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Abstract— A geometric optimization based approach to de-
ploy a mobile sensor network for the purpose of detecting
and capturing mobile targets in the plane is presented in
[1]. The sensing-pursuit problem is motivated by the Marco
Polo game, in which the pursuer Marco must capture multiple
mobile targets that are sensed intermittently, and with very
limited information. In this paper we extend the results in
[1] by providing (i) a complexity analysis of the proposed
cell decomposition planning algorithm, and (ii) a testbed that
allows to experimentally verify the applicability of the proposed
pursuit methodology.

I. INTRODUCTION

Coordination of robotic networks and sensor planning

approaches have received considerable attention in recent

years. Examples include landmine detection by multiple and

heterogenous sensors installed on ground vehicles; sensor

networks for monitoring endangered species in their nat-

ural environment; robot-installed sensors to monitor urban

environments, production in manufacturing plants, and civil

infrastructure; and intruder and target detection systems.

These networks are expected to operate reliably in dynamic

environments with little human intervention.

Several motion planning approaches have been proposed

in the last few years, see for instance [2]. Most of the research

relating sensor measurements to robot motion planning has

focused on the effects that the uncertainty in the geometric

models of the environment has on the motion strategies of

the robot [3]. Hence, considerable progress has been made

toward integrating sensor measurements in topological maps

[4], and on planning strategies based only on partial or non-

deterministic knowledge of the workspace [5]. Another line

of research has investigated the extension of motion planning

techniques to the problem of sensor placement for achieving

coverage of unstructured environments [6]. Area coverage

aims at ensuring that every point in a two-dimensional space

is within the range of at least one sensor in the sensor

network (e.g., [7]). Coverage control for mobile sensors

has been treated in [8] using Voronoi diagrams to achieve

uniform sensing performance over an area. Another well-

known formulation of coverage is the art-gallery problem

or line-of-sight visibility, where multiple sensors are placed

R. Fierro is with the MARHES Lab, Electrical & Computer Engineering
Department, University of New Mexico, Albuquerque, NM 87131-0001,
USA rfierro@ece.unm.edu

S. Ferrari is with the Laboratory for Intelligent Systems and Controls, De-
partment of Mechanical Engineering & Materials Science, Duke University,
Durham, NC 27708-0300, USA sferrari@duke.edu

C. Cai is a Postdoctoral Research Associate of Electrical and
Computer Engineering, Duke University, Durham, NC 27708, USA
cc88@duke.edu

such that the targets in the workspace are in the line-of-sight

of at least one sensor [9].

In our previous work [1], we developed a methodology

that employs cell decomposition algorithms to obtain a

graph representation of the robot configuration space that is

void of obstacle and enables target detections by obtaining

a decomposition in which observation cells are used to

represent configurations intersecting the targets. The simple

philosophy behind this approach is that while the geometry

of the robot must not intersect that of an obstacle to avoid

collision, the geometry of the sensor field-of-view must

intersect that of a target to enable a detection. At any given

time, the pursuers must also detect new targets, for which

there is no available information. More specifically, a set

of policies that optimize a tradeoff between these multiple

objectives is obtained by searching the robot configuration

graph, and by performing inner-loop trajectory generation

and tracking. The path obtained from the configuration graph

is one that maximizes the overall probability of detection,

and minimizes the distance traveled by the pursuer to detect

or capture the mobile targets.

In this paper we present a complexity analysis of the cell

decomposition algorithms used in the sensor path planning

strategy outlined above. The complexity analysis is based on

the approach described in [10], [11]. Moreover, a heteroge-

nous multivehicle experimental testbed is briefly described

and preliminary experimental results are given.

The remainder of the paper is organized as follows. We

formulate the sensing-pursuit problem in Section II. Section

III describes the information-driven framework that allows

a group of multiple sensor agents to detect and intercept

dynamic targets. Section IV contains a complexity analysis

of the cell decomposition algorithm. An experimental testbed

for pursuit-evasion games is outlined in Section V. Finally,

we draw conclusions in Section VI.

II. PROBLEM STATEMENT AND ASSUMPTIONS

We consider a pursuit-evasion game in which N pursuers

comprised of robotic sensors attempt to detect and pursue

M active targets. The game takes place in a square area-

of-interest S ⊂ R
2, with boundary ∂S and dimensions

L × L. S is populated by n fixed and convex obstacles

{O1, . . . ,On} ⊂ S. The geometry of the ith pursuer is

assumed to be a convex polygon denoted by Ai, with a

configuration qi that specifies its position and orientation

with respect to a fixed Cartesian frame FS . The input to

pursuer i is ui
p = [vi

p ωi
p]

T , and up ∈ U ⊂ R
2. The set

of all pursuers in S is denoted by P , and IP is the index
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set of P . Targets τj are assumed to move along straight

lines. Exceptions to this rule are maneuvers used to avoid

an obstacle or another target. The heading angle of a target

j is denoted by θj
τ . The set of all targets is denoted by T ,

where IT is the index set of T , and targets are assumed to

enter S according to a random Poisson process with density λ
[12], which is possibly unknown. The maximum translational

speed Vp,τmax of all sensors and targets is known, and

Vpmax > Vτmax [13]. While sensors can move with any speed

in [0, Vpmax ], it is assumed that the speed of every target is

uniformly distributed in [Vτmin , Vτmax ], with Vτmin > 0.

In the sensing problem, the paths of the targets are

represented by rays or half-lines, denoted by Rj
θ , that are

unknown a priori. The sensors installed on the robotic

platforms are assumed to be isotropic or omnidirectional

and, therefore, their field of view is represented by a disk

Di = D(pi, ri) ∈ S with radius ri, and centered at pi. The

sensor i installed on the robot Ai has the ability to detect

the j target when Di∩Rj
θ 6= ∅. The measurements obtained

from each detection can be associated with a particular target

using a data-association algorithm (such as [14]), although

they may still be subject to errors and false alarms. Then,

at any time t, the set of detections associated with the a

target j is denoted by Zt
j , and symbolizes all measurements

of the target positions τj obtained since the time of the first

detection t1, e.g., Zt
j = {zj(t1), zj(t2), . . . , zj(tl)}. Since

the sensors produce few individual observations for each

moving target (e.g., due to their limited range) and are subject

to frequent false alarms, the approach known as track-before-

detect [15] is used, in which a set of k spatially distributed

sensor detections are used to estimate the target track, Rj
θ ,

from Zt
j , before declaring a positive detection. Every track

may be updated every time a new measurement becomes

available from its target. Once a target track has been formed

from at least k sensor detections that are obtained at different

moments in time, an upper-level controller declares that the

target has been positively detected, and deploys a pursuer to

capture it. The inputs to the pursuers take into account the

information available from all targets, Zt = {Zt
j | j ∈ IT },

in order to optimize their sensing and pursuit performance.

In the problem considered here no communication be-

tween targets and pursuers takes place, but the pursuers may

obtain only position information about the targets when they

enter their field of view. Based on the previous discussion,

the sensing-pursuit problem can be stated as follows:

Problem 2.1: Given a set P of N pursuers and a set T
of M targets moving within a specified game area S, find

a set of policies ui
p = ci(qi, Z

t) ∈ U ∀i ∈ IP which

maximizes the total sensing reward, and minimizes the total

time required to capture targets in T that have been positively

detected.

To complete the formulation of above problem, we define

the sensing reward in terms of the probability of detection,

as explained in Section III. Also, sensors operate in one of

two modes, detection or pursuit, depending on whether their

primary objective is to detect targets or to capture them. Also,

we assume that sensors have sufficient processing capabilities

to determine the time and position of a detection event from

their raw measurements. In this problem, target tracks are

classified based on the following definitions:

Definition 2.2: An unobserved track is the path of a target

j for which there are no detections at the present time, t, thus

Zt
j = ∅.

Definition 2.3: A partially-observed track is the path of

a target that is estimated from 1 < l < k individual

sensor detections obtained up to the present time, t, i.e.,

Zt
j = {zj(t1), . . . , zj(tl)}.

Definition 2.4: A fully-observed track is the path of a

target that is estimated from at least k > 2 individual

sensor detections obtained up to the present time, t, i.e.,

Zt
j = {zj(t1), . . . , zj(tm)}, where tm ≥ tk.

The parameter k is chosen by the user based on the

reliability of the sensors detections and on the cost associated

with deploying a pursuer to capture the target. For instance,

in [15] it was found that from a geometric point of view

k = 3 is a convenient number of detections for estimating

a track in the absence of false alarms. Only after a track

is fully-observed, the target is considered to be positively

detected. Then, the estimated track is used by an upper-level

controller to decide which pursuer to deploy and switch to

pursuit mode, and to compute a pursuit strategy online.

The objectives of the sensors in detection mode are

to (i) avoid obstacles; (ii) maximize the probability of

cooperatively detecting unobserved tracks; and (iii) maxi-

mize the probability of detecting p partially-observed tracks

{R1
θ, . . . ,Rp

θ}. On the other hand, the objectives of a sensor

in pursuit mode are to (i) avoid obstacles; and (ii) minimize

the time required to capture a positively detected target j.

The following section describes a methodology for plan-

ning the motions of the pursuers, in order to meet all of the

above objectives.

III. INFORMATION-DRIVEN SENSOR PLANNING

The methodology described in this section aims at de-

veloping policies that meet multiple sensing and motion

objectives for sensors in detection or pursuit mode. The

primary purpose for planning the motion of the pursuers in

detection mode is to obtain measurements from the targets.

But since the target tracks may be unknown (unobserved) or

uncertain (partially-observed), the sensors motion cannot be

planned using classical motion planning objectives, such as,

minimizing distance and reaching a final configuration [16],

[17]. In fact, the positions and field-of-views of all sensors

must be taken into account to plan the motion of a sensor

that performs coordinated detections. Let Cfree denote the

robotic sensors’ configuration space that is free of obstacles,

thus:

Definition 3.1: A void cell is a convex polygon κ ⊂ Cfree

with the property that for every configuration qi ∈ κ the

sensor i has zero probability of detecting a partially-observed

target.

In order to account for the geometries and dynamics of

the sensors’s field of view and of those of the targets, we

also introduce the following definition:
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Definition 3.2: An observation cell is a convex polygon

κ ⊂ Cfree with the property that for every configuration

qi ∈ κ the sensor i has a non-zero probability of detecting a

partially-observed target.

Void and observation cells are determined such that an

obstacle-free sensor path can be easily computed between

any two configurations inside each cell. Furthermore, two

cells are said to be adjacent if they share a common boundary

and, therefore, the sensor can move between them without

colliding with the obstacles. Typically, all cells are computed

such that they do not overlap. In Section III-A, a method

for obtaining these cells for the system in Problem 2.1 is

presented. Subsequently, they can be used to obtain the

following graph:

Definition 3.3: A connectivity graph, G, is an undirected

graph where the nodes represent either an observation cell

or a void cell, and two nodes in G are connected by an arc

if and only if the corresponding cells are adjacent.

The purpose for deploying sensors in detection mode is to

detect unobserved and partially-observed target tracks. Thus,

the sensing objectives are expressed in terms of a reward

function that represents the improvement in the overall

probability of detection that would be obtained by moving

from a configuration in one cell, qi ∈ κl, to a configuration

in an adjacent cell, qi ∈ κı,

R(κl, κı) = PR(κı) + ∆P k
S (κl, κı), (1)

where PR is the probability of detecting a target with a

partially-observed track, and ∆P k
S is the gain in the prob-

ability of cooperatively detecting unobserved tracks. Since

these quantities may vary slightly within each cell, they are

computed in reference to the geometric centroid, where q̄i

denotes the centroid of cell κi. As illustrated in the following

section, the value of the reward function is attached to every

arc in G. Then, the optimal sequence of cells or channel that

maximizes the total reward of a sensor in detection mode is,

µ∗ ≡ {κ0, . . . , κf}∗ = arg max
µ

∑

(κl,κı)∈µ

R(κl, κı), (2)

where, κf is chosen as the observation cell with the highest

cumulative probability in G, i.e., κf = arg maxκ
i
(PR(κi)+

P k
S (κi)). Once the connectivity graph G has been obtained,

the optimal channel µ∗ is computed using the A∗ graph

searching algorithm [16]. Once µ∗
i is determined for sensor i,

it is mapped into a set of waypoints, which in turn are used

by a trajectory generator and trajectory tracking controller

to determine its policy ui
p = ci(qi, Z

t). The values of

the reward function (1) attached to the arcs, κ0, and κf

are different for each sensor. Therefore, the A∗ algorithm

must be run during every round of the game which involves

moving a sensor in detection mode.

A. Probability of detection for partially-observed tracks

The partially-observed tracks are viewed as an opportunity

for obtaining additional measurements before investing in

the costly resources needed to capture a target. In order to

account for the geometry of the sensor field-of-view Di, the

platform Ai, and the target track Rj
θ , we present an approach

motivated by cell decomposition algorithms [16]. The simple

philosophy behind this approach is that, in sensor planning

problems, targets play a role opposite to that of obstacles

in robot motion planning. While in robot motion planning

the geometry of the robot must avoid intersecting that of

any obstacle, in sensor planning the geometry of the sensor

field-of-view must attempt to intersect that of the target.

Let FAi
denote a moving Cartesian frame embedded in

Ai. The configuration qi specifies the position and orientation

of FAi
with respect to the inertial frame FS . If we assume

that Di and Ai are both rigid, then qi also specifies the

position of every point in Di (or Ai) relative to FS . Using

the latest estimate of a partially-observed track, it is possible

to identify the subset of S where the sensors may obtain

target measurements:

Definition 3.4 (C-target): The target track Rj
θ in S maps

in the ith sensor configuration space C to the C-target region

CRj = {qi ∈ C | Di ∩Rj 6= ∅, i ∈ IP , j ∈ IT }.

The boundary of a C-target is the curve followed by the

origin of FAi
when Di slides in contact with the boundary

of Rj
θ . With the assumed robot and sensor geometries, the C-

target boundaries are obtained by growing Rj
θ isotropically

by the radius ri within S. C-obstacles are similarly defined

[16] and are used together with the C-targets introduced

above to obtain the connectivity graph of each sensor.

Let COk denote the C-obstacle obtained from the kth

obstacle in the game area, Ok ⊂ S. In obstacle avoidance

algorithms, the obstacle-free configuration space Ci
free =

C \⋃n
k=1 COk is decomposed into a finite set of cells,

{κ1, . . . , κf}, within which a path free of obstacles can be

easily generated. In order to obtain a decomposition that

includes observation cells (Definition 3.2), we present the

following method:

(I) Decompose the configuration space that is void of any

C-obstacles or C-targets and is defined as Ci
void =

C \ {⋃n
j=1 COk ∩ ⋃p

i=1 CRj},

(II) Decompose each obstacle-free C-target,

CRj \
n
⋃

j=1

COk, j = 1, . . . , p

thereby obtaining the set of observation cells.

(III) Construct a connectivity graph G using both void (I)

and observation cells (II).

When the C-targets are grown isotropically by a disk (Fig.

1), the decomposition may involve generalized polygons.

A sweeping-line algorithm can be used to decompose a

non-convex generalized polygon with ν vertices into O(ν)
convex generalized polygons in O(ν log ν) time (see Section

5.1 in [16]). Alternatively, the pill-shape C-targets can be

approximated by a convex polygon. An illustrative example

of workspace and corresponding cell decomposition is shown

in Fig. 1. The connectivity graph constructed using this cell

decomposition is illustrated in Fig. 2, where the observation

cells are shown in grey and the void cells are white. Each

node in the connectivity graph corresponds to one polygonal
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cell in Fig. 1, where the cells are numbered from left to right

and from top to bottom.

Partially-observed track,

Rθ

A

D

S

y

r

L2

L1

r

CO k

CR

x

Target

∂S

Fig. 1: Example of cell decomposition (dashed lines) for a

workspace with four C-obstacles.

N

N2

N6
N3

N5

N7

N13

N9

10

N19

N15

N18
N4

N8

N1

N14

N11

N12

N16

N17

Fig. 2: Connectivity graph obtained from the cell decompo-

sition in Fig. 1.

Now, we are ready to show one information benefit

function, PR, used to compute the reward (1). Suppose κl

is one of the observation cells that are obtained from the

decomposition of the jth C-target: κl ⊂ CRj . Then, one

benefit of visiting the lth cell in G is the probability of

detecting the target j

PR(κl ⊂ CRj) = Pr{Dji | eji ≤ ri}, (3)

where Dji represents the event that the ith sensor reports

a detection when the jth target comes within its detection

range, and eji denotes the Euclidean distance from the

jth target position to the sensor ith. In this paper, PR

is assumed to be uniform over CRj for simplicity, and

when a cell is void PR(κl) = 0 since the sensor field-

of-view will not intersect any of the p partially-observed

tracks. In general, it can be estimated from knowledge of

the measurement process and can be made dependent on time

and on the distance from the target [18]. The probability of

cooperatively detecting unobserved tracks is discussed in the

following section.

B. Search area coverage

At any given time, the team of sensors must also detect

unobserved tracks. These tracks may belong to targets that

only recently entered the search area S or that have been

previously missed. Since the targets are always in motion,

maximizing area coverage or other coverage formulations

may not lead to effective cooperative detections. In proximity

sensor systems, for example, detections take place at different

moments in time anywhere in S. Once a sufficient number

of detections k has been obtained from the same target and

can be used to form a feasible track a positive detection

can be declared with confidence. The quality of service of

an omnidirectional sensor network performing cooperative

detections of moving targets is referred to as track coverage

[19]. Since track coverage of a sensor network can be

assessed without any prior knowledge of the target tracks, it

is used to determine the sensors’ ability to detect unobserved

tracks. The details of computing the gain in the probability

of detecting unobserved tracks ∆P k
S are presented in [1],

[19].

One goal of the sensors in detection mode is to detect

unobserved tracks traversing S. When a sensor may move

to a cell κl, the network configuration can be approximated

by Xl = {p1, . . . , pi ⊂ q̄l, . . . , pN}, letting the center of the

sensors’ field-of-view, Di, coincide with the centroid q̄l of

κl. Thus, the gain in probability of detection for unobserved

tracks that is associated with moving between two nodes

κl → κı in G is

∆P k
S (κl, κı) ≡ P k

S (Xı) − P k
S (Xl) (4)

An effective control approach by which sensors in pursuit

mode capture and intercept targets whose tracks have been

fully observed and, thus, have been declared positively

detected is presented in [20].

IV. COMPLEXITY ANALYSIS

Previous work on the correctness and complexity of

pursuit-evasion games has focused on graphs, in which one

or more pursuers attempt to capture one target by moving

between adjacent nodes in a graph (see [13], [21], [22] for

a comprehensive review). In these problem formulations,

the sensing ability and field-of-views of the pursuers are

not taken into account, and the pursuit strategies consist

of randomized searches on the graph, because the pursuer

cannot see the evader until the former is caught. Also, only

one evader who may be restricted or unrestricted to the

graph is considered during each game. By computing the

connectivity graph by the methodology in Section III-A,

these results could potentially be extended to the pursuit-

evasion game in Problem 2.1. For example, if the strategy

in [21] is implemented for one pursuer and one evader

(N = M = 1), then pursuer captures the evader on an

n-node cycle with probability at least Ω(1/ log(nG)), and

the game ends in O(nG · log(diam(G))) time, where nG is

the number of nodes in G and diam(G) is the diameter of
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the graph. However, by not taking into account the sensing

ability of the pursuers and the consequent knowledge of

fully-observed tracks (i.e., the presence of observation cells),

these strategies are not very effective at capturing multiple

evaders in large game areas. In these applications, nG and

diam(G) are very large, therefore the probability of capturing

the evaders can become very small and, at the same time,

the game end time O(M · nG · log(diam(G))) can become

very large.

The correctness and game-end time for the strategy pre-

sented in Section III are analyzed by assuming that the

time required to maneuver around obstacles or to turn are

negligibly small compared to the duration of the game. Let

(̄·) denote the expected value (or mean), and ⌊·⌋ denote the

floor function. Then, the performance of the sensor network

depends on the dimension of the game area L, the number

of sensors N , the number of required detections k > 2, and

the field-of-view radius ri, which here is assumed constant

ri = r, ∀i for simplicity, as summarized by the following

result.

Theorem 4.1: The pursuit-evasion game in Problem 2.1 is

guaranteed to terminate provided,

N ≥ Nmin =
1

2

[⌊

2L

r

⌋

+ k

∣

∣

∣

∣

⌊

2L

r

⌋

− k + 2

∣

∣

∣

∣

]

, (5)

and requires a time tf ≤ Tu where

Tu =
e(M !)1/M

λ
+

(
√

2L − 2r)

Vτmin

(6)

+

[⌊

(k − 2)M

N

⌋

+ 1

]

(
√

2L − r)

V̄p
+

r

(V 2
pmax

− V̄ 2
τ )

+

⌊

M

N

⌋ (V̄τ +
√

2V 2
pmax

− V̄ 2
τ )

(V 2
pmax

− V̄ 2
τ )2

L,

to capture all M targets in T . If the network contains at least

Nℓ =
1

2

[

ℓ

⌊

2L

r

⌋]

− 4ℓ(ℓ − 1) + (k − 2)M (7)

+

∣

∣

∣

∣

ℓ

⌊

2L

r

⌋

− 4ℓ(ℓ − 1) − (k − 2)M

∣

∣

∣

∣

,

sensors, with ℓ = 1, . . . , ⌊L/4r⌋, then all targets in T can

be captured in a time tf ≤ Tℓ, where

Tℓ =
e(M !)1/M

λ
+

1

Vτmin

{√
2

2
L − 2

√
2r(ℓ − 1)

}

+
1

Vτmin

∣

∣

∣

∣

∣

2r[1 +
√

2(ℓ − 1)] −
√

2

2
L

∣

∣

∣

∣

∣

+
(
√

2L − r)

V̄p
+

r

(Vpmax − V̄τ )
, (8)

and the game terminates in tf ≤ Tℓ ≤ Tu, where Tℓ = Tu

when ℓ = 1 and k = 3.

Based on the above result, Nmin is the minimum number

of sensors needed to guarantee that the game will end in less

than Tu time. But, if more sensors can be utilized, then N

can be increased according to (7) to decrease the maximum

time required to end the game, as shown by (8).

In Problem 2.1, a round is defined as the deployment of

one sensor in either detection or pursuit mode, and it is

initiated based on the measurement set Zt when a new target

track becomes either partially observed or fully observed.

Thus, the computational complexity of the methodology in

Section III is assessed based on the calculations required by

each round. Let neO
denote the number of edges required to

describe all n obstacles in S, neR
= 2p denote the number

of edges required to describe all p tracks that have been

partially observed up to the present time. Then, if nκ and

nGa
are the number of observation cells and the number of

arcs in G, respectively, δb is a constant interval to discretize

∂S, and nδ ≡ L/δb, the following result can be obtained for

the method in Section III.

Theorem 4.2: In every round of the pursuit-evasion game

in Problem 2.1, the running time required to deploy a sensor

in detection mode is,

Γd = O(ne(O+R)
log ne(O+R)

+ neR
neO

log neO
)

+ O(nκnδm(k + log m)) + O(n2
G + nGa

), (9)

where ne(O+R)
:= neO

+ neR
and m =

(

N
k

)

is given

by the binomial coefficient, and the running time required to

deploy a sensor in pursuit mode is,

Γp = O((nG + nGa
) log2 nG). (10)

Clearly, depending on the characteristics of the robotic

sensors and of the workspace S only one of the three terms

in (9) will dominate over the others, providing the overall

running time complexity of the detection round. Due to space

limitations proofs of the theorems are omitted here.

V. MULTIVEHICLE PURSUIT-EVASION

EXPERIMENTS

This section describes a pursuit-evasion experiment using

several robots from the heterogeneous MARHES multivehi-

cle platform [23]. Essentially, the experiment uses cameras

which are placed at known locations within a secure area

to monitor for intruding robots. When an intruder robot is

detected within the secure area, a pursuer robot is dispatched

to intercept the intruder.

1) Experimental Objectives: The goal of this experiment

is to use pursuer robots to intercept intruder that are being

tracked with a set of cameras. In the remainder of this

subsubsection we formally state our experimental objectives

and assumptions.

At the beginning of each experiment, N pursuer robots

are placed with known location and orientation qi(0) =
[xi(0), yi(0), θi(0)] along the boundary ∂S. These robots

are nonholonomic vehicles with maximum linear velocity

Vp max and angular velocity Ωp max, respectively. At any

given time during the experiment, a pursuer robot will be

in one of two modes. Pursuer robots in pursuit mode have

been assigned a target location but have not yet reached that
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location. When a pursuer robot has not been assigned a target

or has reached its last target, it enters standby mode. For this

experiment, invading or target robots are assumed to travel

in straight lines with fixed velocities. Thus, these robots

can be completely specified using four parameters including

pτ (0) = [xτ (0), yτ (0), θτ ] and vτ , where pτ (0) represents

the initial position and orientation of the target, and vτ is the

target’s speed. In order to ensure that the pursuer robots can

capture the targets, we assume Vp max > ve for all pursuers

P and intruders T .

In order to monitor for targets, a set Q of cameras are

placed along the boundary ∂S at known locations pc(0) =
[xc(0), yc(0), θc(0)]. In addition, each camera’s depth of

view and field of view are assumed to be known. When

combined with the camera’s orientation, these two values

can be used to determine a cone of visibility V ∈ R
2.

Each camera’s cone of visibility should lie at least partially

within S. We assume that a method exits to uniquely identify

target robots that are within the cone of visibility and to

localize them with respect to a fixed frame of reference

which is attached to the camera. Based on knowledge of pc,

a coordinate transformation can then be applied to convert

these measurements to a global frame FS . Each of the

cameras can be configured in two modes including static

sensor mode and pursuer camera mode. A pursuer camera is

attached to one of the pursuer robots and thus moves with the

robot. Static cameras are fixed at their initial positions during

the entire experiment. We can now state the experimental

objective formally as follows.

Objective 1: Given a set of cameras Q and pursuer robots

P , monitor the region S ⋂

(
⋃

i Vi) for target robots. Observe

each target τi ∈ T and continue taking measurements until

its path and velocity can be estimated. Once target τi’s path

has been identified (that is, pi
τ (0) and vi

τ are known), send

the a pursuer robot from the set of pursuers currently in

standby mode to intercept. When multiple possible pursuers

could be chosen, chose the one which can reach the intruder

fastest.

To facilitate implementation of the system’s monitoring

and pursuit abilities, the system architecture is organized

into three key components including camera modules, robot

modules, and a centralized coordinator. Since the target

robots are traveling in straight lines, their implementation

is straightforward and will not be discussed further here.

A diagram of the architecture for monitoring and pursuit is

shown in Figure 3.

The central component of the system architecture is a coor-

dinator application which consists of three main components.

First, the camera control client is responsible for connecting

to each of the camera servers and downloading data about

detected targets. Second, the robot control client submodule,

is responsible for converting the detection database into

estimates of each target’s path and velocity. Once these

calculations are complete, the robot control client submodule

assigns a pursuer robot to intercept the target. The final

submodule is the heads up display (HUD). This submodule

provides a graphical display of the experiment’s progress.

Fig. 3: The monitoring and pursuit architecture shown in this

figure consists of three key components including camera

modules, robot modules, and a centralized coordinator.

Feedback is provided in two forms. First, the user can select

from any one of the camera modules and view that camera’s

video over the wireless network. The second component is

a two dimensional drawing of the experiment’s state. The

secure area is drawn using dark blue lines. Additionally the

positions and orientations of all cameras and all pursuers are

indicated on the display. Each camera’s cone of visibility V is

displayed as well so that the coverage of the security area can

be visualized. As detections are made, they are shown using

color coded dots to indicate which camera they are from.

Once an target’s path is identified, the track is drawn on the

display as well. At this point a pursuer will be assigned for

interception and the HUD shows its anticipated trajectory.

Finally, as the robot moves its odometer is recorded and the

actual trajectory is displayed as well.

2) Experimental Results: Using the experimental setup

discussed above, two target robots were driven simultane-

ously through the security region. In this experiment, the

target speeds were set to approximately one-half of the

maximum linear velocity of the pursuer robots. Figure 4

shows snapshots of the HUD at several key points during

the experiment. The initial setup of the experiment is shown

in (a). As the two invaders begin to move through the security

region, detection points start to appear as shown in (b). Since

the two intruders have different NameTags, the coordinator

can distinguish between them. Detections of one invader are

outlined in yellow while detections of the other are in red.

After a fixed number of detections occur, the coordinator

estimates the intruder’s path (red line) and velocity as shown

in (c). Based on these values, a red circle which indicates the

intruders estimated position and orientation is drawn as well.

The robot in the lower left corner is assigned to intercept

and the green line represents the anticipated trajectory. Soon

afterward, the second invader’s path is identified as well and

the yellow path is drawn as shown in (d). The one remaining

pursuer robot in standby mode is assigned to intercept and

again the anticipated trajectory is shown in green. In (e) we

see that both the robots have moved and the leftmost pursuer
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has captured its target (It appears to be about half a meter

away due to the physical sizes of the robots). The purple lines

indicate the robots’ true paths according to their odometers.

Finally (f) shows the system state once the experiment has

completed. Overall, we see that the coordinator was able to

successfully identify the invaders’ tracks and assign pursuer

robots to intercept them.

Fig. 4: This figure shows a set of snapshots from the HUD

during one run of the pursuit evasion experiment developed

in this section. Initially the robots and cameras are positioned

as in (a). As the experiment progresses, the intruders are

detected as in (b) and eventually the tracks are identified as

in (c) and (d). Finally, in (e) and (f) we see the pursuer robots

moving to intercept their respective targets.

We are currently working on enhancing the system’s

accuracy and robustness by rectifying the camera images to

account for lens distortion.

VI. CONCLUSIONS

This paper presents a novel information-driven framework

involving multiple robotic platforms that seek to detect

and intercept mobile targets. Multiple objectives, such as

the probability of detecting unobserved tracks, obstacle-

avoidance, and the profit of information associated with

partially-observed targets are addressed using an optimiza-

tion based geometric approach. The complexity of the cell

decomposition planning algorithms is formally analyzed. The

future work of this approach will include fully implementing

the methodology on the testbed shown in Fig. 3.
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