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Abstract— This paper considers the problem of computing
optimal state and control trajectories for a multiscale dynamical
system comprised of many interacting dynamical systems, or
agents. A generalized reduced gradient (GRG) approach is
presented for distributed optimal control (DOC) problems in
which the agent dynamics are described by a small system of
stochastic differential equations (SDEs). A new set of optimality
conditions is derived using calculus of variations, and used to
compute the optimal macroscopic state and microscopic control
laws. An indirect GRG approach is used to solve the optimality
conditions numerically for large systems of agents. By assuming
a parametric control law obtained from the superposition of
linear basis functions, the agent control laws can be determined
via set-point regulation, such that the macroscopic behavior of
the agents is optimized over time, based on multiple, interactive
navigation objectives.

I. INTRODUCTION

This paper considers the problem of computing optimal
state and control trajectories for a multiscale dynamical
system comprised of many interacting dynamical systems,
or agents. Many complex systems ranging from renewable
resources [18] to very large scale robotic (VLRS) systems
[17] can be described as multiscale dynamical systems com-
prised of many interactive agents. In recent years, significant
progress has been made in formation control and stability
analysis of teams of robots, or swarms, in which the mutual
goal of the agents is to maintain a desired configuration,
such as a triangle or a star formation, or a desired behavior,
such as translating as a group (schooling), or maintaining
the center of mass of the group stationary (flocking) [5], [7],
[13], [17].While this literature has successfully illustrated
that the behavior of large networks of interacting agents
can be conveniently described and controlled by density
functions, it has yet to provide an approach for controlling
the agents such that their overall performance is optimized.

Recently, the authors proposed a coarse-grained optimal
control approach for large, multiscale dynamical systems,
referred to as distributed optimal control (DOC), that enables
the optimization of density functions, and/or their moments,
subject to the agents’ dynamic constraints [6]. The DOC
approach in [6] is applicable to multiscale dynamical systems
comprised of many agents or processes that, on small spatial
and time scales, are each described by a small set of ordinary
differential equations (ODEs), referred to as the microscopic
or detailed equations. On larger spatial and temporal scales,
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the agents’ dynamics and interactions are assumed to give
rise to macroscopic coherent behaviors, or coarse dynamics,
described by partial differential equations (PDEs). This paper
extends the capabilities of the DOC approach proposed in
[6] for deterministic agent dynamics to agent dynamics that
are governed by stochastic differential equations (SDEs). A
new set of optimality conditions is derived, and a numerical
indirect optimization approach is presented based on the
GRG method [11].

In recent years, the optimal control of stochastic dif-
ferential equations (SDEs) has gained increasing attention.
Considerable research efforts have focused on the optimal
control and estimation of SDEs driven by non-Gaussian
processes, such as Brownian motion combined with Poisson
processes, and various other stochastic processes [15], [21],
[22]. The approach in [15], [21], [22] views the microscopic
agent state as a random vector, and derives an SDE dy-
namic equation that involves the evolution of the statistics
of the microscopic vector function, and may be integrated
using stochastic integrals. Then, the performance of multiple
agents can be expressed as an integral function of multiple,
corresponding vector fields to be optimized subject to a
set of SDEs. However, solutions can only be obtained for
relatively few and highly idealized cases in which finite-
dimensional, local approximations can be constructed, for
example, via moment closure [21], [22]. Therefore, while
optimal control of SDEs has been shown useful to selected
applications in population biology and finance [15], [21],
[22], it is yet to be successfully applied to multiscale systems
in which the coarse dynamics do not obey these idealized
conditions, and are instead dictated by realistic constraints
(e.g., vehicle dynamics) and objectives (e.g., minimizing
energy consumption, or maximizing coverage).

The GRG-DOC methodology presented in this paper relies
on identifying a consistency relationship between the micro-
scopic agent dynamics and a macroscopic description, such
as the time-varying probability density function (PDF) of the
agents’ state. Unlike Nash Certainty Equivalence (NCE) or
Mean Field methods, in which the (weak) couplings between
agents are produced by the averaging of the microscopic
agent dynamics and costs [4], [8], in the DOC approach
the couplings need not be weak and may arise as a result
of cooperative objectives expressed by the macroscopic cost
function. Therefore, the cost function can represent objec-
tives of a far more general form than NCE, and admit
(optimal) solutions that entail strong couplings between the
agent dynamics and control laws. Also, unlike prioritized
and path-coordination methods [12], [25], the proposed DOC
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approach does not rely on decoupling the agents’ dynamics,
or on specifying the agents’ distribution a priori. Instead,
DOC optimizes the macroscopic behavior of the system
subject to coupled microscopic agent dynamics, and relies on
the existence of an accurate macroscopic evolution equation
and an associated restriction operator that characterize the
multiscale system to reduce the computational complexity
of the optimal control problem. As a result, the computation
required is far reduced compared to classical optimal control,
and realizations of the trajectories of all agents over large
spatial and time scales are calculated simultaneously without
sacrificing optimality or completeness.

The paper is organized as follows. Section II describes the
SDE-DOC problem formulation. The SDE-DOC optimality
conditions and GRG-based numerical solution are presented
in Section III. The effectiveness of the GRG-DOC approach
is then demonstrated on a multi-agent trajectory optimization
problem in Section IV.

II. PROBLEM FORMULATION

This paper considers the problem of computing optimal
state and control trajectories for a multiscale dynamical
system comprised of N interacting dynamical systems, or
agents. The dynamics of each agent on the microscopic scale
can be described by a small system of the SDEs,

ẋ(t) = f [x(t),u(t), t] + Gw(t), x(t0) = x0, (1)

where x(t) ∈ X ⊂ Rn is the microscopic state and u =
c[x(t), t] ∈ U ⊂ Rm is the microscopic control law, which
is assumed to be a function of the state. The microscopic
dynamics are influenced by additive Gaussian noise, where
the disturbance, w ∈ Rn, is a vector of independent and
identically distributed random variables from a standard
Gaussian process, and G is a time-invariant matrix. A
standard Gaussian process is used here for simplicity, but
this approach is applicable to any diffusion process. It is
assumed that the microscopic state, x, of every agent is fully
observable and error free.

On large spatial and temporal scales, the agents can be
represented by a macroscopic state, denoted by X ∈ R`,
` << n, by means of a restriction operator. Depending on
the macroscopic system performance to be optimized, the re-
striction operator may consist of the agent distribution and/or
of its lower-order moments, such that X(t) = ℘[x(t), t] [10].
In this paper, the system restriction operator ℘ is assumed
to be a time-varying probability density function (PDF),
℘ : X × R → R, such that the probability that the state
of the ith agent has a value x ∈ B ⊂ X is given by,

P [x(t) ∈ B] =

∫
B

℘[x(t), t]dx (2)

Then, the agent PDF, ℘, is a non-negative probability func-
tion that must satisfy the normalization condition,∫

X
℘[x(t), t]dx = 1 (3)

In many complex systems, such as autonomous vehicles

and sensor networks, the performance to be optimized can
be defined as an integral cost function of the macroscopic
state X and the microscopic control u,

J =

∫
X
φ [X(tf ), tf ] dx+

∫
t

∫
X

L [X(t),u(t), t]dxdt, (4)

where L is the Lagrangian function of the DOC problem.
The multi-agent trajectory optimization problem considered
in this paper seeks to determine the optimal trajectories
for the macroscopic state X∗ and microscopic control u∗

that minimizes the cost function (4), subject to the dynamic
constraint (1) and the equality constraint (3).

Assuming that the agents exist only in the state space X ,

℘[x(t) 6∈ X , t] = 0, ∀ ∈ (t0, tf ] (5)

and that no agents are created or destroyed, the evolution
of the agent PDF, can be shown to be governed by the so-
called advection-diffusion equation. The advection-diffusion
equation is a parabolic PDE that describes the motion of a
conserved scalar quantity, such as a PDF, as it is advected
by a known velocity field and undergoes a diffusion process
[3]. Since the agent distribution, ℘, is advected by a known
velocity field v = ẋ ∈ Rn, given by the detailed equation
(1), and diffused by the additive Gaussian noise, the time-
rate of change of ℘ can be defined as the sum of the
negative divergence of the advection vector (℘v) and the
divergence of diffusion vector (GGT∇℘) [14]. Then, from
the advection-diffusion equation, the agent PDF is governed
by,

∂℘

∂t
=−∇ · {℘[x(t), t]v(t)}+∇ · {(GGT )∇℘[x(t), t]}

=−∇·{℘[x(t), t]f [x(t),u(t), t]}+ν∇2℘[x(t), t] (6)

where the ∇ denotes a row vector of partial derivatives with
respect to the elements of x, and the diffusion coefficient is
ν = GGT .

This paper presents a GRG method for computing the
optimal trajectories of the macroscopic state X∗ and the
microscopic control u∗ that optimize J over the time interval
(t0, tf ]. The optimization of J is subject to the macroscopic
dynamics (6), the normalization condition (3), and the state
space constraint (5). and the initial and boundary conditions.
Additionally, since the agents are assumed to exist in X at all
times, their initial PDF, g0 is typically given. Therefore, the
optimization of J is also subject to the initial and boundary
conditions,

℘[x(t0), t0] = g0(x) (7)
{∇℘[x(t), t]} · n̂ = 0, ∀ ∈ (t0, tf ] (8)

that require all agents to remain in X at all times, where
n̂ is a vector normal to ∂X of unit length. The following
section presents an indirect solution method based on a
GRG approach for solving PDE-constrained optimization
problems.
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III. METHODOLOGY

An indirect GRG solution method is presented in this
section for computing the optimal macroscopic state and
microscopic control trajectories for the DOC problem in (1)-
(6). By this approach, a Lagrange multiplier, λ(x, t), is used
to adjoin the dynamic and equality constraints, (5)-(8), (3),
to the integral cost function (4), obtaining the augmented
integral cost function,

Ĵ =

∫
X
φ {X(tf ), tf} dx +

∫
t

∫
X

{
L [X(t),u(t)] + (9)

λ(x, t)
[∂℘(x, t)

∂t
+∇ · [℘(x, t)f(x,u, t)]−

ν∇2℘(x, t)
]}
dxdt.

The necessary conditions for optimality for this augmented
cost function are derived in Section III-A using the calculus
of variations.

To have a closed form representation of the control for
all x, every element of the control vector, uj , is parameter-
ized as the sum of m linearly-independent basis functions
φ1(·), . . . , φm(·), such that

uj =
∑
k

φk(x)αj,k(t), for j = 1, . . . ,m. (10)

Then, the goal of the DOC problem is to obtain the param-
eters, α∗j,k(t), that minimize the cost function (4), subject
to the aforementioned constraints. As shown in Section
III-B, since the macroscopic state, X , and the Lagrangian
multiplier, λ, can be found explicitly as a function of u,
a generalized reduced gradient (GRG) method [24] can be
used to determine the optimal parameters of the control law
(10).

A. Optimality Conditions

The optimality conditions for the optimal control problem
presented in Section II are derived here using calculus of
variations. Let ξ = [uT , ℘, λ]T denote a vector of variables
for the DOC problem, where function arguments are omitted
hereon for brevity. The necessary condition for optimality is,

∇Ĵ(u, ℘, λ) = lim
ε→0

Ĵ(ξ + εδξ)− Ĵ(ξ)

ε
= 0, (11)

where ∇Ĵ is the gradient of Ĵ with respect to the variables,
u, ℘, λ, and the vector ε δξ = ε [δuT , δ℘, δλ]T contains the
variations of the DOC variables.

The variation in the PDF, ℘ → ℘ + ε℘, results in the
condition,

lim
ε→0

Ĵ(u, ℘+εδ℘, λ)−Ĵ(u, ℘, λ)

ε
=

∫
X

∂φ

∂℘

∣∣∣
tf
δ℘dx (12)

+

∫
t

∫
X

∂L

∂℘
δ℘+λ

[
∂δ℘

∂t
+∇ · (δ℘ f)−∇2δ℘

]
dxdt=0.

which provides the weak formulation of the DOC optimality
conditions. The fundamental theorem of variational calculus

(FTVC) is used to arrive at the strong formulation of the
DOC optimality conditions. From the FTVC, and integration
by parts, the partial derivatives acting on the variations are∫

t

∫
X
λ
∂δ℘

∂t
dxdt = (13)∫

X
λδ℘dx

∣∣tf
t0
−
∫
t

∫
X

∂λ

∂t
δ℘dxdt,

∫
t

∫
X
λ∇ · (δ℘ f) dxdt = (14)∫

t

∫
∂X

λ(f · n̂)δ℘dxdt−
∫
t

∫
X
∇λ · fδ℘dxdt,

∫
t

∫
X
νλ∇2δ℘dxdt = (15)∫

t

∫
∂X

νλ(∇δ℘ · n̂)δ℘dxdt−
∫
t

∫
X
ν∇λ · ∇δ℘dxdt =∫

t

∫
∂X

νλ(∇δ℘ · n̂)δ℘dxdt−
∫
t

∫
∂X

ν∇λ · n̂δ℘dxdt+∫
t

∫
X
ν∇2λδ℘dxdt.

Because an initial condition for ℘ is given at t0, as shown
in (7), the initial variation in the PDF is δ℘

∣∣
t0

= 0, and (13)
simplifies to ∫

t

∫
X
λ
∂δ℘

∂t
dxdt = (16)∫

X
λδ℘dx

∣∣
tf
−
∫
t

∫
X

∂λ

∂t
δ℘dxdt.

The boundary condition (8) implies that (15) simplifies to∫
t

∫
X
νλ∇2δ℘dxdt = (17)

−
∫
t

∫
∂X

ν∇λ · n̂δ℘dxdt+

∫
t

∫
X
ν∇2λδ℘dxdt.

Then, by substituting the results in (14), (16), and (17) into
(12), and grouping like terms, the variation in (12) can be
written as

0 =

∫
X

(
∂φ

∂℘
+ λ

)
δ℘
∣∣∣
tf
dx+ (18)∫

t

∫
∂X

(λ(f · n̂) + ν∇λ · n̂) δ℘dxdt+∫
t

∫
X

(
∂L

∂℘
− ∂λ

∂t
−∇λ · f − ν∇2λ

)
δ℘dxdt.

By the FTVC, the variation in (18) can be written as the
adjoint PDE:

∂λ

∂t
=
∂L

∂℘
−∇λ · f − ν∇2λ (19)

SJT: λ(x, tf ) = −∂φ
∂℘

∣∣∣
tf

x ∈ X ,

λ(f · n̂) + ν(∇λ) · n̂ = 0 x ∈ ∂X

3859



The variation in the control law, u→ u + εδu,

lim
ε→0

Ĵ(u + εδu)− Ĵ(u)

ε
= (20)∫

t

∫
X

∂L

∂u
+ λ

[
∇ ·
(
℘
∂f

∂u
δu

)]
dxdt =∫

t

∫
X

∂L

∂u
−∇λ ·

(
℘
∂f

∂u

)
δudxdt+∫

t

∫
∂X

λ

(
℘
∂f

∂u
· n̂
)
δudxdt.

must equal zero for optimality, by the FTVC, i.e.:

0 =
∂L

∂u
−∇λ ·

(
℘
∂f

∂u

)
. (21)

Finally, the variation in the Lagrange multiplier, λ → λ +
εδλ, leads to the macroscopic state equation. Thus, the DOC
optimality conditions are given by the set of PDEs:

∂℘

∂t
=−∇ · (℘f) + ν∇2℘ (22)

SJT: ℘(x, t0) = p(x) x ∈ X ,
∇℘ · n̂ = 0 x ∈ ∂X

∂λ

∂t
=
∂L

∂℘
−∇λ · f − ν∇2λ (23)

SJT: λ(x, tf ) = −∂φ
∂℘

∣∣∣
tf

x ∈ X ,

λ = 0 x ∈ ∂X

0 =
∂L

∂u
−∇λ ·

(
℘
∂f

∂u

)
. (24)

The macroscopic state (22) and adjoint (23) equations are
parabolic PDEs. The control equation (24) is an algebraic
equation relating the optimal u to ℘ and λ. If (22)-(24) are
satisfied, then the resulting ℘ and u are the optimal control
and resulting agent distribution for the macroscopic control
problem. To obtain the sufficient conditions for optimality,
the second-order variations of Ĵ may be tested to verify that
these values in fact are at an extremal that is a minimum of J ,
but in this paper, the solutions are considered to be optimal if
any perturbations only increase the value of J . The following
subsection presents an GRG method to solve the optimality
conditions to determine optimal DOC trajectories.

B. Numerical Solution Via GRG

The DOC optimality conditions (22)-(24) consist of a
coupled set of parabolic PDEs. Because analytical solutions
to these PDEs are not available, this paper presents a GRG
approach for reducing the computation required by the
numerical solution of the DOC optimality conditions. The
approach exploits the causality of the macroscopic dynamic
equation (6) to represent Ĵ solely as a function of u. Then
an extremum of the DOC problem (1)-(6) can be found
by determining the parameters of the control laws (10) that
satisfy the optimality conditions.

GRG methods improve iteratively upon the approximation
of the optimal control law and of the macroscopic state
and co-state (or Lagrangian), by holding the other fixed

during each update. During every iteration of the GRG
algorithm, the latest approximation of u∗ = c∗[x(t), t], in
parameterized form (10) is used to solve macroscopic state
and adjoint PDEs, (22) and (23), to obtain an approximation
for ℘∗ and λ∗. Subsequently, holding the approximations of
℘∗ and λ∗ fixed, the approximation for u∗ is updated so as
to minimize (4), and satisfy the third and final optimality
condition. This process is repeated until the norm of the
gradient is below a user-defined tolerance or any update to
u∗ causes an increase in J .

The GRG method falls under a larger class of optimiza-
tion techniques referred to as Nested Analysis and Design
(NAND). In NAND approaches, the gradient is obtained
at each iteration of the optimization by eliminating the
state and co-state variables by solving the PDEs using a
numerical algorithm, and only the control is considered [1].
Alternatively, a Simultaneous Analysis and Design (SAND),
or full space, optimization strategy could be used in which
the optimization over the state, co-state, and control are
preformed simultaneously. However, it has been shown that
SAND methods are often very ill conditioned, where the
individual PDEs in the NAND techniques are typically better
conditioned [2].

Algorithm 1 GRG Optimality Solver
initialize αj,k(t)
while ||g|| >TOL do

℘̃← solve macroscopic state PDE (u)
λ̃← solve adjoint PDE (℘̃,u)
for all ` do

g` ← compute gradient (℘̃, λ̃,u)
end for
for all j, k do

αj,k ← update αj,k (J,g)
end for

end while

An analytical representation of the gradient of the cost
function J , denoted by g, with respect to the controls u
can be found, thereby circumventing the need for finite
difference to approximate the gradient, greatly reducing the
computational requirements. The gradient of J is calculated
as follows. Let ℘̃ and λ̃ satisfy (22) and (23), respectively,
for a given u. Then the gradient is given by

∇uJ = ∇uĴ
∣∣∣
℘̃,λ̃

=

∫
X

∂φ

∂℘
∇u℘ δu

∣∣∣
℘̃,tf

dx+ (25)∫
t

∫
X

{
∂L

∂u
δu+

∂L

∂℘
∇u℘ δu+∇uλ δu

[
∂℘

∂t
+∇ · (℘f)

]
+

λ

[
∂

∂t
(∇u℘ δu)+∇ ·

(
∇u℘fδu + ℘

∂f

∂u
δu

)]
− ν∇2∇u℘δu

}
℘̃,λ̃

dxdt

Performing integration by parts and recalling that ℘̃ and λ̃
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were defined to satisfy (22) and (23), equation (25) becomes

∇uJ =

∫
t

∫
X

[
∂L

∂u
−∇λ̃ ·

(
℘̃
∂f

∂u

)]
δudxdt. (26)

Let the time be discretized into Q equally spaced points,
tq = t0 + q∆t, where q = 0, ..., Q, and ∆t = (tf − t0)/Q.
Then from (26) it follows that

∂J

∂αj,k

∣∣∣∣∣
t=tq

≈ ∆t

∫
X

[
∂L

∂uj
−∇λ̃ ·

(
℘̃
∂f

∂uj

)]
t=tq

φkdx.

(27)
The previous equation gives the gradient of the cost function
with respect to the parameters that determine the control u.
Using this expression of the gradient, u can be updated using
one of many gradient-based optimization schemes, such as
Sequential Quadratic Programming (SQP). The algorithm for
solving the optimality conditions is then given in Algorithm
1. The next section demonstrates the use of Algorithm 1 to
find the optimal control law in a multi-agent path planning
problem.

IV. MULTI-AGENT TRAJECTORY OPTIMIZATION

The GRG method presented in the previous sections is
demonstrated here on a multi-agent trajectory optimization
problem, that obeys the problem formulation in Section II.
Consider a system of N cooperative agents with microscopic
dynamics given by a single integrator model for a point robot
that was modified from the model proposed in [26],[

ẋ
ẏ

]
=

[
vx
vy

]
+ σI2

[
ηx
ηy

]
(28)

where q = [x y]T denotes the configuration vector of the ith

agent, and x and y are the xy-coordinates. The microscopic
control vector of the ith agent is u = [vx vy]T , where
vx and vy are linear velocities in the x and y directions,
respectively. The disturbance vector is w = [ηx ηy]T , where
ηx and ηy are independent random variables with values
given by standard Gaussian processes, σ is a constant, and
I2 is the identity matrix. The agents operate in a workspace
W = [L, 0] × [0, L] ⊂ R2 over a time interval (t0, tf ].
The system restriction operator is a time-varying PDF of the
agent states, ℘ : X × R → R, where ℘(q, t) provides the
probability that the ith agent has the configuration q at time
t. Then ℘ describes the density of the agents in the state
space X =W .

The agents have the goal of traveling to a time-invariant
target distribution, p(x), that is known a priori, while mini-
mizing the energy consumed through control. The objective
function to be minimized can be written in terms of ℘, and
is given by the integral cost function

J(u) =

∫
W
φ(X)

∣∣∣
tf
dx +

∫
W

∫ tf

t0

L (u)dtdx = (29)∫
W
w℘(g − ℘)2

∣∣∣
tf
dx+∫

W

∫ tf

t0

e
wu
2 (v2x+v

2
y)dtdx

where w℘ and wu are user-defined constant weights.
The optimal agent PDF ℘∗ and control u∗ can be com-

puted as follows. The control, u, is approximated by the
Fourier sine series

u(x, t)=

a∑
n=1

b∑
m=1

sin[nπ(x1+1)/2] sin[mπ(x2+1)/2]αmnj(t).

(30)
This form ensures that u = 0 on the boundary, forcing f ·
n̂ = 0, which simplifies the boundary condition in (23) to
∇λ · n̂ = 0. With this parameterized representation of the
control, the gradient equation (27) is given by

∂J

∂αqpj
≈∆t

∫
W

[
wuuje

wu
2 (v2xi+v

2
yi) − ℘ ∂λ

∂xj

]
× (31)

sin[pπ(x+ 1)/2] sin[qπ(y + 1)/2]dx.

where uj and xj denote the jth component of u and x,
respectively.

The numerical scheme used to solve (22) and (23) consists
of a modified Galerkin method. A Galerkin type method
was chosen for its non-dissipative property [9], [19]. In this
modified approach, the solution is approximated by the linear
combination of a Fourier basis and Gaussian radial basis
functions (RBF), which are used to enforce the boundary
conditions at each point of the integration.

An initial guess of αqpj = 0 was used to define the control
for the first iteration of the optimization (Algorithm 1). Then
the state and adjoint problems, (22) and (23), were solved.
The control parameters, αqpj(tn), were then updated using
gradient descent.

The agents’ feedback control laws can be obtained from a
set-point regulation method that uses the optimal agent PDF,
℘∗, and open-loop control, u∗, that are found by solving
the optimality conditions (22)-(24), as desired set-points
[23]. The closed-loop control of each agent is computed
independently, such that the control value at time t of the ith

agent, u(t), is determined to minimize the deviation between
the observed agent distribution, denoted as ℘̂(t), and the
optimal distribution ℘∗(t), and the deviation between u(t)
and the optimal open-loop control u∗(t) [16],

u∗(t) = min
u(t)

∫ t+δt

t

1

2

{
[℘∗(x, t)− ℘̂(x, t)]2 (32)

+ ‖u∗(t)− u(t)‖2
}
dt

where ‖ · ‖ is the Euclidean norm, and δt is a user-
defined time increment. The observed agent distribution,
℘̂, is calculated from the states of all agents using kernel
density estimation with a standard Gaussian kernel [20]. The
optimal feedback control u∗ is updated at each timestep
by minimizing (32) using one of several available quadratic
programming algorithms [16]. In this paper, δt is chosen to
be small for simplicity, such that δt << tf − t0.

A. Numerical Simulations
The GRG method presented in Section III is illustrated

here through a numerical example where the optimal agent
trajectories are calculated for a system of N = 250 agents
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with microscopic dynamics governed by the single integrator
model (28) with σ = 0.01. The agents exist in a workspace
W = [0, L] × [0, L], L = 16 km, over a time interval
(t0, tf ], where t0 = 0 and tf = 16 hr. The agents
have a given initial distribution g0 shown in Figure 1, and
the initial microscopic states and sampled from g0. The
system’s objective is to minimize the integral cost (29) with
w℘ = 100, wu = 6, by travelling to a known target agent
distribution p, illustrated in Figure 2, while minimizing the
energy consumed by control. The solution to the trajectory
optimization problem is found using the GRG approach, and
the optimal agent distribution and microscopic states are
plotted at four instants in time in Figure 3. It is seen from
the results that the optimal agent distribution ℘∗ reaches the
target distribution p.

Fig. 1. Initial agent distribution, g0.

Fig. 2. Target agent distribution, p.

The agents’ control input is given by the feedback control
law (32) and calculated using MATLAB’s quadratic program
solver quadprog, where δt = 20 s. Then the microscopic
states are updated by integrating the microscopic dynamic
equations (28). The optimal microscopic state trajectories of
s = 50 randomly-chosen agents are plotted in Figure 4,
and the optimal microscopic control trajectories of r = 3
randomly-chosen agents are shown in Figure 5.

(a)

(b)

(c)

(d)

Fig. 3. Optimal evolution of agent distribution and microscopic states
(yellow circles) for a system of N = 250 agents at four instants in time.
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Fig. 4. Optimal microscopic state trajectories of s = 50 randomly-chosen
agents traveling from their initial states (blue circles) to final states (yellow
circles).

Fig. 5. Optimal microscopic control trajectories of r = 3 randomly-chosen
agents.

V. CONCLUSION

A GRG approach is presented to compute the optimal
agent state and control trajectories for the DOC problem
formulation with stochastic agent dynamics. This expands the
capabilities of the DOC approach, which was previously only
formulated for systems with deterministic agent dynamics. A
new set of optimality conditions are derived for this case and
are then solved using an indirect optimization method with
GRG to obtain a functional representation of the optimal
macroscopic state and microscopic open-loop control. A
microscopic feedback control law is obtained using a set-
point regulation method. The optimality conditions and the
GRG approach are verified through a numerical simulation
that determines the optimal state and control trajectories of a
large system of agents with dynamics governed by a single
integrator point robot model.
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