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Abstract— Unmanned ground and aerial vehicles are becom-
ing crucial to many applications because of their ability to assist
humans in carrying out dangerous missions. These vehicles can
be viewed as networks of heterogeneous unmanned robotic
sensors with the goal of exploring complex environments, to
search for and, possibly, pursue moving targets. The robotic
vehicle performance can be greatly enhanced by implementing
future sensor actions intelligently, based both on prior knowl-
edge and on the information obtained by the sensors on line. In
this paper, we present an approximate dynamic programming
(ADP) approach to cooperative navigation for heterogeneous
sensor networks. The mobile sensor network consists of a set
of robotic sensors modeled as hybrid systems with processing
capabilities. The goal of the ADP algorithm is to coordinate a
team of heterogeneous autonomous vehicles (i.e., ground robot
and quadrotor UAV) to navigate within an obstacle populated
environment while satisfying collision avoidance constraints and
searching for stationary and mobile targets. It is assumed that
the ground vehicle has a small sensor footprint with high
resolution. The quadrotor, on the other hand, has a large
sensor field-of-view but low resolution. The UAV provides a
low resolution look-ahead map to the ground robot which in
turn uses this information to plan its actions. The proposed
navigation strategy combines artificial potential functions for
target pursuing with ADP for learning C-obstacles on line.
The efficacy of the proposed methodology is verified through
numerical simulations.

I. INTRODUCTION

Developments in autonomous vehicles and sensor tech-

nologies are producing systems with increased capabilities.

These unmanned ground and aerial vehicles are becoming

crucial to many applications because of their ability to

assist or replace humans in carrying out dangerous yet vital

missions. The paradigm that emerges from these applications

is a set of hidden targets, mobile or stationary, that must be

measured and possibly pursued by multiple heterogeneous

sensors installed on mobile platforms. In all of these ap-

plications, the sensor network’s performance can be greatly

enhanced by coordinating and implementing future sensor

actions intelligently, based both on prior knowledge and on

the information obtained by the sensors on line.

Several authors have recognized the hybrid nature of

coordinated robot control [1]–[5], and have utilized the three-

layer hybrid architecture proposed in [6], [7] to model and

analyze the interactions of a continuous-state vehicle with a
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discrete-event controller that makes high-level decisions on

its optimal sequence of behaviors. Other approaches to the

coordination of robotic networks include distributed control

with an emphasis on communication protocols synchronous

motion coordination [8]. A hybrid modeling approach to

maintaining connectivity in a mobile multi-agent network

was recently presented in [9]. A hybrid modeling framework

for robust maneuver-based motion planning in nonlinear

systems with symmetries was proposed in [10], and a cell

decomposition approach to geometric sensor motion plan-

ning was described in [11]. Existing hybrid and distributed

control approaches are very effective at maintaining a desired

formation or connectivity in a sensor network, but they do not

typically account for the geometries of the targets, obstacles,

and sensors’ fields-of-view (FOVs).

On the other hand, several robot motion planning ap-

proaches, described in [12], [13], have been developed to

account for the geometries of the robot and the obstacles, and

avoid collisions. However, these approaches are not directly

applicable to robotic sensors because they are designed to

prevent intersections between the vehicle’s geometry and

the obstacles to avoid collisions, while the sensor’s FOV

must intersect the geometry of the targets in order to obtain

measurements. Most of the research relating sensor measure-

ments to robot motion planning so far has focused on the

effects that the uncertainty in the geometric models of the

environment has on the motion strategies of the robot [14]–

[17]. But, what remains to be addressed are the effects that

these models have on the sensor’s strategies, i.e., how to

plan and adapt the motion strategies that support the optimal

sensor measurement sequence, subject to nonlinear dynamics

[18].

Controlling a continuous-state nonlinear dynamical sys-

tem, such as a robotic sensor, so as to optimize a desired

performance metric is a difficult problem that requires the

solution of a two-point boundary value problem. Solving

this problem off line is not always an effective solution,

because the actual initial conditions may be different from

their assumed value and the system model may be imperfect.

Approximate dynamic programming (ADP) approaches [19]

seek to optimize the specified performance metric condi-

tioned upon knowledge of the actual system. They reduce

the computational complexity of the optimal control problem

by modeling the control law and the estimated future cost

as parametric structures. The control law is adapted subject

to online measurements of the state and knowledge of the

probability distribution of uncertainties, thereby optimizing

the performance of the real system incrementally over time.
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In this paper, the advantages of hybrid control and ge-

ometric motion planning algorithms are combined by de-

signing a continuous-discrete interface (CDI) for the hybrid

system that is comprised of a novel sensor motion planning

algorithm. Using a new concept known as C-targets, this

CDI maps sensor’s states from the vehicle’s continuous

configuration space to a sampled discrete-event graphical

representation that is void of obstacles and enables target de-

tections. According to a novel approach integrating roadmap

methods with potential fields, the CDI is able to utilize a

probability density function that is obtained by marginalizing

the potential field defined from the information value of

the targets. As a result, the potential function used by the

CDI is also used to design the continuous-state controllers

for the vehicles. A cooperative navigation ADP approach is

implemented to adapt the robotic sensor policies subject to

unstructured and uncertain environments, in order to avoid

collision, while observing and pursuing hidden targets based

on the sensor data that becomes available over time.

The remainder of the paper is organized as follows. Sec-

tion II provides the problem formulation and assumptions.

The mathematical models of robotic sensors and targets are

described in Section III. The proposed cooperative navigation

methodology is presented in Section IV. Section V contains

simulation results and Section VI discusses some conclusions

and future work to be performed.

II. PROBLEM FORMULATION AND

ASSUMPTIONS

In this paper, the hybrid framework developed in [20] is

extended to describe networked hybrid dynamical systems

(NHDS), comprised of N continuous-state plants (CSPs),

representing N robotic sensors with dynamic equations,

CSPi:

{

ẋi(t) = fi[xi(t), ui(t)]

yi(t) = hi[xi(t), ℓ(t)]
i = 1, . . . , N (1)

where xi ∈ Xi ⊂ R
n, ui ∈ Ui ⊂ R

m, and yi ∈ Yi ⊂
R

p are the state, control, and output of the ith vehicle,

respectively. The discrete-event parameter ℓ(t) ∈ {1, 2, . . .}
is a deterministic scalar index that is incremented by an event

function when a continuous-state event occurs. The reference

trajectory and discrete-event parameter are computed by a

continuous-discrete interface (CDI) logic, described in Sec-

tion IV based on the planned mission’s tasks. Each vehicle

is equipped with a continuous-state controller (CSC) given

by

CSCi: ui(t) = ci[xi(t), yi(t), ri(t), ℓ(t)], (2)

where i = 1, . . . , N and ri ∈ R
p is the reference trajectory.

In this paper, the mission planner is initially modeled

by a centralized discrete-event plant (DEP) and controller

(DEC) that reside on a remote computational facility or

onboard one of the vehicles. The DEP and DEC model

and control, respectively, the coordination of future sensors’

tasks or behaviors. The three-layer hybrid system framework

previously analyzed in the literature [6], [20] considers a

deterministic DEP represented by difference equations, or

Petri nets. However, because of the probabilistic nature of

the sensing tasks, in this paper, the DEP is described by

a partially-observable Markov decision process (POMDP).

As was recently shown in [11], the coupled robotic sensor

motion and observation process is a POMDP described by

the tuple,

DEP: Σ = {T,X ,U(ξ, z), P(ξ(k + 1) | ξ(k), a(k)),

P(z(k) | ξ(k), u(k), R[ξ(k), z(k), a(k), u(k)])} (3)

where k is the discrete time index, and T = {1, . . . , f} is a

finite set of decision epochs. The state space X is a finite set

of mutually-exclusive events, the action space U(ξ, z) is the

space of admissible action and test decisions a(k) and u(k),
and P denotes a transition probability function. The subset

of the DEP state denoted by ξ(k) represents the physical

state of the robotic sensors and, thus, it is observable, and

determined by ξ(k−1) and a(k−1). The subset of the DEP

state denoted by z(k) represents the target characteristics

and, thus, it is hidden up to k, and all of its possible outcomes

must be propagated up to k according to the above transition

probabilities. The DEC outputs are classified as either action

decisions, a, when they change the physical state of the

system ξ (such as the decision on where to move the robotic

sensor), or as test decisions, u, when they affect the system’s

knowledge about the hidden state z (such as the decision

to obtain a sensor measurement). Then, the utility of test

decisions is given by the value of information associated with

z, and the utility of action decisions is the reward associated

with the physical state ξ.

Let R : Ω(π(v)) → R denote the total utility or reward

function associated with the chosen modes of behavior. Then,

the discrete-event controller (DEC) is described by a class of

admissible policies or control laws, referred to as strategy,

DEC: σ = {γ0, γ1, . . . , γf−1} (4)

where γk maps the discrete state and output variables

{ξ(k), z(k)} into the admissible decisions,

{a(k), u(k)} = γk[ξ(0), a(0), u(0), . . . ,

ξ(k − 1), a(k − 1), u(k − 1)], (5)

such that γk[·] ∈ R for all ξ(k) and z(k). Based on the

mutual-information theoretic function derived in [11], [21],

the robotic sensors’ utility can be assumed to be an additive

reward function and, therefore, a value function,

V (k) =

f−1
∑

k=0

E {R[ξ(k), z(k), a(k), u(k)]} , (6)

can be defined as the expected utility or cost-to-go of the

DEC in (4), where E denotes the expectation with respect to

the state variables. Then, the optimal strategy at k is the

sequence of policies, σ∗, that maximizes V (k) given the

POMDP in (3).

Therefore, for the NHDS proposed here, the CSP is the

tuple S = {I, Xi, Ui, Yi, fi, hi}i∈I , where I = 1, . . . , N is

the set of unique identifiers representing the robotic sensors
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in the network. The continuous-discrete interface (CDI) that

connects S and Σ becomes

Σ\S :

{

ri(t) = αi[ξ(k), a(k), u(k)]

ℓ(t) = β[ξ(k), a(k), u(k)]
(7)

S\Σ : z(k) = vi[yi(t), ri(t)], i = 1, . . . , N (8)

where, the functions αi : X × R → R
p and β :

X × R → {1, 2, . . .} are mappings in Σ\S. The event

function vi : Yi × R
p → Z is a mapping in S\Σ that

tells the discrete-event system and controller which event

caused ℓ(t) to change, such that knowledge about the hidden

state z(k) can be updated based on real-time measurements

and location of the vehicles. By utilizing this novel hybrid

dynamical system framework, the POMDP hidden state z(k)
can be used to represent unknown target(s) and workspace

characteristics that influence high-level decisions regarding

mission planning. At the same time, the reference trajectory

and event parameter are computed by the CDI mappings in

(7).

III. MATHEMATICAL MODELS

The mathematical models utilized here are divided into

two subsections. In the first subsection, we present the hybrid

models of the robotic sensors comprised of ground and air

vehicles that are deployed to cooperatively detect, track, and

pursue multiple moving targets. In the second subsection,

we present the probabilistic models of the targets, which are

updated over time, based on the sensor data obtained and

processed by the sensor network.

A. Modeling of Robotic Sensors

This papers focuses on the online adaptation required

for the sensor network to operate in a partially-observable

workspace, with no prior knowledge of the targets and

partial knowledge of the obstacles. Let W ⊂ R
3 denote an

Euclidean robotic sensor workspace populated with a set of

fixed obstacles {Bj}j∈IB
with geometries and positions that

are partially unknown, and are estimated on line using real-

time sensor measurements. In addition to obstacles to be

avoided, the robotic sensor workspace also is populated with

a set of moving targets {Tl}l∈IT
(described in Section III-

B) that must be detected, tracked, and then pursued by the

sensors on line, as by the DEC. We use a geometric mod-

eling approach inspired by classical robot motion planning

[12], [13] that characterizes a robotic sensor by its vehicle

dynamics (1), and by discrete geometries representing the

vehicle’s geometry Ai ⊂ R
3, and the sensor’s field-of-view

(FOV) Si ⊂ R
3. Examples of these discrete geometries

are illustrated in Fig. 1 using static sensors (e.g., VICON

motion capture), and mobile (ground and aerial) robotic

sensors from the test bed available at the MARHES lab.

The sensor’s FOV, Si, is assumed to have fixed position

and orientation with respect to a moving Cartesian frame

FAi
, embedded in Ai. Thus, the robot configuration qi ⊂ xi

specifies the FOV’s position and orientation with respect to

a fixed Cartesian frame FW . The ground vehicle dynamics

in W are represented by a nonholonomic, nonlinear model

[22], [23],

Mi(qi)q̈i +Bi(qi, q̇i) +Gi(qi) = ui, i ∈ I, (9)

where Mi(qi) is the ith robotic sensor’s inertia matrix,

Bi(qi, q̇i) is the fictitious force, Gi(qi) is the gravitational

force, and ui is the torque input. The aerial vehicle dynamics

are provided by a 6 DOF nonlinear quadrotor model de-

scribed in [24], with collective, roll, pitch, and yaw input

commands, and a six-dimensional state vector comprised of

the vehicle’s inertial position and orientation in FW . Thus,

all robotic sensors can be described by the CSP in (1), and

in addition to requiring a stabilizing feedback control law to

follow the reference trajectory, they must avoid the obstacles

in W by preventing intersections between Ai and Bj , i.e.,

by guaranteeing that Ai ∩ Bj = ∅, for all i, j, and t.

Fig. 1. Vehicle geometry Ai,Aj ,Ak , sensor’s FOV Sk , static sensors
(VICON motion capture system), a target geometry Tl, and a fixed obstacle
Bi are shown.

Dual to the obstacle-avoidance problem is the target-

measurement problem, as an intersection between the FOV

geometry Si and the geometry of a target Tl must take

place, i.e., Si ∩ Tl 6= ∅, in order for the ith sensor to be

able to obtain a vector of measurements mi about zl. In

standard estimation theory, a sensor that obtains a vector

of measurements is typically modeled as a deterministic,

possibly nonlinear, vector function of the state and of a

random vector representing the sensor noise or measurement

errors. In many sensor applications, however, the target

state to be estimated, and the sensor measurements also are

random variables with arbitrary probability distributions [25],

[26]. Therefore, a more general measurement model that

has been proposed in the sensor networks literature is the
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conditional probability mass function (PMF),

Pr(mi(k)|zl(k), λi(k)) = (10)











Pr(mi(k),zl(k),λi(k))
[Pr(zl(k))Pr(λi(k))]

, if Si ∩ Tl 6= ∅

0, if Si ∩ Tl = ∅

for k = 1, . . . , f , where λi is a vector of sensor charac-

teristics, such as sensor mode and measurement errors. This

sensor model assumes that mi, zl, and λi are discrete random

variables with finite ranges M, Z, and Λ, respectively.

The joint PMF Pr(mi(k), zl(k), λi(k)) is a probabilistic

description of the measurement process that can be learned

from data [11], [26], [27]. The priors Pr(zl(k)) and Pr(λi(k))
are computed from environmental maps of W and target

information, when available. Otherwise, they are assumed to

be uniformly distributed. Various sensors, including infrared,

ground penetrating radars, and synthetic aperture radars, have

been modeled off line using (10) for demining, surveillance,

and radar target tracking applications [25], [26], [28].

B. Modeling of Mobile Targets

There is considerable precedence in the sensor tracking

and estimation literature for modeling target tracks by piece-

wise Markov motion models in order to estimate the target

state from multiple, distributed sensor measurements [29].

Let Tl ⊂ W denote the geometry of the lth target, which

is assigned a unique identifier l ∈ IT using an existing

multisensor-multitarget assignment algorithm [29]. Each tar-

get track is estimated from the set of sensor measurements,

M(k) = {m1(1),m2(1), . . . ,mN−1(k),mN (k)}, obtained

by the network up to time k, when Tl ∩ Si 6= ∅.
The motion of each target is modeled as a continuous-time

Markov process, where, we say that xt is a continuous-time

Markov process if for 0 ≤ t0 < · · · < tk−1 < tk < t
we have Pr(xt ∈ B|xk = sk, xk−1 = sk−1, · · · , x0 =
s0) = Pr(xt ∈ B|xk = sk) where Pr denotes the

probability function, and s1, . . . , sk ∈ X are realizations of

the state space X . Now, let the random variables θTl and vTl

represent the lth target’s heading and velocity, respectively.

Assuming the target’s heading and velocity are constant

during every interval ∆t = (t+1 − t),  = 1, 2, . . .,
where ∆t is not necessarily constant, the target motion can

be modeled as a continuous-time Markov process with a

family of random variables {xTl , θTl , vTl}, where xTl ∈ W
is the lth target position at t. Then, a three-dimensional real-

valued vector function maps the family of random variables

{θTl(t), vTl(t)} into the random vector xTl(t) at every time

t ∈ [t0, tf ], such that the value of the target motion process

is given by,

ẋTl(t) = vTl(t)

[

cos θTl(t)
sin θTl(t)

]

, (11)

and, therefore, the motion of target l is a Markov process.

The third component of the vector function is the identity

function. It follows that θTl and vTl are piece-wise constant,

while xTl has discontinuities at the time instants t,  =
1, . . . , ρ, when target l changes its heading and velocity.

Let {xTl

 }=1,...,ρ denote the set of target positions at

which these discontinuities occur. Then, by integrating the

linear differential equation (11) over every interval ∆t with

initial condition xTl

 , the position of the lth target at any time

t can be obtained as a function of the sequence of random

variables {xTl

 , vTl

 , θTl

 }=1,...,ρ ≡ {P}=1,...,ρ also known

as Markov motion parameters,

xTl(t) = xTl

 +vTl

 (t− t)





cos θTl



sin θTl





 , t ≤ t < t+1 (12)

where the Markov motion parameter values P only depend

on the values of the previous time step P−1, and remain

constant during the time interval ∆t. It follows that the

target motion is properly represented by the joint probability

density function on P, denoted by Pr(P|P−1) for  =
1, . . . , ρ.

The first two components of Ti are piece-wise linear, while

the third component has discontinuities at time instants when

a change in direction happens. The implemented time span

between two consecutive instants is uniformly distributed in

interval [Ti,min, Ti,max] determined by the user’s preferences.

A change of direction is uniformly distributed in the inter-

val (θTi (t0) − π/2, θTi (t0) + π/2). Therefore, θTi(t) is a

uniformly distributed random variable for countably many

time instants t (i.e., a sequence of independent identically

distributed random variables), and otherwise is deterministic

(holds a value of the last change of the target’s direction).

The maximum translational speed of all sensors and targets is

known, and that while the sensors can move with any speed

in [0, vmax], it is assumed that the speed of every target is

uniformly distributed in [vTmin, v
T
max], with vTmin > 0 and

vTmax < vmax.

In summary, the set of targets detected by the sensor

network inW is the tuple {IT , Tl, Z,Pr(P|P−1)}∀, l∈IT
.

Under these assumptions, the spatio-temporal geometry of

a C-target can be obtained by sliding Tl along the track

(12), and the joint PDF on P used to evaluate the value of

information, as explained in the next section.

IV. METHODOLOGY

A fundamental paradigm utilized by obstacle avoidance

algorithms [13] is that of C-obstacle, which consists of the

subset of C that causes collisions with at least one obstacle in

W , i.e., CBi ≡ {q ∈ C | A(q)∩Bi 6= ∅}, where A(q) denotes

the subset of W occupied by the vehicle geometry A when

the robot is in the configuration q. The union
⋃n

j=1 CBj is the

C-obstacle region, and the obstacle-free robot configuration

space Cfree is defined as the complement of the C-obstacle

region in C. Therefore, any robot configuration chosen from

Cfree avoids intersections between the vehicle geometry A
and the obstacles’ geometries. In the presence of targets, q
must both avoid intersections between A and the obstacles,

and enable intersections between the sensor’s FOV and the

targets’ geometries in order to make sensor measurements. In
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this paper, a target is treated as the dual of an obstacle, and

the subset of C that enables intersections with Tl is identified

and computed by introducing the following definitions.

The field-of-view of a sensor mounted on A is a closed and

bounded subset S(q) ⊂ W such that the measurement set of

a target located at any point p ∈ S(q) can be obtained by

the sensor when the robot occupies the configuration q ∈ C.

Then, the target Tl in W maps in the robot’s configuration

space, C, to the C-target region CT l = {q ∈ C | S(q)∩Tl 6=
∅}. That leads to the following definition and proposition.

Definition 4.1: The target Tj in S maps in the ith sensor

configuration space C to the C-target region CRj = {qi ∈
C | Pr{Si ∩ Ti} > ǫ, ∀t ≥ τ, i ∈ IP , j ∈ IT }.

It was shown in [30] that the following proposition holds

under the aforementioned assumptions:

Proposition 4.2: A C-target can be approximated by a

cone-like area.

The sensors’ goals are represented by an adaptive and

additive potential function U ι that is either attractive or

repulsive, and is indexed by ι ∈ IK . The goal of avoiding

obstacles is indexed by ι = 1, and the goal of target

tracking by intersecting the target trajectory is indexed by

ι = 2. Where the information value of Tl, denoted by Hl, is

defined as the expected entropy reduction of zl, conditioned

on M(k), and can be computed from (10) as shown in

[21]. Then, all attractive potentials generated by the targets

are combined with all repulsive potentials generated by the

obstacles, and the sensor’s potential field is given by,

U(q, t) =
∑

ι∈{a∗,u∗}

U ι(q, t), (13)

U(q, t) =
∑

j∈IB

U
(ι=1)
j (q, t)rep +

∑

l∈IT

U
(ι=2)
l (q, t)att.

Based on the concept of C-targets, a novel attractive potential

function is defined for the targets as follows

Ul(q, t)att = η βHα
l (t)

{

1− exp

[

−
ρ2l (q, t)

2βHα
l (t)

]}

, (14)

where

ρl(q, t) ≡ min
x∈CT l

||W (x− q)||,

η, α, and β are user-defined scaling parameters, || · || is the

Euclidean norm, and W is a diagonal and positive definite

weighting matrix representing the importance of changes in

position and orientation. It can be shown that this novel

potential function satisfies the following properties: (i) It

is an increasing function of the shortest distance from Tl,
denoted by ρl; (ii) when ρi → ∞ all targets generate the

same potential; and, (iii) given the same distance between

two targets, the target with the higher information value has

lower (more attractive) potential, as well as a steeper gradient

for the same robot configuration q.

The potential functions express the local navigation ob-

jectives, also known as immediate reward in the ADP equa-

tions. At the mission-planning level each robotic sensor is

represented by a physical graph, or roadmap, that captures

the physical and geometric constraints on the dynamics,

control, and sensing of each robotic sensor globally over

the workspace. Using the method of cell decomposition

proposed in [21], the sensor’s roadmap can be obtained

from the geometries of the C-obstacles and C-targets in W .

The roadmap is a directed graph, Gi = (Ci, Ei), where

Ci = {c1, c2, . . .} is a set of nodes representing robot

configurations sampled from the free configuration space,

and Ei is a set of edges, where an edge (ci, cj) ∈ Ei

represents an obstacle-free reachable path from ci to cj .

Given the initial ith robotic sensor’s configuration qi0 =
qi(t = k) for k = 1, the corresponding node in Gi can

be tagged, and used as the root of two connectivity trees

Ti = (Ni, Ei) that are grown by connecting qi0 to its adjacent

nodes in the respective graphs. Each adjacent node thereafter

is connected to its adjacent nodes, and each tree is pruned

incrementally using the principle of optimality [11], [21].

The roadmap is then folded into a dynamic Bayesian

network (DBN) representation of the physical state evolution,

with transition probabilities that are either equal to zero or

one depending on the values in the adjacency matrix of

Gi. Nodes sampled from a C-target are also tagged and

augmented with a child node comprised of the corresponding

target variable, indicating it can be measured when the sensor

is in its parent state. Finally, by augmenting the DBN with

the action and decision nodes, and the potentials defined in

(13) and (14), the final model of the DEP in (3) is obtained

and utilized to compute the optimal strategy for future action

and test decisions using, for example, the following Q-

learning rule,

Q[ξ(k), a(k), u(k)]← (1− φ)Q[ξ(k), a(k), u(k)] + (15)

φ{U [ξ(k), k] + γk max
u(k),a(k)∈U

Q[ξ(k + 1), a(k), u(k)]},

where φ ∈ (0, 1), R[·] = U [·] is the immediate reward

evaluated by the potential field in (13), and γk is the

discount factor. Then, assuming two functions Q(·) and V (·)
that satisfy Bellman equation exist, they specify an optimal

greedy navigation policy σ∗, where:

V [ξ(k + 1)] = (16)

max
u(k+1),a(k+1)∈U

Q[ξ(k + 1), a(k + 1), u(k + 1)],

and

γ∗
k = argmax{Q[ξ(k), a(k), u(k)]}.

The mobile sensor’s roadmap and potential field in (13)

are used to estimate the optimal future reward Q at k + 1
and the immediate reward at k, respectively.

V. SIMULATION RESULTS

To illustrate the above methodology and cooperation be-

tween heterogeneous agents, we present a scenario whereby

the effect of the sensors’ field-of-view (FOV) on the perfor-

mance of the system utilizing the methods presented in this

paper can be explored. We employ two agent types. The

first is a quadrotor type unmanned aerial vehicle (UAV),

modeled in simulation using holonomic kinematics, which
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is unimpeded by obstacles in the environment and has a

downward looking sensor with large range and wide FOV.

The second type of agent is an unmanned ground vehicle

(UGV), modeled with nonholonomic kinematics. The UGV

has a forward looking directional sensor with limited FOV.

Both sensors are modeled on a normal distribution, with the

UGV sensor more accurate than the UAV sensor, but with

reduced range.

Both sensors are working in a square environment 10×10
m2 to search an area as directed by a higher level mo-

tion planner for potential targets at certain high probability

locations in the environment. These simulations focus on

cooperative navigation of the UGV to the points of interest

while avoiding obstacles using combined measurement data

from both sensors.

In the scenario, the parameters for the agents are picked to

simulate cheaper sensors that are less accurate, such as might

be used on a production unit. The UAV sensor has a coverage

radius of 1.5 m, a FOV of 360◦ (in the 2D projection), and

zero-mean measurement noise with σ = 0.15. The UGV

sensor parameters are a coverage radius of 0.75 m, a 45◦

FOV, and zero-mean measurement noise with σ = 0.05.

The UGV utilizes a simplified version of the potential

field navigation strategy given by (13). The UAV simply

follows a proportional controller to pre-fly the waypoint

path to be traversed by the ground vehicle, at the same

time the ground vehicle navigates the environment. Because

the UAV has a greater velocity than the ground vehicle it

visits the waypoints first, receiving noisier initial readings

of the obstacle locations. We currently implement a last

measurement only format for the UGV navigation, where,

in order of primary selection, a measurement is a UGV

sensor measurement, a UAV sensor measurement if no UGV

measurement is available, and if no previous measurement

is available, no measurement data is stored. We intend to

show that the dynamic programming approach to this hybrid

system framework will improve the performance of the UGV

navigation.

VI. CONCLUSIONS

In this paper we present a hybrid system framework and

outline an approximate dynamic programming approach to

cooperative navigation for heterogeneous sensor networks.

It is assumed that the ground vehicle has a small sensor

footprint compared with the sensor onboard the aerial ve-

hicle. The proposed navigation strategy combines artificial

potential functions for target pursuing with ADP for learning

C-obstacles on line. The controller for the UGV is developed

from the potential functions computed using the available

information provided by heterogeneous sensors, and then

iteratively refined as the potential functions are refined when

more precise information becomes available.

In this work, the mission planner is initially modeled by

a centralized discrete-event coordinator that resides on a

remote computational facility or onboard one of the vehicles.

Investigating multiple, decentralized mission planners is part
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Fig. 2. Scenario: Black objects are obstacles, green dots are measurements
of the obstacles, the blue arrow represents the UGV with a directional FOV
outlined in blue, magenta is the quadrotor UAV with circular coverage area
in the 2D projection outlined by the magenta circle. Both UAV and UGV
started in the bottom left corner, with the dotted lines showing their path
from initial position. After 33 s, note the noisier measurements around
obstacles that the UAV has seen but the UGV has not, for example the
rectangular object at the bottom right corner. Also note the higher accuracy
measurements of obstacles that the UGV has visited (rectangle in the bottom
left).

of our future research agenda. Finally, we are also interested

in considering more advanced ADP and online learning

algorithms that can be integrated in the networked hybrid

dynamical system proposed herein.
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Fig. 3. Scenario: With limited FOV, the ground vehicle is slow navigating
the obstacle course. After 105 s seconds have elapsed, note that UGV is
still attempting to navigate around the obstacle between the first and second
goal point. The ground vehicle is stuck in this location due to local minima
along the obstacle’s edge. The UGV was not able to visit all the target/goal
points.
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