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Abstract— This paper presents a novel optimal control prob-
lem formulation and new optimality conditions, referred to as
distributed optimal control, for systems comprised of many
dynamic agents that can each be described by the same ordi-
nary differential equations (ODEs). The macroscopic system
performance is represented by an integral cost function of
a restriction operator comprised of the probability density
function of the individual agents’ state variables, and of their
control laws. It is shown that, under proper assumptions, the
macroscopic cost can be optimized subject to a hyperbolic
partial differential equation (PDE) that describes the evolution
of the macroscopic state over larger spatial and temporal scales.
This methodology extends the capabilities of optimal control to
complex systems described by numerous interacting dynamical
systems. The approach is demonstrated on a simulated network
of distributed sensors installed on autonomous underwater
vehicles, and deployed to provide track coverage over a region
of interest.

I. INTRODUCTION

Traditionally, optimal control has dealt with a single

dynamical system, such as a vehicle or chemical process,

modeled by a small system of ordinary differential equations

(ODEs). In many complex systems of current interest, rang-

ing from ecology to materials science, and from chemistry

to engineering, the goal is to optimally control numerous

interacting dynamical systems or agents that can each be

described by a detailed microscopic model in the form

of an ODE. The macroscopic coherent behavior or coarse

dynamics of these systems can typically be described by

partial differential equations (PDEs), by deriving them from

first principles, and by mapping the microscopic agents’

states to a macroscopic description using an appropriate

restriction operator that, in this paper, is assumed to be a

probability density function (PDF). In the biological world

and work related to swarm intelligence, intricate high-level

system tasks are accomplished by solving a distributed

optimization problem with many agents by adhering to a set

of simple rules or control laws, such as when colonies of ants

cooperatively forage for food [1]. However, there currently

exist no methods for optimizing the macroscopic behavior

of these systems, subject to microscopic agent dynamics.

In principle, optimal control can be extended to a set

of dynamical systems by considering a set of coupled

differential equations and by formulating their cooperative

performance as an integral cost function of the combined

state and control vectors. However, the computational com-

plexity associated with solving the corresponding optimality
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conditions typically becomes prohibitive when the number

of agents is very large. Therefore, despite its effectiveness at

solving control and optimization problems in dynamic set-

tings, the applicability of optimal control theory to distributed

dynamical systems to date has been very limited. This paper

presents a novel approach, referred to as distributed optimal

control (DOC), which optimizes an integral function of the

macroscopic system state, subject to microscopic dynamics

and control laws. The necessary conditions for optimality

for this novel DOC problem are derived in this paper, and

demonstrated numerically through a mobile sensor network

application.

The development of reliable sensor networks and

autonomous-vehicle technologies are producing advanced

surveillance systems that are characterized by a high degree

of functionality and reconfigurability. Examples include mo-

bile sensor networks for tracking and monitoring endangered

species [2], or for tracking and detecting possible intruders

[3]. Many of these applications employ wireless sensors

that are installed on autonomous vehicles, and are deployed

in large numbers to cooperatively detect, classify, localize,

or track (DCLT) multiple targets in highly-variable and

nonlinear environments. Several authors have addressed the

placement of sensors to provide a desired quality of service

assuming that they remain stationary [4], [5]. Approaches for

generating a sensor trajectory include area coverage [6], [7],

random [7], grid [8], and optimal search strategies [8], [9].

Cooperative control methods have been developed to provide

area coverage [6], [10], or to cooperatively manage the

sensors’ formation in response to the sensed environment [7],

[11]. Although optimal control is arguably the most general

and effective approach to trajectory optimization [12], [13],

its applicability to mobile sensor networks to date has been

very limited [14] due to the lack of suitable DCLT objective

functions, and to the computational complexity associated

with solving the optimality conditions numerically for a large

number of sensors.

Recently, DCLT objective functions for cooperative sensor

networks have been obtained as a function of the sensors’

probability distribution in the region of interest [3], [15]–[17]

When the sensors are stationary, an approximately optimal

sensors’ distribution can be determined in the form of a

parameterized Gaussian mixture by computing the mixing

proportions via genetic algorithms [17]. However, no tech-

nique is presently available for optimizing DCLT objectives

subject to the vehicles’ nonlinear dynamics and to time-

varying environmental conditions.

In this paper, the distributed optimal control approach
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is demonstrated by controlling a large sensor network of

autonomous underwater vehicles (AUVs), where the network

objective is to maximize the probability of cooperative

track detection over a rectangular region of interest (ROI),

and a fixed time interval. The remainder of the paper is

organized as follows. The classical optimal control problem

formulation, and numerical methods of solution are reviewed

in Section II. The distributed optimal control problem and

new optimality conditions are presented in Section III, and a

numerical solution approach is proposed in Section IV. The

application example involving a cooperative sensors network

deployed to detect moving targets is described in Section V,

and the numerical simulations results are presented in Section

VI.

II. BACKGROUND ON CLASSICAL OPTIMAL CONTROL

Optimal control can be considered the most general ap-

proach to optimizing the performance of a dynamical system

over time. Since its inception in the early 1970s, it has

been applied to a variety of dynamical systems, including

physical, chemical, economic, mechanical and air vehicles,

in order to derive optimal control laws or trajectories. The

classical optimal control formulation considers a system

whose dynamics can be approximated by a small system of

ODEs,

ẋ(t) = f [x(t),u(t), t], x(t0) = x0 (1)

where, x ∈ X ⊂ R
n is the system state, and u ∈ U ⊂ R

m is

the control [12]. The dynamics in (1) also depend on system

parameters that represent the physical characteristics of the

system and scale the system’s response to control inputs and

to its own motions. Optimal control seeks to determine the

state and control trajectories that optimize an integral cost

function,

J = φ[x(tf )] +

tf∫
t0

L[x(t),u(t), t]dt (2)

over a time interval [t0, tf ], subject to (1) and, potentially,

to an r-dimensional inequality constraint

q[x(t),u(t), t] ≤ 0r×1 (3)

The necessary conditions for optimality are given by the

well-known Euler-Lagrange equations, which can be derived

using calculus of variations, as shown in [12]. When the

system dynamics are linear and the cost function is quadratic,

a linear-optimal control law known as linear quadratic reg-

ulator (LQR) can be obtained from the matrix Riccati equa-

tion with a terminal condition, and its solutions constitute

necessary and sufficient conditions for optimality. For a

nonlinear system and a general cost function, the necessary

conditions for optimality amount to a Hamiltonian boundary-

value (HPBV) problem for which there are no closed-form

solutions and, therefore, they typically are solved numeri-

cally [12], [18]. As reviewed in [18], numerical methods

for solving optimal control problems can be classified into

direct and indirect methods. Indirect methods solve the

HPBV problem numerically to determine candidate optimal

trajectories known as extremals. Direct methods determine

near-optimal solutions by discretizing the continuous-time

problem about collocation points and then transcribing it

into a finite-dimensional nonlinear program (NLP). The NLP

is then solved using an appropriate optimization method,

such as sequential quadratic programming (SQP) [19]. Direct

methods are typically easier to implement than indirect

methods and can be applied to a wider range of optimal

control problems [20], [21].

If the observation process is uncertain or the dynamic

system is forced by random disturbances, then the problem

is referred to as a stochastic optimal control problem. In

the optimal control literature to date, emphasis has been

placed on the class of stochastic systems with small random

effects because useful solutions are not yet available for the

stochastic optimization of nonlinear systems with random

variables of arbitrary probability distributions [12, pg. 421].

Furthermore, despite its effectiveness at solving control and

optimization problems involving a single dynamical system,

the applicability of optimal control to distributed dynamical

systems to date has been very limited [14]. In principle,

optimal control can be extended to N dynamical systems by

considering N coupled differential equations and by formu-

lating their cooperative performance as a single cost function

of an Nn-dimensional state and an Nm-dimensional control,

where n and m are the dimensions of the microscopic

state and control, respectively. However, the computational

complexity of solving the corresponding optimality condi-

tions typically becomes prohibitive for large values of N .

Additionally, the classical optimal control formulation is not

well-suited to systems where the effects of random inputs

are significant, and to systems in which the macroscopic

dynamics cannot be derived in closed form.

III. DISTRIBUTED OPTIMAL CONTROL

Although optimal control is considered the most general

and effective approach to trajectory optimization [13], [22],

so far its applications to large dynamical systems have been

very limited due to the following limitations: exponential

computational complexity of solutions with respect to the

number of agents N ; existing optimality conditions assume

that random effects are small and can be described by

additive normal distributions with zero mean; and the macro-

scopic analytical description of the system dynamics must

be provided as a set of ordinary differential equations. In

order to overcome these limitations, the proposed research

considers a new optimal control problem formulation that

optimizes the macroscopic performance of the multiscale

dynamical system, which is obtained via an appropriate re-

striction operator and subject to microscopic agent dynamics

and controls. In this paper, the approach is developed for the

case in which the macroscopic description is given by the

PDF of the microscopically evolving agent state, and the

macroscopic evolution equation can be obtained in closed

form from the continuity equation. Future work will consider
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other restriction operators and macroscopic equations, such

as those described in [23].

A. Distributed Optimal Control Problem Formulation and
Assumptions

Consider the problem of optimally planning the trajec-

tories of N cooperative, microscopic dynamical systems re-

ferred to as agents. Each agent may consist of an autonomous

vehicle, sensor, or asset that can be described by a small

system of ODEs,

ẋi(t) = f [xi(t),ui(t), t], xi(t0) = xi0 , (4)

referred to as a detailed equation. Its microscopic, detailed

solution may be obtained numerically by a solution operator

or time stepper T t
d and, in the case of coupled agent

dynamics or controls, must be obtained by solving a system

of N coupled ODEs in the form (4), with i = 1, . . . , N . It

is assumed that all agents operate in a bounded subset of an

Euclidean space, denoted by A, and referred to as the operat-

ing region of interest (ROI), during a time interval [T0, Tf ].
A common feature of complex system is the emergence of

macroscopic, coherent behavior from the interactions of mi-

croscopic agents. We assume that the macroscopic behavior

can be derived from the microscopic one (i.e., the detailed

agents’ equations). Initially, the macroscopic description will

be provided by a time-varying probability density function

(PDF) X(t) = Φt(xi, t) ≡ ℘(xi, t), where ℘ : A× R → R.

In other words, the ith agent is described by a random vector

with an arbitrary probability distribution, ℘(xi, t), which

provides the probability that the ith agent has a state value

xi ∈ A, at any t ∈ [T0, Tf ]. Then the PDF ℘(xi, t), referred

to as agent distribution, can also be viewed as a description

of the density or concentration of agents in space and time.

The agent distribution provides a macroscopic description

of the agents over time and space scales (A and [T0, Tf ])
that are much larger than the microscopic times and spatial

domains (X and [t0, tf ]).
Ultimately, we seek to optimize the macroscopic perfor-

mance of the distributed system, represented as an integral

function of the agent distribution and control,

J = φ[℘(xi(Tf ), Tf )]+

Tf∫
T0

∫
A
L[℘(xi, t),u(t), t] dxidt (5)

subject to the evolution of ℘(xi, t). If every agent can be

modeled by the detailed equation in (4), the macroscopic evo-

lution equation can be derived by considering an infinitesimal

control volume in A and by assuming that all agents remain

in A at all times and are neither created or destroyed. In this

case, the time-rate of change of the distribution ℘(xi, t) is

given by the advection equation, which governs the motion

of a conserved scalar quantity as it is advected by a known

velocity field [24],

∂℘

∂t
= −∇ · [℘(xi, t) ẋi] (6)

= −∇ · {℘(xi, t) f [xi(t),ui(t), t]}

where ∇ · v denotes the divergence of a vector field v ∈
�n. Therefore, the macroscopic evolution equation is a

hyperbolic PDE that provides the dynamic constraints for

the optimization of the cost function (5). The initial and

boundary conditions for (6), as well as an admissability

constraint (A.C.), are given by the initial agent distribution,

℘0(xi), and by the normalization condition that must be

satisfied by the PDF at any time thereafter, i.e.:

I.C.: ℘(xi, T0) = ℘0(xi); (7)

B.C.: ℘(xi ∈ ∂A, t) = 0, ∀t ∈ [T0, Tf ]; (8)

A.C.:

∫
A
℘(xi, t)dxi = 1; (9)

℘(xi 
∈ A, t) = 0, ∀t ∈ [T0, Tf ] (10)

The initial conditions are given by the initial agent distri-

bution, and the admissability constraint is provided by the

normalization condition implicit in the PDF.

The goal of distributed optimal control is to determine

the agent distribution, ℘∗(xi, t), and state-feedback control

law, u∗(t), that optimize the macroscopic performance (5),

subject to (6) and (7)-(10). It can be seen that the above

problem formulation violates the classical optimal control

problem formulation and, therefore, existing optimality con-

ditions [12] cannot be utilized to determine ℘∗(xi, t) and

u∗
i (t). An example of an evolving PDF subject to the

described conditions is illustrated in Figure 1, where an

initial distribution is given and the optimal control law is

assumed to ”move” the distribution in a circle about the

center of the spatial domain at a constant speed, which

causes a spiraling effect. As shown in the next subsection,

the calculus of variations may be used to derive a new set

of optimality conditions that amount to a set of PDEs that

can be solved numerically, as shown in Section IV.

B. Optimality Conditions

Optimal solutions for the optimal control of distributions

are defined by equations that establish necessary and suffi-

cient conditions for minimum cost. According to the calculus

of variations approach [12], necessary conditions must be

satisfied in order for the cost function to be stationary. If

the necessary conditions derived in this section are satisfied,

sufficient conditions guarantee optimality of an extremal

because they establish whether the extremal minimizes or

maximizes the cost function. Once stationary of the cost

function is established, however, the higher-order sensitivity

to control variations can be used to satisfy the sufficient

conditions for optimality. Since the evolution equation (6)

must be satisfied over the entire time interval [T0, Tf ], it

can be written as the following equality constraint using the

product rule,

∂℘

∂t
+ (∇℘) · f + ℘(∇ · f) = 0 (11)

where the functions’ arguments are omitted for brevity. Then,

similarly to static optimization, the above equality constraint

is adjoined to the integrand of J using a time-varying
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Lagrange multiplier λ, to obtain the augmented cost function

JA = φ[℘(xi(Tf ), Tf )] +

Tf∫
T0

∫
A
{L(℘,ui, t)

+ λ

[
∂℘

∂t
+ (∇℘) · f + ℘(∇ · f)

]}
dxidt

= φ[·] +
Tf∫

T0

∫
A

{
L(℘,ui, t) + λ ℘(∇ · f) + λ

∂℘

∂t

+ λ (∇℘) · f} dxidt (12)

The notation ∇℘ = (∂℘/∂xi)
T is a row vector of partial

derivatives or gradient of ℘, and (·) denotes the dot product.

According to the calculus of variations, the integrand of (12)

must satisfy stationarity conditions throughout [T0, Tf ] in

order for JA to be stationary. The following Hamiltonian is

introduced,

H ≡ L(·) + λ ℘(∇ · f) = H[℘(xi, t),ui(t), λ(t), t] (13)

which is a function of the agent distribution, the control,

and the Lagrange multiplier. Subsequently, the augmented

cost function (12) can be simplified as follows,

JA = φ[·] +
Tf∫

T0

∫
A
{H[℘(xi, t),ui(t), λ(t), t] (14)

+ λ(t)
∂℘(xi, t)

∂t
+ λ(t) ∇℘(xi, t) f [·]

}
dxidt

= φ[·] +
Tf∫

T0

∫
A
H[·] dxidt+ (λ ∇℘ xi)|t=Tf

− (λ ∇℘ xi)|t=T0
+

Tf∫
T0

∫
A

d

dt
[λ ∇℘]xi dxidt

by using integration by parts and by noting that∫
A ∂℘/∂t dxi = 0 from (9) and Leibniz integral rule.

For stationarity, the first-order effect of control variations

δui on the cost function must be zero throughout [T0, Tf ].
Because control variations generally lead to subsequent state

perturbations due to the causality of the dynamic equation

(4), the first variation of the augmented cost function is given

by,

δJA =

Tf∫
T0

∫
A

{
∂H[·]
∂xi

δxi(δui) +
∂H[·]
∂ui

δui (15)

− d

dt
[λ ∇℘] δxi(δui)

}
dxidt

+
∂φ[·]
∂xi

∣∣∣∣
t=Tf

δxi(δui)

+ (λ ∇℘ xi)|t=Tf
δxi(δui)

− (λ ∇℘ xi)|t=T0
δxi(δui)

where xi(δui) denotes state variations arising from control

perturbations. It can be assumed that δui have no effects on

the initial state. For an extremum, we must have δJA = 0 for

all δxi, δui, and each part of δJA must equal zero separately

near the optimal solution. Thus, it can be shown that the

equations,

∂H[·]
∂xi

= 0 or (16)

λ̇(t)∇℘ =
∂L[·]
∂xi

+ λ(t) {∇℘(∇ · f)

+ ℘[∇ F]T −∇2℘ f [·]− ∂

∂t
(∇℘)

}

and,

∂H[·]
∂ui

= 0 or
∂L[·]
∂ui

+ λ(t) ℘ [∇G]T = 0 (17)

must be satisfied for T0 ≤ t ≤ Tf , subject to the terminal

conditions

λ(Tf ) ∇℘(xi(Tf ), Tf ) = −∇φ|t=Tf
(18)

where F ≡ ∂f/∂xi and G ≡ ∂f/∂ui denote Jacobian ma-

trices obtained from the linearized dynamics. Additionally,

the optimal distribution must satisfy the initial, boundary,

and admissibility conditions in (7)-(10). Since the inputs,

ui, to the individual agents are controllable, it is reasonable

to assume that in most applications they are a deterministic

function of the state as in classical optimal control, i.e.,

ui(t) = c[xi(t), t], where c : X × R → U is the control

law. Then, the stochastic optimal control of distributions

amounts to determining the optimal agent distribution ℘∗(·)
and optimal control law c∗[·] that satisfy the optimality

conditions (7)-(10),(16)-(18). If these necessary conditions

are met and any control perturbations increase the cost, then

the solution can be considered a minimum-cost extremal.

Otherwise, proving that second or higher-order derivatives

of the Hamiltonian in (13) with respect to the control

are positive definite can be used as a sufficient convexity

condition.

IV. APPROXIMATE NUMERICAL SOLUTION VIA

NONLINEAR PROGRAMMING

The stochastic optimal control of distributions problem

presented is solved numerically to maximize the proba-

bility of track detection for the mobile sensor network,

where the direct approach used implements finite element

and finite difference methods. An approximation of the

optimal sensor distribution can be found in the form of

a time-varying Gaussian mixture with mixing proportions,

w1, ..., wz , and component densities f1(xi, t), ..., fz(xi, t).
The individual component densities are also time-varying

PDFs and are characterized by their means, μj(t), and

standard deviations, σj(t). Each density is completely within

A and zero elsewhere and on ∂A. Then (29),(6), and (7)

are calculated at discrete points in state space and time,

where ℘(xi(tk), tk) =
∑

j wj(tk)fj(xi(tk), tk) = ℘k and

tk = kΔt, k = 1, . . . ,K, with Δxl and Δt as the
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discretization intervals. At each tk, (29) is evaluated using a

multi-dimensional fast Fourier transform (FFT) algorithm, as

is demonstrated in [25]. The values between the collocation

points are taken to be piecewise-constant. The evolution

equation (6) is solved by finite difference, where ρk is defined

as the finite difference approximation of the PDE operator,

such that ℘k+1 = ℘k + Δtρk. The problem can then be

converted into a finite-dimensional nonlinear program (NLP):

minimize J(χ) = Δt

n∑
l=1

Δxl

K∑
k=1

∑
xk∈A

L[℘k,uk, tk], (19)

subject to ℘k+1 − ℘k −Δtρk(χ) = 0,

k = 0, . . . ,K − 1 (20)
n∑

l=1

Δxl

∑
xk∈A

℘(xk, tk)− 1 = 0, k = 0, . . . ,K − 1 (21)

where the variables are the controls and the parameters of the

Gaussian mixture, and the initial and boundary conditions

can be affixed as equality constraints. The NLP gives a

solution, χ∗, that characterizes an approximation of the

optimal distribution, ℘∗(xi, tk), and control history u∗
i (tk).

The optimal macroscopic description can be used deter-

mine the microscopic control laws by utilizing a potential

field method. The potential field method is a well-known

motion planning approach that treats a robot as a particle

under the influence of an artificial potential function, U .

Several potential field methods have been developed for

generating a collision-free path for a single mobile robot

that must travel from an initial configuration to a goal

configuration [26], [27]. In these methods, the potential

function is the sum of an attractive potential Uatt that “pulls”

the robot toward a goal state xf and a repulsive potential

Urep that “pushes” the robot away from the obstacles. After

U is defined, the method is implemented by discretizing

the state space A, and by evaluating the potential function

for all discrete values of xi in A using a finite resolution

grid. A novel potential field method has been developed

in order to determine microscopic control laws for the

individual agents, such that they are “pulled” toward the

optimal PDF, and achieve the desired macroscopic behavior.

The potential function is defined as a linear combination of

an attractive potential, representing the desired distribution

(PDF) of the agents, and a repulsive potential, representing

collision avoidance between agents and with obstacles. When

℘∗
x(xi, tk) is integrated over a region R ⊂ A, it provides

the probability that the ith agent is located in R at tk in

an optimal distribution of agents, i.e., the probability mass

Pr(xi ∈ R, tk) =
∫
R ℘∗(xi, tk)dxi. In order to downgrade

the probability mass based on an actual agent’s state, the

attractive potential is generated using a desired posterior PDF

defined as,

Uatt(xi, tk) = −℘∗(xi, tk) L[xi, tk | X(tk−1)] (22)

where L[·] is the likelihood of state xi at tk, given the

macroscopic state at the previous time step, X(tk−1), based

on the actual agent distribution at tk−1. The repulsive po-

tential Urep is defined as an exponential function of the

shortest distance between the agents and the obstacles, as

in [26], [27]. Then, a stabilizing feedback control law for

tracking the optimal control history, u∗
i (tk), can be obtained

from the negative gradient of the potential function. When

the restriction operator Φt is not a PDF, an appropriate

lifting operator μ can be used to generate the attractive

potential by mapping the optimal macroscopic description

X∗(t) to N consistent and optimal microscopic descriptions,

x∗
1(t), . . . ,x

∗
N (t).

V. DISTRIBUTED OPTIMAL CONTROL APPLICATION TO

COOPERATIVE SENSOR NETWORKS

The novel distributed optimal control methodology dis-

cussed in the previous sections is demonstrated on a cooper-

ative track detection problem in sensor networks, where the

fundamental objective is to provide an optimal probability

that a target track through a rectangular region of inter-

est (ROI) will be detected by various independent sensors

at several times. Cooperative track detection is known to

be well-suited to systems where no knowledge about the

targets is given a priori, and the sensors are likely to

report false alarms while opportunities for correct target

detections are infrequent. Cooperative track detection fuses

multiple closest-point-of-approach (CPA) detections from

different sensors to confirm detections, and the tracks of an

unknown number of targets can be constructed from multiple

consecutive frames of observations provided by low-cost

sensors utilizing multiple hypothesis tracking (MHT) [28] or

geometric invariants [29] algorithms. However, there are no

current methods capable of optimizing the objectives of large

sensor networks subject to nonlinear vehicular dynamics and

time-varying environmental states. It is shown in this paper

that distributed optimal control is effective even with such

difficult conditions.

The network of omnidirectional sensors is deployed in a

ROI, A = [0, L]×[0, L] ⊂ �2, which may be occupied by B
convex obstacles {B1,B2} ⊂ A. The obstacle locations are

not known a priori, but they may be detected at any time

t ∈ [T0, Tf ]. Each sensor is mounted on an autonomous

underwater vehicle (AUV) with the dynamic model,

M(xj)ẍj+h(xj , ẋj)+g(xj) = u(xj), j = 1, . . . ,m (23)

where M(xj) is the vehicle’s inertia matrix, h(xj , ẋj) is the

fictitious force, g(xj) is the gravitational force, and u(xj) is

the torque input [30]. The sensors receive isotropic energy

which is weakened by the environment in relation to the

power law,

Ej(t) = cF [λj(t)]
−α (24)

where λj(t) is the distance between the location of the jth

sensor, xj , and the target position at time t. The attenuation

coefficient, α, and the scaling constant, c, are chosen based

on the environmental conditions and the mechanisms gov-

erning wave propagation. In this paper, both are assumed

to be known and constant. The target source level, F , is

assumed to be constant and independent of the target location
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(a) (b) (c)

Fig. 1. Example of time-varying PDF evolved by the advection equation (6) at times t = 0 hr (a), t = 4 hr (b), and t = 6 hr (c).

and time. A CPA detection then occurs when Ej surpasses

a user-selected threshold value, ϑj . At the time of a CPA

detection event, the jth sensor transmits the values of Ej

and xj to the central processor. Because the received signal

decays over distance, as governed by (24), the greatest range

from which a CPA detection can be made is,

rj = (cF )1/αϑj (25)

If the effect of the vehicle propulsion on sensing is assumed

to be negligible, rj can be estimated based on the existing

environmental conditions. Therefore, it can assumed to be

known and constant for all sensors j = 1, ..., N , and a

CPA may only occur if the target travels within the range

of rj from sensor j. To form an estimated target track, a

minimum of γ elementary detections are needed from γ
distinct sensors within the network. A value of γ = 3 was

found to give accurate tracking by proximity sensors subject

to few false alarms, and errors normally distributed with a

standard deviation of 20% [15].
Since the AUVs use omnidirectional sensors that follow

the isotropic law (24), the field-of-view (FOV) of a sensor,

denoted by Cj(t) = Cj [xj(t), rj ], at time t can be defined

as a disk of constant radius rj and centered at the sensor

position, xj . The sensor can then be viewed as a disk,

illustrated in Figure 2 that moves in A consistent with (23).

Let the FOVs of the full network of sensors be represented

by the set S(t) = {C1(t), ..., CN (t)}, which is characterized

by the sensor ranges, r1(t), ..., rN (t), and the AUV positions,

x1(t), ...,xN (t).
The sensors’ states and the targets’ speeds, headings, and

initial positions are regarded as random variables governed

by the joint PDFs ℘(xj , t), fV (V, t), fθ(θ, t), and fT (xT0 , t),
respectively. The PDF of the sensors’ states is a function of

time since the sensors move to optimize the network’s track

coverage, and the PDFs of the target tracks’ variables are

assumed to be known functions of time computed using the

tracking methods in [15]. Then the detection region, ΩT ⊂ A
is expanded isotropically from the target track, given by

xT (t) = xT0 + V [cos θ sin θ]T dt (26)

over a time differential dt ⊂ [T0, Tf ], where xT (t0) =
xT0 ∈ A. Suppose the event Dj = {0, 1} corresponds to all

 y

xj

�j

rj

   Cj

   x

Fig. 2. Schematic of jth mobile sensor (not to scale) taken from [14].

possible mutually exclusive outcomes of sensor j, where if

Dj = 1, the sensor is reporting a detection, and if Dj = 0,

the sensor is not reporting. If the targets are assumed to

be uniformly distributed in A, the probability of sensor j
reporting a detection is given by the spatial Poisson process,

Pr{Dj = 1 | xT (t) ∈ A} = 1− e−φt (27)

where,

φt(xT0
, V, θ) =

∫ Tf

T0

∫
ΩT (xT0

,θ,V dt)

℘(xj , t)dxdt (28)

is the coverage factor for a sensor sampled from ℘(xj , t)
with a detection region ΩT . The coverage factor of a spatial

Poisson process is defined as the expected number of points

that occur in a subset of a Euclidean space, where every

point that falls within this region results in the occurrence

of a detection event, Dj = 1, for sensor j.

A central processor receives reports of detection events

{D1, ..., DN} from a network of N sensors, and it attempts

to construct a target track from the incoming data. When∑N
j=1 Dj ≥ γ is satisfied, a successful track detection is

declared. Therefore the probability of a successful track

detection by at least γ sensors can be expressed by using

Bernoulli trials [3]. Assuming that individual detection events

are independent and statistically identical, and that φt << 1
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and N >> 1, the probability of successful track detection in

the ROI, A, can then be approximated by an integral function

of the sensors’ PDF,

Pt ≡ Pr(

N∑
j=1

Dj ≥ γ | xT (t) ∈ A) (29)

≈ 1−
∫ Tf

T0

∫ 2π

0

∫ Vmax

Vmin

∫
A
e−Nφt(xT0

,V,θ)fT (xT0
, t)

× fV (V, t)fθ(θ, t)

γ−1∑
z=0

[Nφt(xT0
, V, θ)]z

z!
dxT0

dV dθdt

as shown in [15], where Vmin and Vmax are the minimum

and maximum speeds of the targets, and φt(xT0
, V, θ) is a

function of ℘(xj , t), as seen in (28). This objective function

is in the form of (5) and can be rewritten as the NLP (19)

and solved as a time-varying Gaussian mixture, as described

in Section IV. Then, the microscopic control law defined by

the potential field method dictates the optimal paths to the

individual sensors, which is also explained in Section IV.

VI. SIMULATIONS AND RESULTS

The DOC methodology presented in the previous sections

is demonstrated here on a relatively large simulated ocean

sensor network comprised of N = 50 sensors deployed at

random positions in a ROI, A = [0, L1] × [0, L2] where

L1 = 90km and L2 = 82.51 km. The simulation was

run over the time interval t ∈ [T0, Tf ] where T0 = 0 and

Tf = 12 hr. The sensor positions were updated at intervals

of ts = 10sec, and the optimal distribution was evolved

every Δt = 10min using the finite-dimensional NLP (19).

The joint PDFs fv(V, t) and fT (xT0
, t), which represent

the targets’ speeds and initial positions, are assumed to be

uniform and constant, but the PDF corresponding to the

targets’ headings was set arbitrarily and varies randomly

over the search time duration. The sensor ranges for all

vehicles are set as r = 4 km, and the parameters defining the

repulsive potential were chosen to avoid vehicle collisions

and prevent sensor overlap. When a target travels within

a sensor’s range, the probability of detection is PD = 1,

and a successful track detection is declared when a target is

detected by at least γ = 3 separate sensors. The target source

amplitude is assumed to be constant

At each update, an approximate optimal sensor distribution

is found numerically as a Gaussian mixture with z = 20
components, as described in Section IV. For computational

simplicity, the standard deviation σj of each density j is held

constant, but the means μj and mixing proportions wj are

solved to construct the distribution. At the start of the search

period, the means and mixing proportions are given random

initial values. The sensor network follows the PDF to adjust

towards its optimal distribution by utilizing the potential

field method explained previously. The sensor positions at

several times during the simulation are plotted in Figure (3)

with the PDF in the background. The distribution changes

to maximize detection probability over the search time, and

the sensors are seen to conform to the optimal PDF.

The performance of the network is measured with the

search objective function from Equation (29), where the

network goal is to maximize this value. Table I illustrates

the improvements that are achieved using the distributed

optimal control approach. The optimally controlled network

is compared to cases where the PDF is held constant at

the random initial value, as seen in Figure 3, and where

the distribution is defined by a constant Gaussian mixture

with z = 20 components and uniform mixing proportions

spaced evenly in a rectangular grid formation across the

ROI. While the random distribution is an unintelligent ap-

proach, a network with a uniform distribution is a reasonable

strategy and is treated as a baseline case. As the evenly

spaced distribution performs better than the random case, the

optimally controlled method results in a performance that is

104.9% better than the random distribution and improved

46.0% compared to the uniform case.

TABLE I

PERFORMANCE COMPARISON

Example Case
Successful Detection

Probability, Pt

Random Distribution 0.2122

Uniform Distribution 0.2978

Distributed Optimal Control 0.4348

In this simulation, the sensors are initially deployed at

random locations and subsequently reconfigure based on

the PDF by means of the potential field method. Another

possibility is to first place the sensors at a set of N initial

conditions sampled from an optimized initial PDF, such that

the desired density is followed at all times. The former

approach is used in this paper to illustrate the adaptive

behavior of the method presented.

VII. CONCLUSION

This paper presents a novel optimal control problem

formulation and derives novel optimality conditions for a

class of problems referred to as distributed optimal control.

The approach presented in this paper seeks to extend optimal

control to a class of complex systems comprised of many

dynamical systems that can each be described an ordinary

differential equation, referred to as detailed microscopic

model. Over large spatial and time scales, the interactions of

these dynamical systems, or agents, give rise to macroscopic

coherent behavior that can be described by a macroscopic

state obtained via a restriction operator, such as a probability

density function or higher moments of the agents distribution.

Assuming the macroscopic system state can be described

by the time-varying probability density function of the

agents’ states, and the cost is represented by an integral

function of the macroscopic state PDF, the distributed op-

timal control solution can be obtained by optimizing the

cost function subject to a hyperbolic partial differential equa-

tion known as advection equation. The optimal probability

density function can then be utilized to derive microscopic
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(a) (b) (c)

Fig. 3. Sensor network positions (blue diamonds) and optimal sensor distributions at (a) t = 0 with randomly defined sensor positions and PDF, (b) t =
6 hr, (c) t = 12 hr.

control laws by means of a potential navigation function. The

effectiveness of the approach is demonstrated on a distributed

mobile sensor network of AUVs deployed in a region of

interest near the coast of New Jersey to cooperatively track

moving targets or intruders with no prior information. The

numerical results show that the sensor network performance

is improved by up to 104.9% compared to random or uniform

sensor distributions.
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