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Abstract— The quality of service of a sensor network per-
forming cooperative track detection can be expressed as the
probability of obtaining multiple elementary detections over
time, along a target track, also known as track coverage.
Recently, distributed search theory and geometric transversals
have been used to obtain the probability of track detection
for targets traveling with constant speed and heading in a
region-of-interest in closed form, as a function of the sensors’
ranges and positions, and of the track parameters. In this
paper, an extended approach based on convex theory and
computational geometry is presented to obtain a track coverage
function for maneuvering targets in the plane. In many tracking
applications, a maneuvering target is modeled as a Markov
motion process with known transition probability functions
that are estimated via Kalman filtering from prior sensor
measurements. The approach presented in this paper uses line
transversals and planar geometry to derive the track coverage
of a heterogeneous sensor network as a function of the Markov
transition probability functions. The theoretical results are
validated through numerical Monte Carlo simulations involving
multiple omnidirectional mobile sensors that are deployed to
cooperatively detect, track, and eventually pursue one or more
maneuvering targets.

I. INTRODUCTION

A well-known objective function used to represent the
quality of service of wireless sensor networks is area cov-
erage, which represents the probability that a point in a
compact subset of a two-dimensional space, referred to as
region-of-interest, is within the range of at least one sensor in
the sensor network [1]. Depending on the underlying physics,
the area coverage of one sensor is the area of a circle or sector
centered at the sensor location. Then, the network coverage
can be analyzed and optimized by considering the union
of all the areas covered by its sensors [2]. Another well-
known formulation of coverage is the art-gallery problem,
where a point or sensor sees the target if the line segment
between them does not intersect any obstacles [3]–[5]. This
problem, also known as line-of-sight visibility, is concerned
with placing the sensors such that the targets in a given area
of interest that includes obstacles are in the line-of-sight of
at least one of the sensors. In order to address coverage as it
pertains to target tracking by means of multiple sensors, so-
called track coverage functions representing the probability
of obtaining multiple elementary detections over time, along
a target track, have been proposed in [6]–[8].

The motivation for deriving coverage function expressing
the quality of service of wireless sensor networks in closed
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form is that they can be utilized to optimally deploy mobile
sensors, via control theory and algorithms [2], [8]–[10].
Modern embedded systems and technologies are producing
networked surveillance systems in which both the sensors
and their platforms are characterized by a high degree of
functionality and reconfigurability. For example, ground and
aerial robots with on-board sensors may be employed for
monitoring urban environments, or unauthorized intruders by
operating cooperatively, in cluttered dynamic environments
with little prior information or human intervention. Existing
track coverage functions have been successfully utilized in
deployment, control, and coordination algorithms to signif-
icantly increase the effectiveness of the sensor network by
controlling and, in some cases, optimizing quality of service
with respect to the sensors’ positions [1], [8]–[16]. However,
the main limitation of existing track coverage functions is
that they assume that the targets travel with constant heading
and speed [8], or that the sensors are uniformly distributed
and have constant range [6], [7].

The track coverage function derived in this paper relaxes
these assumptions by extending the geometric transversals
approach in [8] to a three-dimensional Euclidian space
representing the sensor-target spatio-temporal coordinates, in
which the Markov parameters of maneuvering targets can be
represented by three-dimensional cones finitely generated by
the sensors’ fields-of-view. There is considerable precedence
in the sensor tracking and estimation literature for modeling
target tracks by piece-wise Markov motion models in order
to estimate the target state from multiple, distributed sensor
measurements [17]. Although the transition probability den-
sity functions of these Markov models are routinely outputted
by tracking and estimation algorithms [17], little work has
been done to use them as a feedback to sensor coordination
and control algorithms. The new track coverage function
presented in this paper provides a closed-form representation
of the probability of track detection as a function of these
transition probabilities, and accounts for the spatio-temporal
trajectories of the sensors and the targets, for any sensor
dynamics, and any form of the target probability density
functions.

The remainder of the paper is organized as follows. The
problem formulation and assumptions are stated in Section
II. The geometric approach to analyzing track coverage
of maneuvering targets is presented in Section III. The
numerical simulations used to validate the theoretical results
are provided in Section IV.
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II. PROBLEM FORMULATION AND MATHEMATICAL
MODELS

This paper considers a network of n cooperative het-
erogeneous sensors installed on mobile platforms that are
deployed in a region-of-interest (ROI) for the purpose of
detecting an unknown number of moving targets during a
time interval [t0, tf ]. The end time tf is fixed, and is defined
as the maximum time on station achievable by the sensor
network. The ROI A ⊂ R2, is assumed to be unbounded. It
is assumed that sufficient distance and depth separation will
be achieved so that risk of collision between sensors and
targets is negligible. This allows the sensors and targets to
be modeled as point masses rather than geometric objects.
Each sensor is equipped with an isotropic or omnidirectional
sensor with a field-of-view (FOV) represented by a disk
Ci(t) = C[si(t), ri] ∈ A that has a constant radius ri,
and is centered at si at time t. The set of all sensors is
S = {C1, . . . , Cn}, and IS is the index set of S.

In this paper, it is assumed that the ith sensor’s position, si,
is a deterministic and known function of time. The dynamic
equation of the sensor, ṡi = f(si, ui, t), is assumed known
and, thus, can be integrated to provide the sensor trajectory,
si(t) = [sxi

(t) syi(t)]
T for all t ∈ [t0, tf ], and i = 1, ..., n.

In this paper, the dynamics of sensor i are modeled by the
nonholonomic unicycle model,

ṡxi
= νi cosϕi,

ṡyi = νi sinϕi, (1)
ϕ̇i = ωi,

where, ϕi is the sensor’s heading. The control input to sensor
i is given by its translational and rotational velocities, ui =
[νi ωi]

T , and is assumed given.
Targets are assumed to obey the same continuous-time

Markov process defined as follows [18]:
Definition 1: A continuous-time random process is a fam-

ily of random variables xt where t ∈ [0, tf ].
Definition 2: A random process is said to be continuous

with respect to time and Markovian if for 0 ≤ t0 < · · · <
tk−1 < tk < t we have Pr{xt ∈ B|xk = Xk, xk−1 =
Xk−1, · · · , x0 = X0} = Pr{xt ∈ B|xk = Xk} where Pr
denotes the probability function, and X0, . . . , Xk ∈ X are
realizations of the state space X .

Let the random variables θ and v represent the target’s
heading and velocity, respectively. Assuming the target’s
heading and velocity are constant during every interval
∆tj = (tj+1−tj), j = 1, 2, . . ., where ∆tj is not necessarily
constant, the target motion can be modeled as a continuous-
time Markov process. A three-dimensional real-valued vector
function maps the family of random variables {θj(t), vj(t)}
into the random vector pj(t) at every time t ∈ [t0, tf ], such
that the target motion process is,

ẋj(t) = vj(t) cos θj(t)

ẏj(t) = vj(t) sin θj(t), j = 1, 2, . . . (2)

and, therefore, the motion of target j is a Markov process.
The third component of the vector function is the identity
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Fig. 1. Target path as a function of time (red), in the Cartesian plane
(blue), with the equivalent course/distance vectors (black).

function. Thus, θj and vj are piece-wise constant, as illus-
trated in Fig. 1, while xj and yj have discontinuities at the
time instants tj , j = 1, . . . , ρ, when target j changes its
heading and velocity.

Let {p0j}j=1,...,ρ denote the set of target positions at
which these discontinuities occur. Then, by integrating the
linear differential equation (2) over every interval ∆tj with
initial condition p0j , the position of the jth target at any time
t can be obtained as a function of the sequence of random
variables {p0j , vj , θj}j=1,...,ρ ≡ {Mj}j=1,...,ρ also known
as Markov motion parameters,

pj(t) = p0j + vj(t− tj)[cos θj sin θj ]
T , tj ≤ t < tj+1 (3)

where, the Markov motion parameter valuesMj only depend
on the values of the previous time step Mj−1, and remain
constant during the time interval ∆tj . It follows that the
target motion is properly represented by the joint probability
density function on Mj , i.e., Pr(p0j , θj , vj , tj) which is
known from tracking and estimation algorithms assimilating
prior detections in the target motion model. The range of
parameters is assumed known from the target and problem
characteristics, and is defined by the minimum and maximum
target headings, θmin and θmax, the minimum and maximum
target speeds, vmin and vmax, and the final time tf , where
tf ≥

∑
tj . Furthermore, it is assumed that the ith sensor

has a non-zero probability to detect the jth target at time t
if and only if its FOV intersects the target’s center of mass,
i.e., Ci(t) ∩ pj(t) 6= ∅.

The track coverage of the sensor network is derived
in the next section, and demonstrated through numerical
simulations in Section IV.
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III. METHODOLOGY

The geometric transversals approach first proposed in [8]
analyzes the track coverage of a sensor network facing
targets that can move only along straight paths. Each sen-
sor’s detection range specifies a detection disk, from which
coverage cones can be generated for each potential starting
location of the target. The following method extends this
technique to maneuvering targets by utilizing 3D coverage
cones in a spatio-temporal subset of the Euclidian space
Ω ≡ A × [t0, tf ] ⊂ R3. Since during every time interval
∆tj the target motion in Ω is linear, it can be represented by
a course/speed/time (CST) vector that represents the target
location at tj+1, with respect to its position at tj which also
is a Markov parameters and a point of discontinuity in the
target path. The CST vector can be conveniently represented
in cylindrical coordinates (θeq, veq, zeq), where req = veqteq ,
as follows:

θeq = tan−1

[∑m
j=1 vjtj sin θj∑m
j=1 vjtj cos θj

]
(4)

veq =


√

(
∑m
j=1 vjtj cos θj)2 + (

∑m
j=1 vjtj sin θj)2∑m

j=1 tj


teq =

m∑
j=1

tj

The probability of obtaining multiple detections by a
cooperative, omnidirectional sensor network, referred to as
track coverage, was recently obtained for targets that are
assumed to travel along straight paths in [8]. In this paper, a
novel probability function representing the track coverage for
unauthorized targets with a Markov motion process (Section
II) is derived using convex theory and geometric transversals
(see [19] for a comprehensive review):

Definition 3: A family of k convex sets in Rc is said to
have a d-transversal if it is intersected by a common d-
dimensional flat (or translate of a linear subspace).
When d = 1 and c = 2, the transversal is said to be a
line-stabber of the family of convex sets. For convenience,
we refer to the target track obtained from a Markov motion
process as Markov track.

As explained in Section II, the jth Markov track consists
of a set of ρ straight-line segments randomly generated
according to the probability distributions of the parameters
{Mj}j=1,...,ρ. When a Markov track is detected by k
sensors, one or more of these segments are the stabbers of
{C1(t), . . . , CN (t)} in R2, possibly at different moments in
time during the interval [t0, tf ]. The temporal nature of the
detections can be treated by noting that a spatio-temporal
Markov track also consists of ρ three-dimensional straight-
line segments in the space Ω. By definition, sensor i has a
non-zero probability to detect target j at time t if and only
if ||si(t) − pj(t)|| ≤ ri. Thus, the family of segments that
are stabbers of the disk Ci(t) in R3

+, at t, can be represented
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Fig. 2. Coverage cone K (green) and two-dimensional representations Kθ

and Kv (red), with generating unit vectors, at time tk [20].

by a three-dimensional generalized cone parameterized by, x
y
t

 = p0j + tk

 ri cos θj
ri sin θj

1

 (5)

and with a random vertex p0j . The cone in (5), denoted by
K[Ci(t), p0j ], contains all combinations of target headings
and velocities that would cause a detection at tk and, thus,
it is referred to as coverage cone. An example of coverage
cone is plotted numerically in Fig. 2 for tk = 60, sxi

= 70,
and syi = 20.

An efficient representation for K[Ci(t), p0j ] consists of
two 2D cones (illustrated by red lines in Fig. 2). The first,
the heading plane, is obtained from the coverage cone’s
projection onto A. The projection of K[Ci(t), p0j ] onto A
is a two-dimensional cone Kθ[Ci(t), p0j ] with an opening
angle ψi = 2αi, where,

αi(t) = sin−1
[

ri
‖si(t)− p0j‖

]
. (6)

Kθ[Ci(t), p0j ], abbreviated by Kθ for simplicity, is generated
by the unit vectors,

ĥi(t) =

[
cosαi(t) − sinαi(t)
sinαi(t) cosαi(t)

]
pi(t)

‖pi(t)‖
(7)

and,

l̂i(t) =

[
cosαi(t) sinαi(t)
− sinαi(t) cosαi(t)

]
pi(t)

‖pi(t)‖
, (8)

where pi(t) ≡ si(t)− p0j . Kθ is referred to as the heading
cone because it contains all target heading angles that would
cause a detection at t by sensor i.

The second, the velocity plane, defined as,

(sin θj)x+ (cos θj)y = 0 (9)

1245



contains the t-axis and is perpendicular toA. It represents the
space of all spatio-temporal target positions with a heading
θj .

The intersection of K[Ci(t), p0j ] with the velocity plane
(9) is referred to as the velocity cone because it contains all
target velocities along a particular heading that would cause
a detection by sensor i at t. It is a two-dimensional cone
denoted by Kv[Ci(t), p0j , θj ], and abbreviated by Kv , for all
θj ∈ Kθ. Where, θj ∈ Kθ is a shorthand notation for target
headings that satisfy the inequality

[tan−1(syi/sxi)− αi] ≤ θj ≤ [tan−1(syi/sxi) + αi] (10)

Then, Kv is generated by the unit vectors,

ξ̂i(t) =

 cos θj sin[π/2− ηi(t)]
sin θj sin[π/2− ηi(t)]

cos[π/2− ηi(t)]

 (11)

and,

ω̂i(t) =

 cos θj sin[π/2− µi(t)]
sin θj sin[π/2− µi(t)]

cos[π/2− µi(t)]

 , (12)

where

ηi, µi = tan−1
[

1

vmini , vmaxi

]
(13)

vmini , vmaxi =
1

t
[sxi cos θj + syi sin θj (14)

∓
√
r2i − (sxi

sin θj + syi cos θj)2
]
.

vmini and vmaxi represent the minimum and maximum target
velocities that would result in a detection at t by sensor i
for a particular θj ∈ Kθ. If θj 6∈ Kθ, then there will not
be a detection for any target velocity. The cone K, its two-
dimensional representations Kθ and Kv , and the generating
unit vectors are computed and plotted in Fig. 2 for a sample
time tk, and for p0j = 0.

Since Kθ and Kv contain all possible straight tracks that
are detected by sensor i at time t, the sum of their opening
angles,

ψi(t) = sin−1 ||l̂i(t)× ĥi(t)|| (15)

= H(det[l̂i(t) ĥi(t)]
T ) sin−1(det[l̂i(t) ĥi(t)]

T )

and,

ζi(t) = sin−1 ||ω̂i(t)× ξ̂i(t)|| (16)

= H(det[ω̂i(t) ξ̂i(t)]
T ) sin−1(det[ω̂i(t) ξ̂i(t)]

T )

is a Lebesgue measure over the set of stabbers of Ci(t),
and can be used in calculating the probability of detection
of unobserved tracks. All coplanar unit vectors are ordered
based on the orientation of an inertial reference frame such
that two coplanar vectors ui ≺ uj if when these vectors
are translated such that their origins coincide, and ui is
rotated through the smallest possible angle to meet uj , this
orientation is in the same direction as the orientation of the
reference frame. Thus, the Heaviside function H(·) in (15)

and (16) ensures that if l̂i(t) � ĥi(t), or ω̂i(t) � ξ̂i(t), the
corresponding opening angles are equal to zero.

It can be seen from (3),(6)-(16), that the opening angles
of the heading and velocity cones can be written as explicit
functions of the sensor position, and of the target position
at the discontinuities, i.e., ψi = ψi[si(t), p0j ] and ζi =
ζi[si(t), p0j , θj ]. For unobserved tracks, the Markov motion
parameters Mj can be assumed independent and uniformly
distributed. Thus, the joint probability mass function (PMF)
between two consecutive discontinuities (or maneuvering
time instants) ft(tj , tj+1) is uniformly distributed over dis-
crete time intervals ∆tj , j = 1, . . . , ρ, with values defined by
the user. During every time interval, the target heading has
a probability density function (PDF) fθ(θj) that is uniform
over the interval Iθj−1

≡ [θj−1 − π/2, θj−1 + π/2], due
to a maximum turning radius of π/2. The velocity of every
target has a PDF fv(vj) that is uniform over the interval
[vmini , vmaxi ], with vmini > 0. The probability that sensor i
obtains a detection at time, tk is then,

P id(tk) =

∫
p0j∈A

fxy(p0j ) (17)

×
∫ λi

γi

∫ 1/ tan(µi)

1/ tan(ηi)

fθv(θeq, veq)dveqdθeqdp0j ,

where fθv(θeq, veq) is the derived joint probability density
distribution of the equivalent course and speed (4). Using the
theory of derived distributions [21] and the transformation in
(4), fθv(θeq, veq) can be computed from the original tran-
sition probability density functions {Pr(θj , vj , tj)}j=1,...,ρ

provided in rectangular coordinates. A benefit of this type of
numerical integration is that the probability density functions
for the target’s Markov parameters do not need to be static
or independent.

Since each sensor has a detection radius, ri > 0, individual
detections will normally come in batches as the target passes
through a sensor’s detection disk. Therefore, detection events
at different moments in time do not constitute disjoint events
because they are not mutually exclusive, and are highly
correlated. As a result, adding the values of Pd(t) over time
does not result in a probability function. Let Di be a binary
variable whose value can be only 0 or 1, and are mutually
exclusive. Di(t) = 1 occurs when a detection is made by
the ith sensor at time t, and Di(t) = 0 occurs when no
detection occurs by the ith sensor at time t. Thus, P id(t) is
the probability of Di(t) = 1 at time t, and the probability
that Di(t) = 0 is [1−P id(t)]. It then follows that the expected
value of Di at time t is,

E[Di(t)] = 1 · P id(t) + 0 · [1− P id(t)] = P id(t) (18)

where E[·] denotes expectation. To find the expected number
of detections over the time interval [t0, tf ], equation (17)
can be integrated over time. In the presence of i = 1, 2, . . . , n
sensors, each with a known deterministic trajectory, the total
number of detections is given by,

Ji ,
tf∑

tk=t0

Di(tk)dt (19)
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where tk denotes a time instant in the discretized time
interval [t0, tf ]. Combined with (17), the above equation
provides the total number of detections expected for sensor
i.

E[Ji] =

n∑
i=1

tf∑
t0

∫
p0j∈A

fxy(p0j ) (20)

×
∫ λi

γi

∫ 1/ tan(µi)

1/ tan(ηi)

fθv(θeq, veq)dveqdθeqdp0jdt

The expected total number of detections for the sensor
network (20) is then obtained by summing (19) over i =
1, . . . , n. In the next section, this approach is validated graph-
ically using a Monte Carlo simulation involving multiple
mobile sensors and multiple mobile targets.

IV. SIMULATIONS AND RESULTS

Monte Carlo (MC) simulations are a flexible and effective
approach for evaluating the effects of uncertainty propaga-
tion on the system performance for one or more uncertain
parameters with known probability density functions (PDFs)
[22], [23]. For the stochastic problem formulated in Section
II, a Markov target is generated by sampling the joint
probability density function to obtain instantiations of the
Markov parameters over the period [t0, tf ]. The maneuvering
target’s equivalent course and speed can then be calculated
using (4). From these sample parameters, a sample trajectory
for the maneuvering target can be computed using (3). Once
the target trajectory is known, the sensor detections can be
determined by direct evaluation of the detection events Dj

at every intersection between the target trajectory and the
sensor FOV. By repeating this procedure and evaluating the
target trajectory an adequate number of times, M , to generate
a statistically significant sample size for the joint probability
density function of the Markov parameters, a Monte Carlo
simulation of the maneuvering targets in the region of interest
can be obtained.

A logical array or truth table, denoted by Bj , is evaluated
such that every element corresponds to one instantiation of
the Markov parameters M, and is set equal to 1 or 0,
depending on whether the track has been detected (1) or
missed (0) by the jth sensor. After the array Bj is obtained
for every sampled sensor, the logical array,

Tk =


n∑
j=1

Bj ≥ k

 (21)

indicates whether each possible track in A has been detected
by at least k sensors. Then, the number of ones in Tk
divided by its number of elements provides the estimate Pk
for the probability of track detection. Figure 3 illustrates a
few samples of Markov target trajectories and the positions
of four stationary sensors, with corresponding detections
over the entire time frame. However, once moving sensors
are incorporated, a 2-dimensional representation no longer
adequately reflects the spatio-temporal dependance of detec-
tion opportunities. Figure 4 illustrates this by showing the
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detections of one moving sensor over time for a small sample
of Markov target trajectories, as the trajectories intersect
the sensors’ FOVs in a three-dimensional spatio-temporal
Euclidian space. By this approach, the MC simulation can be
used to validate the closed-form track coverage function (20)
derived in Section III, for known sensors’ trajectories and
speeds (1). As shown, in Figs. 5-6, the extended geometric
transversals approach developed in this paper leads to the
same probability of detection as the Monte Carlo simulation
across the entire span of time, or at specific instants. The
same figures, in fact, are obtained by means of the track
coverage function (20), indicating that the track coverage
approach presented in this paper can be utilized to determine
sensor detections of maneuvering targets for any Markov
parameters and sensor trajectories in spatio-temporal space.
Figure 7 illustrates four snapshots of the time progression of
a maneuvering target in the ROI – with Markov parameters
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Fig. 5. Probability of track detection from t=0 through t=tf for a
maneuvering target with known joint probability density function , against
two stationary sensors.

Fig. 6. Probability of track detection at t = 9s for a maneuvering target
with known joint probability density function, and two sensors’ known
instantaneous positions.

sampled from the same joint probability function used in
Figs. 5-6, and shown in Fig. 3 – and four moving sensors
with detections precisely predicted by the track coverage
approach at several instants in time, such as t = 7 s and
t = 7.9 s. Hence, the extended approach presented in this
paper can be utilized to optimize and control sensor net-
works deployed to detect maneuvering targets, based on the
joint probability density functions obtained from established
tracking and estimation algorithms.

V. CONCLUSION

This paper presents an extended approach based on con-
vex theory and computational geometry to obtain a track
coverage function for maneuvering targets in the plane. This
method uses line transversals and planar geometry to derive
the track coverage of a heterogeneous sensor network as a
function of the Markov transition probability functions. The
planar geometric transversals approach is extended to a three-

dimensional Euclidian space representing the sensor-target
spatio-temporal coordinates, in which the Markov parameters
of detected maneuvering targets can be represented by three-
dimensional cones finitely generated by the sensors’ fields-
of-view. When the target tracks are represented by piece-wise
Markov motion models the sensor network can estimate the
target state from multiple, distributed sensor measurements.
This closed-form representation of the probability of track
detection is a function of these transition probabilities, and
it accounts for the spatio-temporal trajectories of both the
sensors and the targets, any sensor dynamics, and any form
of the target probability density functions. The approach is
demonstrated through simulations involving both stationary
and maneuvering sensors attempting to detect the same set
of maneuvering targets.
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