ∈ CBj [κ

u]}
(5)

and calculate the bounding rectangloid approximation

RBj [κ
u] of OCBj [κ

u]× Iu.

4) For every u = 1, . . . , ν, generate a rectangloid decom-

position of the void configuration space,

Ku
void ≡ κu \

n
⋃

j=1

RBj [κ
u]

(6)

and let Kvoid = ∪v
u=1K

u
void, denote the approximate cell

decomposition of Kvoid.

After the above decomposition procedure is completed,

Kvoid is used to obtain a connectivity graph and tree, for

the ith robot, based on its initial and goal configurations

q0i and qfi . As a first step, a connectivity graph is used to

represent the robotic sensor as a point in configuration space,

as follows:

Definition 4.2: A connectivity graph, G, is a non-directed

graph where the nodes represent rectangloid cells in Kvoid,

and two nodes κi and κj in G are connected by an arc

(κi,κj) if and only if the corresponding cells are adjacent

in Cfree.

Several approaches can be used to search G for a channel,

a sequence of adjacent cells, connecting q0 to qf . The

search can also be simplified by pruning the connectivity

graph based on distance, using the label-correcting algorithm

presented in [20]. The connectivity graph is pruned and trans-

formed into a decision tree, reducing the number of feasible

channels. A connectivity tree is a graphical representation of

all possible channels in G, between κ0 and κf . After visiting

a cell, a robot can only move to an adjacent cell, creating a

causal process that can be represented as follows:

Definition 4.3: The connectivity tree T associated with G
and two cells κ0 ∋ q0 and κf ∋ qf is a tree graph with κ0

as the root and κf as the leaves. The nodes represent void

cells. A branch from the root to a leaf represents a channel

joining κ0 and κf .

As defined above, the connectivity tree requires that the

robot, in any trajectory, must travel along the cells in a chan-

nel. For the example workspace in Fig. 4 the connectivity

tree is shown in Fig. 5. A connectivity tree is determined for

ℓ = [1, . . . ,L] layers. Layers are defined by their adjacency

position relative to the initial cell. In Fig. 5 six layers are

formulated for the workspace in Fig. 4. For rotating robots,

the arcs and node sequences in the tree are determined by

the adjacency relationships between the rotation intervals Iu
in the rotation plane.

6332

Fig. 5. Example of connectivity tree, T , obtained for W , κ0, and κf shown in Fig. 4.

Fig. 4. Example of robot workspace, W .

B. Disjunctive Programming Representation of the Connec-

tivity Tree

Once the connectivity tree has been obtained by the

procedure described in Section IV-A, it can be used to

write the disjunctive program for the robot’s path. Unlike

previous DP approaches, in this paper the robot is required

to be inside at least one cell at all times. Each cell is a

rectangloid with boundaries that can be easily represented

by linear equality constraints, as illustrated in Fig. 6. The

DP inequality constraints, in this paper, require the robot to

be inside a cell in κ ∈ Kvoid to avoid collisions, i.e.,

∧

s=1,...,S(κ)

a
T
s qi(t) ≥ bs (7)

where S(κ) is the number of boundaries of κ ∈ Kvoid, and a
T
s

and bs are known coefficients, as shown in Fig. 6. The above

conjunction of inequalities represents the statement that at

time t, the tth robot configuration, qi(t), must be inside the

void cell κ. Then, a layer in the tree can be represented by a

disjunction of clauses, where each clause represents a node

and, thus, a conjunction of inequalities in the form (7).

For a connectivity tree, T , each layer, ℓ consists of a

set of cells that the robot configuration can exist in for a

corresponding time interval. The set of cells, J ℓ[κ] (with

length Λ(J ℓ[κ])), is valid for the time interval [tℓ, tℓ+1] in

T , where t1 = 0 and tℓ+1 = T . Therefore, for each layer,

∆tℓ = tℓ+1− tℓ sample positions are determined. In order to

Fig. 6. Equality constraints representing the boundaries of a void rectan-
gloid cell.

avoid obstacles during a given time interval, qi must lie in

one of the cells in the layer, i.e., κ[qi(t)] ∃ J ℓ[κ] for tℓ ≤
t ≤ tℓ+1. Thus, for layer ℓ in T , the robot must satisfy the

following set of inequalities in order to avoid collisions:

∀t ∈ [tℓ, tℓ+1] :
∨

λ=1,...,Λ(J ℓ[κ])

∧

s=1,...,S(κ)

a
T
sλqi(t) ≥ bsλ

(8)

This states that the robot must be inside at least one of the

cells in the specified layer of the connectivity tree. For the

approximate cell decomposition case, in which the cells are

rectangloids, the inequalities can be represented as:

∀t ∈ [tℓ, tℓ+1] :
∨

λ=1,...,Λ(J ℓ[κ])

qi(t)(1) ≤ x′

κ

and qi(t)(1) ≥ xκ

and qi(t)(2) ≤ y′κ
and qi(t)(2) ≥ yκ
and qi(t)(3) ≤ θ′κ
and qi(t)(3) ≥ θκ

where [qi(t)(1) qi(t)(2) qi(t)(3)] = [xi(t) yi(t) θi(t)].

Then, for given initial and final positions, q0i and qfi , an

obstacle-free path for robot i, described in Section II, can be

6333

computed from the following disjunctive program:

min
T
∑

t=1

(qi(t)− qi(t− 1))
2

∆qmin ≤ ∆qi ≤ ∆qmax

q1 = q0i and qT = qfi

L
⋃

ℓ=1

J ℓ[κ] ≡ T (q0i ,qfi)

subject to ∀ℓ ∈ [1, . . . ,L] : ∀t ∈ [tℓ, tℓ+1] :
∨

λ=1,...,Λ(J ℓ[κ])

∧

s=1,...,S(κ)

a
T
sλqi(t) ≥ bsλ

The flexibility of DP allows other constraints to be in-

corporated into the program such as multi-agent avoidance

[13], as well as kinematic and dynamic constraints of the

system. This DP can be converted into a mixed-integer

quadratic program (MIQP) using the method presented in

[13]. Therefore the problem, for one rotating robot, can be

represented as:

min
T
∑

t=1

(qi(t)− qi(t− 1))
2

∆qmin ≤ ∆qi ≤ ∆qmax

q1 = q0i and qT = qfi

L
⋃

ℓ=1

J ℓ[κ] ≡ T (q0i ,qfi)

subject to ∀ℓ ∈ [1, . . . ,L] : ∀t ∈ [tℓ, tℓ+1] :

∀λ ∈ [1, . . . ,Λ(J ℓ[κ])] :

qi(t)(1) ≤ x′

κ −M ∗ (Biλ(t)− 1)
qi(t)(1) ≥ xκ +M ∗ (Biλ(t)− 1)
qi(t)(2) ≤ y′κ −M ∗ (Biλ(t)− 1)
qi(t)(2) ≥ yκ +M ∗ (Biλ(t)− 1)
qi(t)(3) ≤ θ′κ −M ∗ (Biλ(t)− 1)
qi(t)(3) ≥ θκ +M ∗ (Biλ(t)− 1)

Λ(J ℓ[κ])
∑

λ=1

Biλ(t) = 1

B = 0 or 1

where M is a large positive number and B is a set of

binary variables. The methodology presented above can be

easily solved using commercially available software such as

TOMLAB/CPLEX [21], [22].

V. SIMULATION RESULTS

As a first step, the method is illustrated for a workspace

that can be decomposed using exact cell decomposition, as

shown in Fig. 4, to obtain the connectivity tree shown in Fig.

5. For illustrative purposes, in this example, it is assumed

that the robot is a point mass and the obstacles are polyhe-

dral, such that the exact decomposition and corresponding

connectivity tree can be easily illustrated. By neglecting the

robot geometry one also neglects the rotations and, thus, the

initial configuration q0 = [2, 2]T and the goal configuration

qf = [19, 9]T represent the initial and goal coordinates of

the point mass in W (Fig. 7). In this case, the connectivity

tree, T , has six layers, and takes the form shown in Fig.

5. Using the approach presented in this paper, the cells and

causal relationships in T can be represented by disjunctive

inequalities in a DP and, subsequently, the path planning

problem can be solved via MIQP, as shown by the results in

Fig. 7. It can be seen that, unlike existing approaches [13],

the methodology presented in this paper uses disjunctions of

inequalities that guarantee the robot is inside a convex cell,

as opposed to outside a convex obstacles, thereby allowing to

account for obstacles that are not necessarily convex. Unlike

cell decomposition, this approach produces a smooth robot

trajectory instead of a sequence of cells that must then be

processed by another algorithm in a hierarchical fashion, and

has the potential to account for nonholonomic dynamics.

Fig. 7. Minimum-distance path for a robot in a workspace (Fig. 4) with
concave polyhedral obstacles that allow for an exact cell decomposition of
Cfree.

The methodology was then applied to a robot with a dis-

crete geometry that is allowed to rotate, in a workspace pop-

ulated by concave obstacles. As shown in Figs. 2-3 even if

the robot geometry is a convex polytope the C-obstacles may

amount to concave objects of any shape in 3D configuration

space. In this case exact cell decomposition cannot be used

to obtain a set of convex cells from Cfree, the approximate

cell decomposition method in Section IV is applied to obtain

rectangloid decompositions for a set of rotation intervals.

For [θmin, θmax] = [−90, 90], five intervals were used to

calculate the approximate cell decomposition of a workspace,

W , shown in Fig. 8. As an example, for a robot with the

rectangular geometry A shown in Fig. 9, the approximate

decomposition plotted in Fig. 8 was obtained for the interval

I1 = [−90,−60]. The full decomposition was then used

to generate the connectivity graph, and a connectivity tree

with six layers was obtained by pruning the connectivity

graph for the given initial and final configurations. The path

computed via MIQP for a robot, with q0 = [3 8 − 75]T

and qf = [7 2 − 75]T , is shown in Fig. 9 by plotting

a subset of robot configurations. These results shows the

effectiveness of this novel approach and how it combines

cell decomposition and disjunctive programming to account

for the robot’s rotation and geometry in an environment with

concave and convex obstacles.

6334

Fig. 8. Approximate cell decomposition for I1 = [−90,−60].

Fig. 9. Minimum distance path for a robot with a discrete geometry and
rotations, in a workspace populated by concave obstacles.

As opposed to when approximate cell decomposition is

used alone, the approach presented in Section IV can be

used for planning the paths of multiple robots cooperatively,

such that mutual collisions and collisions with obstacles

are avoided. Initial methodology decomposed the obstacles

rather than the free space. This is implemented for three

rectangular robots in an obstacle-populated workspace that,

due to the nature of the obstacles’ and robots’ geometries,

can be decomposed exactly into convex rectangloid cells. By

accounting for the robots’ dynamics and positions in time,

the MIQP approach computes minimum-distance trajectories

that avoid mutual collisions, and the obstacles. It can be

inferred from close inspection of Figs. 10-12 that at no point

do the robots’ geometries intersect. Fig. 12 plots the distances

between each robot, which makes it apparent that no two

robots approach each other close enough to cause a collision.

By this method, nonholonomic dynamic constraints and

multiple vehicles can be treated within a common trajectory

planning framework that allows to simultaneously account

for concave robot and obstacle geometries.

Fig. 10. Positions of three robots during a given time step

Fig. 11. Positions of three robots during an alternative time step to Fig.
10

0 5 10 15 20
0

5

10

15

20

25
Distance between robots

time (t)

d
is

ta
n
c
e

robots 1 and 2

robots 1 and 3

robots 2 and 3

Fig. 12. Distances between the system of robots shown in Figs. 10-11
during time t

6335

VI. CONCLUSIONS

This paper presents a novel approach for planning the

minimum distance path of rotating robotic vehicles with

discrete geometries, in an obstacle-populated workspace.

The approach overcomes the limitations of existing cell

decomposition and disjunctive programming approaches by

allowing the consideration of multiple robots modeled by any

differential equation, and environments populated by a large

number of non-convex non-polyhedral obstacles. In order to

produce programs that are computationally tractable, this ap-

proach derives a subset of all possible inequality constraints

from a connectivity tree obtained by pruning the connectivity

graph based on adjacency relationships between cells, and

the principle of optimality. The approach is demonstrated

through several numerical simulations involving multiple

robots with discrete geometries, that are capable of rotating

and thereby are characterized by three-dimensional, non-

polyhedral C-obstacles.

REFERENCES

[1] D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient
hierarchical path planning,” IEEE Transactions on Robotics and Au-

tomation, vol. 7, no. 1, pp. 9–20, 1991.

[2] J. Schwartz and M. Sharir, On the ‘Piano Movers’ problem: II. General

Techniques for Computing Topological Properties of Real Algebraic

Manifolds. New York, NY: Academic, 1983.

[3] K. Kedem and M. Sharir, “An efficient motion planning algorithm for
convex polygonal object in 2-dimensional polygonal space,” Courant
Institute of Mathematical Science, New York, NY, Tech. Rep. 253.

[4] F. Avnaim, J. D. Boissonnat, and B. Faverjon, “A practical motion
planning algorithm for polygonal objects amidst polygonal obstacles,”
INRIA, Sophia-Antipolis, France, Tech. Rep. 890.

[5] J.-C. L. D. Hsu and R. Motwani, “Path planning in expansive config-
uration spaces.”

[6] L. E. Kavraki, P. Svetska, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
space,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[7] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation.”

[8] B. L. J. Barraquand and J.-C. Latombe, “Numerical potential field
techniques for robot path planning.”

[9] N. Ayanian and V. Kumar.

[10] M. Earl and R. D’Andrea, “Iterative milp methods for vehicle-control
problems,” in IEEE Transactions on Robotics, vol. 21, no. 6, 2005,
pp. 1158–1167.

[11] O. Purwin and R. D’Andrea, “Path planning by negotiation for
decentralized agents,” in American Control Conference, 2007, pp.
5296–5301.

[12] A. Richards and J. P. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in Proceedings

of the American Controls Conference, pp. 1936–1941.

[13] J. H. T. Schouwenaars, B. De Moor and E. Feron, “Mixed integer
programming for multi-vehicle path planning,” in Proceedings of the

European Control Conference, 2001, pp. 2603–2608.

[14] H. Li and B. Williams, “Generalized conflict learning for hybrid
discrete/linear optimization.”

[15] L. Blackmore and B. Williams, “Optimal manipulator path planning
with obstacles using disjunctive programming,” Proceedings of the

American Control Conference, 2006.

[16] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vols. I

and II. Belmont, MA: Athena Scientific, 1995.

[17] J. C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[18] I. E. Grossman, “Review of nonlinear mixed-integer and disjunctive
programming techniques,” Optimization and Engineering, vol. 3, pp.
227–252, 2001.

[19] T. S. A. Richards, J. How and E. Feron, “Plume avoidance maneuver
planning using mixed integer linear programming,” in Proceedings of

AIAA Guidance Navigation and Control Conference, 2001.
[20] S. Ferrari and C. Cai, “Information-driven search strategies in the

board game of CLUE!,” IEEE Transactions on Systems, Man, and

Cybernetics - Part B, vol. in review, 2008. [Online]. Available:
http://fred.mems.duke.edu/silvia.ferrari/SMCCLUEarticle.pdf

[21] A. G. K. Holmstrom and M. Edvall, User’s Guide for

Tomlab 7, TOMLAB OPTIMIZATION. [Online]. Available:
http://tomopt.com/docs/TOMLAB.pdf

[22] ILOG CPLEX 9.0 User’s Manual, ILOG, 2003.

6336

