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Abstract— Several approximate dynamic programming
(ADP) algorithms have been developed and demonstrated
for the model-free control of continuous and discrete
dynamical systems. However, their applicability to hybrid
systems that involve both discrete and continuous state
and control variables has yet to be demonstrated in the
literature. This paper presents an ADP approach for hy-
brid systems (hybrid-ADP) that obtains the optimal control
law and discrete action sequence via online learning. New
recursive relationships for hybrid-ADP are presented for
switched hybrid systems that are possibly nonlinear. In
order to demonstrate the ability of the proposed ADP
algorithm to converge to the optimal solution, the approach
is demonstrated on a switched, linear hybrid system with a
quadratic cost function, for which there exists an analytical
solution. The results show that the ADP algorithm is
capable of converging to the optimal switched control law,
by minimizing the cost-to-go online, based on an observable
state vector.

I. INTRODUCTION

Many complex systems can be described as hybrid
dynamical systems that are characterized by both contin-
uous and discrete state and control variables. A common
example of hybrid system that has been used, among
other applications, to describe systems of collaborative
agents, is a switched system in which multiple modes
of motion are switched according to a finite set of
discrete actions or events [1], [2]. A switched system can
coordinate a variety of subsystems (modes) with their
unique structures, allowing more flexibility in dynamic
models. The hybrid nature of multi-agent networks has
been recognized by several authors [3], [4]. A hybrid
modeling approach for a mobile multi-agent network
was recently developed in [5], and shown highly effec-
tive at maintaining a desired formation, and connectivity
among the agents. A hybrid modeling framework for
robust maneuver-based motion planning in nonlinear
systems with symmetries was proposed in [6]. The
reader is referred to [7] for a more comprehensive review
of hybrid systems with autonomous or controlled events.

The optimal control of a switched system seeks to
determine multiple optimal continuous controllers, and
a corresponding optimal discrete switching sequence,
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such that a scalar objective function of the hybrid
system state and control is minimized over a period of
time [7]. Dynamic programming has been proposed for
the constrained optimal control of discrete-time linear
hybrid systems [8], [9]. Because of the high dimen-
sionality of the state and control spaces, however, the
optimal control of switched systems is often challeng-
ing or even computationally intractable. Approximate
dynamic programming (ADP) is an effective approach
for overcoming the curse of dimensionality of dynamic
programming algorithms, by approximating the optimal
control law and value function recursively over time
[10], [11]. Furthermore, by using recursive relationships
that adapt the control law and value function forward
in time, ADP algorithms have the ability to solve an
optimal control problem online, subject to an observed
state, and without an explicit or accurate representation
of the system dynamics [12], [13].

Several approximate dynamic programming (ADP) al-
gorithms have been developed and demonstrated for the
model-free control of continuous and discrete dynamical
systems [14], [15], [16]. However, the applicability of
ADP to hybrid systems that involve both discrete and
continuous state and control variables has yet to be
demonstrated in the literature. This paper presents an
ADP approach for hybrid systems (hybrid-ADP) that
obtains the optimal control law and discrete action
sequence via online learning. The hybrid-ADP approach
presented in this paper is not to be confused with
hybrid ADP algorithms that, despite a similar name,
referred to a class of ADP methods that combine direct
and indirect optimization of the control law and value
function approximations.

This paper presents new ADP recursive relationships
for the optimal control of switched hybrid systems that
are possibly nonlinear, and model free. In order to
demonstrate the ability of the proposed ADP relation-
ships to converge to the optimal solution, the algorithm
is demonstrated on a switched, linear hybrid system
with a quadratic cost function, for which there exists
an analytical solution. The analytical solution of this
linear, quadratic switched optimal control problem was
first obtained by Riedinger in [17]. Other approaches
to the same linear, quadratic switched optimal control
problem are reviewed comprehensively in [18]. Also,
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an approach for iterating between the optimization of
the switching sequence, and the optimization of the
switching instants was developed for switched affine
systems in [2]. The method in [2], however, cannot be
used to optimize the continuous control laws. Another
parametric-optimization method was proposed in [19]
to optimize the continuous control laws, for a given
(predesigned), fixed switching sequence.

Existing iterative approaches seek to overcome the
curse of dimensionality by fixing either the switching
sequence or the continuous control law. The hybrid-ADP
approach developed in this paper exploits the ADP recur-
sive approximation approach and Bellman’s equation in
[20], [21], [22] to adapt the continuous control law, the
mode switching sequence, the switching instants, and the
corresponding value function, iteratively over time. The
results show that the proposed hybrid-ADP algorithm
is capable of converging to the optimal switched control
law of a linear, quadratic switched hybrid system online,
subject to actual system dynamics.

The paper is organized as follows. Section II describes
the switched optimal control problem formulation and
assumptions. The background on ADP is reviewed in
Section III. Section IV presents new ADP recursive
relationships and transversality conditions, and learning
rules for ADP critic and control networks. The numerical
simulations and results are presented in Section V.

II. OPTIMAL CONTROL OF SWITCHED SYSTEMS

The optimal control of switched hybrid systems arises
in a wide variety of fields, such as mobile manipulator
systems, autonomous robotic sensor planning, and au-
tonomous assemble lines. In these applications, both the
discrete actions and the continuous control are crucial
to system performance. The switched system considered
in this paper has E discrete modes, and the mode and
continuous state at time t are denoted by ξ(t) ∈ E =
{1, . . . , E} and x(t) ∈ Rn, respectively. The continuous
control for the system under mode ξ is denoted by
uξ(t) ∈ Uξ ⊂ Rmξ . The discrete action is denoted by
a(t) ∈ E , and is represented by a piecewise-constant
function from the right, denoted by t−. Then, switched
dynamical system is described by the set of equations,

ẋ(t) = fξ[x(t),uξ(t)] (1)
ξ(t) = a(t)

where fξ is the nonlinear dynamic equation of
the switched system under mode ξ ∈ E . Let
{0, t1, . . . , ti, ti+1, . . . ,∞} denote the sequence of
the switching instants when ξ(t) ̸= ξ(t−), and let
{ξ0, ξ1, . . . , ξi, . . . , ξ∞}ξi∈E denote the switching mode
sequence.

The initial system state x0, and the goal state xg

are assumed known a priori. The problem considered

in this paper is a switched, nonlinear, infinite-horizon,
continuous-time, optimal control problem, with and ob-
jective function,

J ,
∞∑
i=0

∫ ti+1(−)

ti

Lξ(ti)[x(τ),uξ(ti)(τ)]dτ (2)

to be minimized with respect to the continuous control
u∗(·) and the discrete control a∗(·), subject to (1), and
with a known Lagrangian Lξ : Rn ×Uξ → R, ξ ∈ E .

The above optimal control problem is approached
using ADP, under the following assumptions.

Assumption 1: The switch between modes can occur
at any time, and it is fully controlled by the discrete
action a(t). The cost of each switch is zero.

Assumption 2: The dynamic equations fξ(y,w) and
the cost function Lξ(y,w), can only be evaluated at
y ∈ N [x(t)], ∀ ξ ∈ E and ∀ w ∈ Uξ, where N [x(t)] =
{y | ∥x(t) − y∥ < r} is the neighborhood set of the
system’s current continuous state x(t). The operator ∥·∥
is the L-2 norm and r is a positive number.

Assumption 3: The system state x is fully observable,
and error free.
The ADP approach is reviewed in the next section, and
then used in Section IV to obtain new ADP relationships
for the switched optimal control problem presented in
this section.

III. BACKGROUND ON APPROXIMATE DYNAMIC
PROGRAMMING

Approximate dynamic programming (ADP) is an ef-
fective approach for overcoming the curse of dimen-
sionality associated with dynamic programming (DP)
algorithms for optimal control problems. [20], [23].
ADP has been successfully demonstrated for model-free,
online control of continuous dynamical systems [12],
[13], [10], [24], and discrete Markov decision process
(MDP) [25]. For a non-hybrid optimal control problem,
a discrete-time value function can be defined,

V [x(κ)] ,
∞∑
j=κ

γj−κL [x(j),u(j)]dt (3)

where dt is the size of time grids, j and κ are the indices
of the time grids, and the Lagrangian L and discount
factor γ are semi-definite positive functions. Let V ∗(κ)
denote the optimal value function, and u∗(·) denote the
optimal control law. Then, from Bellman’s equation, the
ADP recursive relationship,

V ∗[x(κ)] = L [x(κ),u(κ)]dt

+
∞∑

j=κ+1

γj−κL [x(j),u(j)]dt

= L [x(κ),u(κ)]dt+ V ∗[x(κ+ 1)] (4)
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can be obtained, where L [x(κ),u(κ)]dt is the instan-
taneous reward or cost function, as shown in [20], [23].

Classical DP algorithms iterate backwards in time,
starting from a known final time and state, and using
the principle of optimality to eliminate sub-optimal
costs and control laws. As a result, they cannot be
applied to optimize the value function and control law
online. The ADP approach, on the other hand, iterates
forward in time, by using the recursive relationships in
(4) to improve its approximation of the optimal value
function V ∗(κ) (or its gradient), and optimal control law
u∗(·), through aggregation functions [26], [27], such as
supporting vector machines [28], and neural networks
[29]. The value function approximation is commonly
referred to as the critic network, and the control law
approximation is referred to as control network, and
they are both optimized based on the difference between
the reward (or cost) expected and the reward (or cost)
obtained by actuating the controller.

An example of ADP algorithm based on Q-learning
[10] is shown in Algorithm 1. Let V i(X ) denote the
values of all states x ∈ X with the assumption that X
is countable. The index i denotes the serial number of
ith iteration. The algorithm starts with an initial guess
of the value function, possibly generated by a potential
function [30]. At the ith iteration, an initial state is ran-
domly generated, and then a state trajectory is calculated
by solving the Bellman equation given V i−1(X ). Afte
r that, with the rewards obtained along the trajectory,
the value of V i(x(t)) for each visited state can be
calculated. At last, the value of V i(x(t)) is updated
by the Q-learning method, as shown in Algorithm 1,
where αi is the learning rate, which is a function of i.
Algorithm 1 can be extended to a continuous state space
X , by adopting a neural network [29] to approximate
the value function, and can be used to solve an online
optimal problem by replacing “Randomly choose initial
state xi

0” with “The current state x” following the Gauss-
Seidel variation [10].

Algorithm 1 ADP algorithm based on Q-learning
Require: Initialize V i(X ) and set i = 1

while i ≤ Nmax do
Randomly choose initial state xi

0.
Solve: V i[x(κ)] = maxuκ{L [x(κ),u(κ)] +

V i−1[x(κ+ 1)]}
Record visited xi(κ)
Update V i(X ) as V i(x) ={

(1− αi)V
i−1(x) + αiV

i(x) if x = xi(κ)
V i−1(x) otherwise

i=i+1;
end while

IV. HYBRID ADP APPROACH

This section presents new ADP optimality condi-
tions, recursive relations, and transversality conditions
for the optimal control of switched systems, formulated
in Section II. The objective function (2) is minimized
with respect to the continuous control law u(·) and
the discrete switching action a(·), over an infinite-time
horizon t ∈ (0 ∞). Let the continuous optimal control
law be denoted by u∗(x), and the optimal discrete
switching action function be denoted by a∗(x). For
an initial state x0, the optimal sequence of switching
instants is {0, t∗1, . . . , t∗i , t

∗
i+1, . . . ,∞}, where ξ∗(t) ̸=

ξ∗(t−), and the optimal switching mode sequence is
{ξ∗0 , ξ∗1 , . . . , ξ

∗
i , . . . , ξ

∗
∞}. At t = 0, the optimal value

function is denoted by V ∗[x0, ξ
∗
0 ]. At any t > 0, the

optimal continuous state is denoted by x∗(t), the optimal
switching mode is denoted by ξ∗(t) = ξ∗i , t ∈ [t∗i t∗i+1),
and, thus, the optimal value function is denoted by
V ∗[x∗(t), ξ∗i ]. Then, the Bellman equation for the hybrid
objective function in (2) can be written as

V ∗[x∗(t), ξ∗i ] =V ∗[x∗(t∗i+1), ξ
∗
i+1]

+

∫ t∗i+1

t

Lξ∗i
[x∗(τ),u∗(τ, ξ∗i )]dτ (5)

When t ∈ [t∗i t∗i+1) (no switch occurs during
[t∗i t∗i+1)), the optimality conditions can be derived
according the Pontryagin’s minimum principle [31]. Let
[t∗0 t∗i+1) be divided into N equal segments, and let κ ∈
{0, 1, . . . , N} represent the instant (t∗i+1−t∗0)/N×κ+t∗0.
Equation (5) therefore can be approximated as

V ∗[x∗(κ), ξ∗i ] ≈V ∗[x∗(κ+ 1), ξ∗i ]

+
t∗i+1 − t∗0

N
Lξ∗i

[x∗(κ),u∗(κ, ξ∗i )]

(6)

After denoting t∗i+1−t∗i
N Lξ∗i

[·] as L N
ξ∗i
[·], (6) is rewritten

as

V ∗[x∗(κ),ξ∗i]=V ∗[x∗(κ+1),ξ∗i]+L N
ξ∗i
[x∗(κ),u∗(τ, ξ∗i )].

(7)
The optimality condition for the optimal controller

u∗(κ), ∀κ ∈ {0, 1, . . . , N} can be obtained by setting
the derivative of the value function (7) regarding u∗ as
0, such that,

∂V ∗[x∗(κ+ 1), ξ∗i ]

∂x∗(κ+ 1)

∂x∗(κ+ 1)

∂u∗(κ)

+
∂L N

ξ∗i
[x∗(κ),u∗(κ)]

∂u∗(κ)
= 0. (8)

In order to solve (8), the value function gradient
∂xV

∗[x∗(κ + 1), ξ∗i ], computed by the critic net-
work, is required, and its recursive relationship is ob-
tained by taking derivative on both sides of (7). Let
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λ∗[x∗(κ), ξ∗i ] , ∂xV
∗[x∗(κ), ξ∗i ] for the remainder of

the paper. Then, the critic recursive relationship can be
derived as follows,

λ∗[x∗(κ), ξ∗i ] =
∂V ∗[x∗(κ), ξ∗i ]

∂x∗(κ)
=

∂L N
ξ∗i
[x∗(κ),u∗(κ)]

∂x∗(κ)
+

∂V ∗[x∗(κ+ 1), ξ∗i ]

∂x∗(κ)

=
∂L N

ξ∗i
[x∗(κ),u∗(κ)]

∂x∗(κ)
+

∂L N
ξ∗i
[x∗(κ),u∗(κ)]

∂u∗(κ)

∂u∗(κ)

∂x∗(κ)

+
∂V ∗[x∗(κ+ 1), ξ∗i ]

∂x∗(κ+ 1)

∂x∗(κ+ 1)

∂x∗(κ)

+
∂V ∗[x∗(κ+ 1), ξ∗i ]

∂x∗(κ+ 1)

∂x∗(κ+ 1)

∂u∗(κ)

∂u∗(κ)

∂x∗(κ)

=
∂L N

ξ∗i
[x∗(κ),u∗(κ)]

∂x∗(κ)
+

∂L N
ξ∗i
[x∗(κ),u∗(κ)]

∂u∗(κ)

∂u∗(κ)

∂x∗(κ)

+ λ∗[x∗(κ+ 1), ξ∗i ]
∂x∗(κ+ 1)

∂x∗(κ)

+ λ∗[x∗(κ+ 1), ξ∗i ]
∂x∗(κ+ 1)

∂u∗(κ)

∂u∗(κ)

∂x∗(κ)
. (9)

According to optimality conditions for hybrid optimal
control problems [17], the optimal discrete action of the
switched system in Section II obeys

a∗(t) = argmin
ξ

{λ∗[x∗(t), ξ]fξ[x
∗(t),u∗(t)]

+Lξ[x
∗(t),u∗(t)]} (10)

Thus, when t = t∗i ∈ {t∗1, . . . , t∗∞} (a switch occurs
during at t∗i ), the optimal value function must satisfy
the following transversality condition

V ∗[x∗(t∗i+1), ξi] = V ∗[x∗(t∗i+1), ξ
∗
i+1]. (11)

By differentiating both sides of (11), the transversality
condition for the critic network is obtained from (11),
i.e.:

λ∗[x∗(t∗i+1), ξ
∗
i ] =

∂V ∗[x∗(t∗i+1), ξ
∗
i ]

∂x∗(t∗i+1)

=
∂V ∗[x∗(t∗i+1), ξ

∗
i+1]

∂x∗(t∗i+1)

= λ∗[x∗(t∗i+1), ξ
∗
i+1] (12)

Furthermore, the optimal switching time t∗i can be
determined from the recursive relationship

λ∗[x∗(t∗i ), ξ
∗
i ]fξ∗i [x

∗(t∗i ),u
∗(t∗i )]+Lξ∗i

[x∗(t∗i ),u
∗(t∗i )]

= λ∗[x∗(t∗i−), ξ∗i−1]fξ∗i−1
[x∗(t∗i−),u∗(t∗i−)]

+ Lξ∗i−1
[x∗(t∗i−),u∗(t∗i−)] (13)

From above analysis, the optimality conditions in
(8), (9), (10), (12), and (13) are to be solved si-
multaneously to obtain the optimal continuous con-

trol u∗(·), discrete action a∗(·) and switching times
{0, t∗1, . . . , t∗i , t

∗
i+1, . . . ,∞}, and switching sequence

{ξ∗0 , ξ∗1 , . . . , ξ∗i , . . . , ξ∗∞}. In order to reduce the compu-
tational complexity associated with the numerical solu-
tion of these optimality conditions, learning rules for the
hybrid-ADP critic and control networks are derived in
the remainder of this section. Since the critic and control
networks consist of continuous and discrete variables,
a separate neural network is used to approximate the
control or critic function for each mode ξ, such that
2E neural networks are implemented for the actor and
the critic. Let NNξ

λ denote the critic network used to
approximate λ∗(x, ξ), and NNξ

u denote the control (or
actor) network used to approximate u∗(x, ξ).

When ξ(κ) = ξ(κ + 1), the control neural network
under the mode ξ(κ), NNξ

u, is updated by the actor
recurrence relationship

∆wu =− η{
∂L N

ξi
[x(κ),u(κ)]

∂x(κ)

− ∂x(κ+ 1)

∂x(κ)
λ[x(κ+ 1), ξi]}

u[x(κ), ξi]

∂wu
(14)

While holding the control network fixed, the critic neural
network under the mode ξ(κ), NNξ

λ, is updated by the
critic recurrence relationship,

∆wu =− ϵ{∂x(κ+ 1)

∂u(κ)
λ[x(κ+ 1), ξi]

−
∂L N

ξi
[x(κ),u(κ)]

∂u(κ)
}u[x(κ), ξi]

∂wλ
(15)

where, the learning rates η and ϵ are user-defined pa-
rameters.

When ξ(κ) ̸= ξ(κ + 1), according to equation (12),
the control neural network of the mode ξ(κ), NNξ

u, is
updated by the actor recurrence relationship,

∆wu =− η{
∂L N

ξi
[x(κ),u(κ)]

∂x(κ)

− ∂x(κ+ 1)

∂x(κ)
λ[x(κ+ 1), ξi+1]}

u[x(κ), ξi]

∂wu

(16)

While holding the control network fixed, the critic neural
network of the mode ξ(κ), NNξ

λ, is updated by critic
recurrence relationship,

∆wλ =− ϵ{∂x(κ+ 1)

∂u(κ)
λ[x(κ+ 1), ξi+1]

−
∂L N

ξi
[x(κ),u(κ)]

∂u(κ)
}λ[x(κ), ξi]

∂wλ
(17)

and the discrete action a(t) is updated by the recurrence
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relationship,

a(t) = argmin
ξ

λ[x(t), ξ]fξ[x(t),u(t)] + Lξ[x(t),u(t)]

(18)

where u and λ are evaluated from the (fixed) control
and critic neural networks. The learning rules (14), (15),
(17), (16), and (18) only need to evaluate fξ and Lξ in
N (x(t)), which is consistent with the Assumption (2).

All of the hybrid-ADP recurrence relationships de-
rived in this section are implemented iteratively over
time, such that the optimal continuous control law,
mode switching sequence, switching instants, and value
function are determined from observations of the
switched system state. In the next section, the proposed
hybrid-ADP approach is demonstrated through a linear,
quadratic switched optimal control problem for which
there exists an analytical solution to be compared to the
hybrid-ADP solution presented in this section.

V. NUMERICAL SIMULATIONS

The hybrid-ADP approach presented in the previous
section can be applied to nonlinear switched systems
in the form described in Section II, for which linear
quadratic regulator (LQR) or analytical solutions may
not be available. However, in order to demonstrate the
effectiveness of the hybrid-AD solution, this section con-
siders the optimal control of a hybrid dynamical system
with linear continuous dynamics, and quadratic (hybrid)
objective function, for which an analytical solution can
be obtained via Riedinger’s method [17].

The autonomous hybrid system consists of two power
systems, one gasoline-driven, and one electric-driven,
that each live in a one-dimensional workspace W ⊂ R,
and to be represented by a continuous state x = [x ẋ]T ∈
R2, where x ∈ W , and x is fully observable and error
free. It is assumed that the system mode can switch to
any of the two power systems, at any time, and that the
two power systems are independent and supplied with
sufficient fuel. The agent starts at a predefined state x0,
and seeks to move to another predefined goal state xg .

When the gasoline-driven power system is chosen
(ξ = 1), its dynamics are modeled by the system of
equations,

ẋ(t) = Aξ(t)x(t) +Bξ(t)u(t) (19)
ξ(t) = 1, x(0) = x0 (20)

where u ∈ R2 is the agent continuous control input,

x0 is the agent initial state, A1 =

(
0 1
−1 −1

)
, and

B1 =

(
0
1

)
. When the electric-driven power system is

chosen (ξ = 2), its dynamics are modeled by the system

of equations,

ẋ(t) = Aξ(t)x(t) +Bξ(t)u(t) (21)
ξ(t) = 2, x(0) = x0 (22)

where A2 =

(
0 1
−1 −0.5

)
, B2 =

(
0
0.8

)
. The mode

ξ(t) was fully controlled by a switching signal a(t).
The overall system performance depends on the

switching sequence, and on the continuous control laws,
and is defined as,

J =

∫ ∞

0

xTQξ(t)x+ uTRξ(t)udt, ξ(t) = 1, 2 (23)

where Q1 =

(
0.5 0
0 1

)
, Q2 =

(
0.5 0
0 0.4

)
, R1 = 1,

and R2 = 1

Adopting Riedinger’s approach [17], when the dis-
crete time step used to simulate the system is 0.05 (s),
the exact analytical solution to the optimal control prob-
lem of this hybrid mobile agent has a cyclic switching
sequence such that

1) An optimal switch from mode 1 to mode 2 occurs
when ẋ = 0.85x, and the following optimal
continuous control is given by

P2 =

(
0.88 0.25
0.25 0.66

)
(24)

u = −(R2 +BT
2 P2B2)−1BT

2 P2A2x (25)

2) An optimal switch from mode 2 to mode 1 takes
place when ẋ = −1.25x, and the following
optimal continuous control is given by

P1 =

(
0.95 0.24
0.24 0.60

)
(26)

u = −(R1 +BT
1 P1B1)−1BT

1 P1A1x (27)

At time t = 0, the critic network is trained to satisfy
the following initial guess of λ for both power modes,

λ = (x− xg) (28)

which leads the hybrid system to xg. At the same time,
the control network for each mode is trained according
to

uξ = −(Rξdt+ dt2BT
ξ Bξ)

−1[dtBT
ξ ((I +Aξdt)x− xg)]

(29)

to satisfy (8) given (28). Subsequently, the hybrid-ADP
recursive relationships presented in Section IV are used
to adapt the critic and control networks online, while the
same networks are used to control the power system.
When the system state arrives at the goal state xg ,
with a tolerance of 0.01 (m), the task of bringing the
system from x0 to xg is repeated, and the critic and
control network are trained to learn the optimal solution
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online, without knowledge of the system models in (19)-
(22). Each of the learning tasks is referred to as a trial,
and learning is conducted over several trials, until the
recurrence relationships are satisfied within a desired
tolerance.

The learning rate η and ϵ were chosen equal to 5 ×
10−6. Both the critic and control neural networks had
two hidden layers with 20 neurons in each layer, and
their transfer functions were hyperbolic tangent sigmoid
functions. In this simulation, the critic and control neural
networks were initialized using (28) and (29), and the
initial system state was x0 = [1.0 −0.6]T (m), while the
goal state was xg = [0 0]T (m). The simulation results
are summarized in Figs. 1-2.

As shown in Fig. 1, the value of the objective function,
J , declined after each trial; it decreased by 7.7% after
5 trials, by 13.7% after 50 trials, and by 21.7% after
385 trials. After 385 trials, the difference between J
and the value of the objective function corresponding to
the analytical solution, J∗, is less than 0.02. As shown
in Fig. 1, from the 175th trial to the 182th trial, the
total reduction of J was 1.2e − 4, while the reduction
was 2.5e − 3 at the 183th trial. Such a relatively high
reduction was brought by changing the switching instant
and switching mode sequence. The changes of switching
sequence and instant were caused by the accumulated
learning of the critic and control neural networks during
previous trials. The learning and accuracy of these
networks were crucial to obtaining the correct switching
sequence and instants.

As a comparison, the state trajectories obtained from
the analytical solution are also plotted in Fig. 2, using a
dashed line. The state trajectories obtained during each
trial by the hybrid-ADP are shown in Fig. 2, using a
solid line. The trajectories obtained while the system
is in gasoline-driven mode are shown in red, and those
obtained while the system is in electric-driven mode are
shown in blue. The switching mode and instants can be
identified by the change in color, along each trajectory.
As can be seen from the ‘Initial’ hybrid-ADP trajectory
in Fig. 2, the initial critic and control neural networks
gave an incorrect sequence of the switching mode and
instants, and incorrect control laws, thereby yielding
the high initial cost in Fig. 1. By applying the hybrid-
ADP approach, the system was capable of updated the
critic and control networks to minimize the cost along
each of its trajectories, in an online fashion. As a result
of hybrid-ADP learning, after the 5th trial, the system
changed its switching mode sequence to one that starts
out by operating under the second (electric) mode, and
then switches to gasoline. As shown in Fig. 2, at the 50th
trial, the system switched its mode three times instead of
only one time during the 5th trial, and at the 385th trial
the system has learned the optimal switching sequence.
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Fig. 1. Objective function optimization

Different from the previous example, the switched
system schematized in Fig. 3 consists of three subsys-
tems and its continuous controller is a 2 dimensional
vector function. The matrices of defining dynamic equa-
tions and the cost term in the objective function are given
as follows.

A1 =

(
−1 4
−3 2

)
, A2 =

(
−1 1
−1 1

)
, A3 =

(
−3 1
−3 −1

)
B1 = B2 = B3 =

(
1 0
0 1

)
Q1 =

(
0.5 0.5
0.5 1

)
, Q2 =

(
2 0.5
0.5 1

)
, Q3 =

(
2 0
0 5

)
R1 =

(
0.5 0
0 0.25

)
, R2 =

(
5 0
0 1

)
, R3 =

(
3 1
1 1

)
(30)

In this simulation the learning rate η and ϵ were chosen
equal to 5 × 10−6. Both the critic and control neural
networks had two hidden layers with 20 neurons in
each layer, and their transfer functions were hyperbolic
tangent sigmoid functions. The critic and control neural
networks were initialized using (28) and (29), and the
initial system state was x0 = [−0.2 −1]T (m), while the
goal state was xg = [0 0]T (m). The simulation results
are summarized in Fig. 4.

By applying the hybrid-ADP approach, the system
was capable of updated the critic and control networks
to minimize the cost along each of its trajectories, in an
online fashion. As shown in Fig. 4, from the first trial
to the 168th trial, the value of the objective function
oscillated and did not decrease because that during
this period the critic networks and control networks
were updated based the accumulated learning of the
switched system, and that the accumulated learning was
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Fig. 2. State trajectory optimization for four trials.

not sufficient enough to have a correct switch. Then, a
dramatic decrease of the value function occurred at the
169th trial, and thereafter converged to 0.7376 which is
close to the optimal value.
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Fig. 3. Switched System with Three Subsystems
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Fig. 4. Objective function optimization

VI. CONCLUSIONS AND FUTURE WORK

The advantages of the switched system allow hybrid
models to characterize the modern autonomous systems
with discrete actions and continuous control. The hybrid-
ADP presented in this paper can learn the optimal
continuous control, and switching mode sequence and
instants online. Due to the online nature of ADP, the
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actions and controls can adapt to the uncertainties of
the environment and the hybrid system. The control
and critic neural networks learn environment online
while retaining their baseline performance. The switch-
ing sequence and instants were calculated based on
the updated critic and control neural networks. The
proposed hybrid-ADP focuses on exploiting the current
knowledge of the critic and control networks, and it is
myopic in terms of exploring the state-control space.
Future work will focus on accelerating the hybrid-
ADP convergence by investigating the balance between
exploration and exploitation over repeated trials.
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