
Spiking Neural Network (SNN) Control of a Flapping Insect-scale Robot

Taylor S. Clawson Student Member, IEEE, Silvia Ferrari Senior Member, IEEE,
Sawyer B. Fuller, and Robert J. Wood Senior Member, IEEE

Abstract— The flapping microrobot known as RoboBee is the
first robot to demonstrate insect-scale flight, as well as the
most capable flying robotic insect to date. Controlled hover,
trajectory-following, and perching have been accomplished by
means of onboard sensors and actuators fabricated with the
robot using a “pop-up book MEMS” process based on smart
composite microstructures. This paper presents a RoboBee bio-
inspired controller that closes the loop between the onboard
sensors and actuators by means of a leaky integrate-and-fire
spiking neural network that adapts in flight using a reward-
modulated Hebbian plasticity mechanism.

I. INTRODUCTION

Flying insects are some of the most agile members of the
natural world, capable of dodging swatting hands, landing
on wind-blown flowers, and flipping upside-down to land on
ceilings [1], [2]. Insects are able to maintain stable control of
their flight paths during complicated maneuvers despite their
relatively small nervous systems [3]. To achieve this perfor-
mance on a robotic platform, one approach is to develop cus-
tom accelerator-based chips that are computationally efficient
and fast and combine the scalability of homogeneous multi-
core architectures with the high performance of system-
on-a-chip power-efficient hardware accelerators [4]. Another
approach, explored in this paper, is to develop neuromor-
phic chips inspired by biological systems, in an attempt
to replicate not only their size and power consumption but
also the functionalities of biological brains. Through the use
of the training algorithm presented in Section IV, spiking
neural networks can learn to perform adaptive control and
potentially provide robust and reconfigurable control for the
RoboBee [5]–[7].

In an effort to replicate these capabilities, many examples
of bio-inspired robots and micro aerial vehicles (MAVs) have
been realized at various scales, e.g., 10 grams and above [8]–
[14]. The benefits for reducing the size of flying robots to
gram and sub-gram or insect scale include increased platform
robustness and survivability (since the strength to weight
ratio is inversely proportional to size), as well as improved
agility, covertness, and access to confined spaces. These

Taylor S. Clawson is with the Laboratory for Intelligent Systems and
Control (LISC), Sibley School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY 14853 tsc83@cornell.edu

Silvia Ferrari is the director of the Laboratory for Intelligent Systems and
Control (LISC), Sibley School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY 14853 ferrari@cornell.edu

Sawyer B. Fuller is with the Department of Mechanical Engineering,
University of Washington, Seattle, WA

Robert J. Wood is with the John A. Paulson School of Engineering
and Applied Sciences and the Wyss Institute for Biologically Inspired
Engineering, Harvard University, Cambridge, MA 02138

benefits, combined with the consideration that insect-scale
robots pose no danger when collisions or failures do happen,
make them ideal platforms for a broad range of sensing,
reconnaissance, and surveillance applications [3], [15], [16].

Conventional propulsion and manufacturing technologies
are not viable at the gram and sub-gram (or millimeter) scale,
because of inefficiencies that arise from force scaling [15]. In
recent years, the ”smart composite microstructures” or SCM
design and manufacturing methodology, developed by the
Harvard Microrobotics Lab, has been shown highly effective
at fabricating robotic insects capable of stable flight and high-
speed locomotion. In particular, the ”RoboBee”, considered
in this paper (Fig. 1), uses only an onboard visual sensor
comprised of a pyramidal structure with four phototransistors
to estimate pitch and roll rates by measuring changes in light
intensity from a fixed source. These estimates are used to
control piezoelectric actuators for the wings, allowing for
stable hovering. Additional sensors have recently been devel-
oped and used to demonstrate improved flight capabilities,
such as perching and trajectory-following using proximity
sensors and an on-board IMU [17], [18].

Fig. 1. The RoboBee.

Because of their small size, insect-scale robots are in
principle well suited for agile maneuvers due to the low
mass and inertia of the robot. To avoid hazardous conditions
such as turbulence, gusts, or obstacles, these robots require
accurate sensors with low latency. This typically translates
into more processing and battery power, as well as greater
weight. Examples of fully autonomous flight systems at
larger (e.g. sub-meter) scales have shown that maneuvers
beyond attitude stabilization require position estimates with
low latency that are typically obtained by external motion-
capture systems, such as Vicon or OptiTrack [8]–[13], [19].
In addition to being too heavy and inefficient, traditional

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1836-9/16/$31.00 ©2016 IEEE 3381

sensors to date have also required external reference systems,
such as a fixed light source and surface markers [9].

Event-based or neuromorphic sensors and computer chips
(Fig. 2) are emerging technologies that have been shown
to drastically reduce size and power requirements by per-
forming computations based on asynchronous events that,
similarly to neuron spikes, occur when a threshold is ex-
ceeded at the hardware level [20]. By this approach, it
has been shown that a significant amount of computation
and compression occurs in the chip, before the signal is
ever digitized. Moreover, event-based programmable VLSI
systems are now being fabricated at the nanoscale, with
power consumptions and device densities that approach those
of biological brains [21], [22].

Inputs
Outputs

Fig. 2. Neuromorphic circuit implementation of LIF SNN controller.

This paper presents a method for developing a neuromor-
phic controller modeled by a leaky integrate-and-fire (LIF)
spiking neural network (SNN), as shown in [20]. The method
consists of training the SNN controller online to follow a
Linear Quadratic Regulator (LQR) controller with known
performance guarantees. A bio-inspired learning rule, based
on reward-modulated Hebbian plasticity, is used to adjust
the synaptic weights such that the SNN control performance
matches that of the LQR controller with high accuracy.
The simulation results demonstrate the SNN ability to learn
and adapt quickly to changes in the reference input, while
in flight. Thus, they also provide an important basis for
the future development of SNN controllers that can control
and adapt online to parameter variations and unmodeled
RoboBee dynamics.

II. FLAPPING-WING ROBOT

Micro Aerial Vehicles (MAVs) such as quad rotors have
become increasingly popular for both consumer and com-
mercial use due to their affordability, maneuverability, and
the relative ease with which they can be controlled. When
scaled down to an insect-scale, however, significant disad-
vantages make these designs infeasible. The electromagnetic
motors and bearings that are typical in such designs become
inefficient at such small scales as surface forces such as
friction begin to dominate volumetric forces such as gravity
and inertia. Flapping-wing designs inspired by insects do
not suffer from the same force scaling issues as they can be

operated without any rotating parts or motors. robots on this
scale are desirable for a number of applications due to their
extremely small size. For example, in a search and rescue
situation, insect-scale robots would be capable of searching
tight spaces for survivors where other robots would be too
large.

A. Robot Description

Insect-scale flapping wing robots have potential uses in
a variety of applications, including reconnaissance, search
and rescue, and agricultural assistance. Their development
can also provide insight into the flight mechanics of insects
and other flapping-wing organisms that would be difficult to
obtain through experimental methods such as wind tunnel
tests. The small scale of these robots provides flexibility that
larger robots do not. For instance, the lower cost of each
individual robot would allow an entire swarm of hundreds
or thousands of insect-scale robots to be deployed at the
same cost as a single larger robot. The swarm would also be
better suited to many tasks. In the situation of searching for a
target, only a single member of the swarm must succeed for
the entire swarm to have successfully completed its task. The
RoboBee, a millimeter-scale, 80 mg flapping-wing robot, is
an example of a robot currently being developed for these
potential applications.

A simulation of the RoboBee is used in this paper. The
robots are manufactured from laser-cut carbon fiber using the
process described in [23], [24]. Because of the difficulties
involved in deriving an accurate nonlinear model for the
entire flight envelope and estimating the parameters of a
newly fabricated robot, a nonlinear, adaptive SNN controller
may prove better capable of controlling the RoboBee in these
and other challenging situations.

The RoboBee control methods implemented thus far have
been shown to be capable of stabilizing the robot during
hovering and basic lateral maneuvers by relying on linearized
models obtained for the trim conditions of hovering flight
[3], [15], [17]. An iterative learning method has also been
demonstrated to perch the robot on a vertical wall [18]. A
nonlinear adaptive controller capable of learning while in
flight may allow the RoboBee to perform more advanced
maneuvers mimicking biological insects. Furthermore, it may
compensate for flight parameter errors, thereby eliminating
the need for detailed system identification required by pre-
vious designs.

The coordinate system shown in Fig. 3 is used to describe
the motion of the robot, where {x̂, ẑ} is an inertial reference
frame and {x̂′, ẑ′} is a body-fixed frame. The wings rotate
about the ẑ′ axis while flapping. The wing membranes are
made of a flexible material that allows them to twist about the
top of the wing while in motion, thus generating lift. They are
operated near the resonant frequency of the wing structures
to maximize the generated lift force. The robot is capable
of generating torque about all three axes by modulating the
relative flapping frequency and mean flapping angle of each
wing as described in [17]. The robot is described in greater
detail in [3], [17].

3382

B. Rigid Body Dynamics

The governing equations for the flapping-wing robot used
in the simulation are derived using rigid-body dynamics.
The full model includes six degrees of freedom in three
dimensions, but by assuming that the torque about the ẑ′ axis
is negligible, the dynamics can be reduced to a planar model
with three degrees of freedom. The planar model includes a
single rotational degree of freedom about the y axis, θ and
two translational degrees of freedom in the directions of the
x̂′ axis and ẑ′ axis. Figure 3 shows the planar model of the
robot and corresponding coordinate system used for deriving
the equations of motion.

Fig. 3. Free body diagram of the RoboBee.

The vibration caused in the robot body due to flapping has
been experimentally validated to be negligible compared to
the wing motions. Neglecting the motion of the wings allows
for the use of a stroke-averaged model [17] to represent
aerodynamic forces. Rigid body dynamics are used for the
main body of the robot. The effects of the wings on the
dynamics of the robot can be modeled by the use of two
separate forces and a torque, all acting at the intersection
of the two wings. A lift force fL ∈ R3 is generated as
the wings flap and the wing membrane flexes about the top
of the wing. This lift force is proportional to the flapping
rate of both wings. In reality, this force also depends on the
velocity of the robot body, but this contribution is neglected
for simplicity. For the small spaces and relatively low speeds
used in the simulations presented in Section V, the body
velocity is an order of magnitude smaller than the velocity
of the wings, which are flapping at 120 Hz.

A stroke-averaged drag force fd ∈ R3 was found to be
nearly linearly proportional to the incident airspeed vw in
[3]. The drag force can thus be calculated as fd = −bwvwx̂

′,
where bw is a constant that was obtained from the wind
tunnel tests. The wings are capable of generating a torque
τ c ∈ R3 about the y axis by increasing the flapping rate
of one wing relative to the other. Additional aerodynamic
forces are neglected in this model as they are typically small
in steady, hovering flight.

Using linear and angular momentum balance on the body
following Newton’s second law for rigid-body dynamics as

described in [25] yields the following equations for the forces
and torques described previously:

mv̇ + ω ×mv = fd +mg + fL (1)

Iyω̇ + ω × Iyω = τ c + (rw/G × fd) (2)

where m is the mass of the robot, v ∈ R3 is the linear
velocity of the body, ω = θ̇y, and ω ∈ R3 is the body rota-
tion rate with respect to the inertial frame. The acceleration
of gravity is g ∈ R3, Iy is the moment of inertia of the
robot about the y axis, and rw/G ∈ R3 is the position of
the center of the wings with respect to the center of gravity.
fL is physically limited to fL,max = 1.5 · m∥g∥ and τ c is
limited to τc,max = 1 µNm.

The aerodynamic drag fd is a key component in the model
as it causes the robot to be naturally unstable. As the robot
tilts, fL rotates and creates increased lateral acceleration. As
the robot accelerates laterally, the drag force increases until
it generates a torque large enough to rotate the robot in the
opposite direction. The torque generated by the drag force
results in growing oscillations until the robot tumbles.

For the simulation, equations (1) and (2) are rearranged
to the form v̇ = f(q, fL, fd,g) and ω̇ = f(q, fd, τ c). Once
in this form, the equations can be used to update the state
vector

q = [θ, θ̇, x, z, ẋ, ż]T (3)

using numerical integration. The final form of the governing
equations for the rigid body dynamics is

v̇ =
fd + fL

m
+ g − ω × v (4)

ω̇ = I−1
y [τ c + (rw/G × fd)− ω × Iyω] (5)

III. SPIKING NEURAL NETWORK CONTROL STRUCTURE

The control system used for the simulated RoboBee con-
sists of two decoupled controllers. The altitude controller
is responsible for controlling the lift force fL through the
control output ualt and the lateral controller modulates the
torque τ c through the control output ulat. This structure
is a simplification of the controller demonstrated in [15].
That controller uses a lateral controller consisting of a
proportional term opposing error from a reference orientation
and a derivative term that opposes rotational velocity. This
controller was successful in stabilizing a RoboBee in both
hovering flight and basic lateral maneuvers. Several other
control methods have also been used on both manufactured
and simulated RoboBees.

An LQR method has been used as the lateral controller
for simulations of the RoboBee and is capable of stabilizing
the linearized model more effectively than the PD controller.
One of the most capable controllers used on a manufactured
RoboBee to date is an adaptive method using sliding mode
control [17]. This method showed an improvement in steady
state error compared to the PD controller when used in
hovering flight and basic lateral maneuvers. It was also used
to successfully land the RoboBee and adapted to differences
in robot parameters.

3383

The assumptions made in deriving the planar rigid body
dynamics shown in Section II-B create a reasonably accurate
model in regions of the state space near hovering flight, but
break down during rapid maneuvers or in the presence of
strong disturbances.

In simulation, the input signals are processed before
reaching the SNN to scale them to an appropriate range
and encode them in event sequences known as spike trains.
In future experiments, the architecture can be modified to
receive event sequences directly from the onboard sensors,
without need for coding and decoding. When converting
continuous input signals, as required in simulations, if the
input values from the state variables are too high, then the
network will become saturated and the input groups will
reach their maximum firing rate before being able to replicate
the input. If the input values are small or negative, the
input nodes will never fire and the signal will not propagate
throughout the network. It would also be possible to adjust
the firing thresholds on the neuron groups so that they
are scaled to the appropriate range for the input, but it is
convenient to design the network without concern for the
expected strength of the input signals. To address this issue,
the actual signal q̂i passed into the neural network is the
shifted and scaled value of the original signal qi for each state
variable, so that q̂i = ai(qi+bi), where ai and bi are positive
constants. This pre-processing ensures that state variables in
the expected range will produce a positive current in the
network and cause the input groups to fire.

The SNN is designed as a feed forward network composed
of three layers: an input layer, a hidden layer, and an output
layer. The input layer consists of four groups of neurons
containing 50 neurons each, responsible for receiving input
from each of the lateral state variables: θ, θ̇, x, and ẋ. The
neurons in the input layer are connected to the neurons in the
hidden layer with a probability of 30%. Lowering the number
of connections decreases the required computation time to
run the simulation. The hidden layer contains a single group
of 100 neurons. Neurons in the hidden layer are connected to
the neurons in the output layer, which contains a single group
of 50 neurons, with the same probability of 30%. Instead of
using single neurons for each input and for the output, groups
of neurons were used to facilitate population rate coding as
described in Section III-B.

Each neuron is governed by the LIF equation, with an
increasing decay rate τ in the later layers in the system such
that τinput < τhidden < τoutput. This helps to normalize
the current flowing through the network so that it does not
become amplified in the hidden and output layers.

The spike trains from the neurons in the output layer are
decoded using the approach described in Section III-B and
the decoded output is used as the lateral control input as
shown in Fig. 4. The plant uses the output from both the
altitude controller and the lateral controller to adjust fL and
τ c, respectively.

Plant

Altitude

LQR Training

SNN

Input Hidden Output

Fig. 4. The control structure, including the spiking neural network structure.

A. Neuron Model

There are many different models used to represent the
dynamics of an individual neuron [26], [27]. The Hodgkin-
Huxley model is a well-known example that models different
types of ion current flowing across the neuron membrane,
including a sodium channel, a potassium channel, and a
leakage channel. This model captures the basic spike gen-
eration properties for certain types of neurons, and can be
expanded to capture the behavior of more types of biological
neurons by increasing the number of ion channels [26]. The
spike response model gives a simple formulation for the
membrane potential in neurons. It generates a spike when
the membrane potential crosses a predefined threshold and
includes a refractory time after each spike during which the
neuron will not fire. A special case of the spike response
model is the leaky integrate-and-fire model, which is based
on the dynamics of a simple RC circuit. This model is used
in this paper for its low computational complexity. In the
model, the change in the neuron membrane potential v over
time is governed by,

dv

dt
=

RI − v

τ
+ ξ (6)

where I is the input current, R is the resistance, τ is a time
constant controlling the ”leak” rate, and ξ is an additive
disturbance scalar used to represent noise in the neural
circuit. The second part of the leaky integrate-and-fire model
resets the membrane potential v to a rest value vr after
reaching a threshold vt. A firing time is defined as the time
at which v reaches vt as follows:

tf : v(tf) = vt (7)

Following a firing time, the dynamics of the neuron again
follow equation (6). The leaky integrate-and-fire model is
shown in Fig. 5.

B. Spike Train Decoding

Biological neural networks encode information through
sequences of spike times denoted by tf = [t0, t1, ...tn],
generated by all neurons within the network. In order to be
useful in representing continuous-time functions for control
input, the output from the neural network must be decoded.

3384

Fig. 5. Leaky integrate and fire model.

While the precise method that biological systems use to
decode spike trains is not yet fully understood, one useful
group of decoding methods is based on mean firing rates
using a temporal average. This category of methods is called
rate coding and includes schemes based on decoding the
output from a single neuron or a population of neurons.
However, rate coding methods neglect any information that
may be contained in the precise timing of spikes. There is
some evidence to indicate that the precise timing of spikes
in different neurons is important to how biological systems
encode information. Decoding methods based on precise
timing of spikes are categorized as spike codes. A detailed
description of several different methods from each group is
provided in [26].

As described in [26], population rate coding has certain
advantages over rate coding for a single neuron and thus,
it is adopted in this paper. For a single neuron, the time
window over which the spike count is averaged must be
relatively large in order to create a smooth function. This
has the drawback of an output that is slow to respond to
changes in the instantaneous firing rate of the neuron. Using
a population of homogenous neurons, all receiving the same
input, the firing rate can be taken as the average firing rate of
the entire population. The increase in spikes of the population
compared to a single neuron allows the averaging window
to be much smaller and the decoded output can therefore
respond much more quickly to changes in the instantaneous
firing rate.

In this paper, the leaky integrator equation is used to
decode population firing rates into a continuous output as
follows

ŷ(t) = α
∑

tf∈Si(T)

eβ(t
f−t) − γ (8)

where for all tf , tf < t. The scaling constant α is used to
scale the output so that the neural network can generate the
appropriate range of output values for the target function.
The decay constant β can be tuned for the appropriate trade-
off between a faster output response and less noise, and an
offset constant γ offsets the entire output curve such that the
minimum firing rate of the system can be mapped to any
real number.

Figure 6 shows ŷ(t) for an arbitrary spike train. The
jagged output is the byproduct of a lower firing rate. Using

a population rate instead of the firing rate of a single neuron
solves this problem by increasing the number of spikes in the
spike train so that the output ŷ(t) does not decay noticeably
between spike times.

Fig. 6. Spike train decoding using rate coding.

During the simulation, the decoding method shown in
equation (8) is running constantly in order to give an accurate
measure of the current system output. It is critical for the
training algorithm to have the current system output ŷ(t)
at all times during the simulation so that it can adjust the
synaptic weights and alter the output to approach the target
output y.

IV. SPIKING NEURAL NETWORK TRAINING ALGORITHM

In the proposed approach, the SNN controller is trained
based on an existing LQR design with known performance
guarantees. The weights in the neural network are adjusted
directly following a reward-modulated Hebbian approach
presented in [28], which imitates a chemical reward based
on the error between a reference value y and the decoded
network output ŷ, defined as e = (y − ŷ). The output from
the LQR controller computed from the RoboBee state is
fed back to the training algorithm as the reference value
y. The LQR design is based on the RoboBee lateral state
[θ, θ̇, x, ẋ] in continuous time, t. The interaction between the
LQR controller and the rest of the system is shown in figure
4.

The LQR controller is tuned to have a steady state error
of much less than 1% and provides guaranteed stability,
as the model used in the controller perfectly matches the
simulation. Additionally, since the LQR control law is a
linear operation (uref = K·e), it is a relatively easy function
for the SNN to learn. These traits make the LQR controller
a good candidate for a reference control input to the SNN.

The SNN training algorithm minimizes the error between
the SNN decoded output, ŷ, and the LQR reference inputs, y,
adjusting the synaptic weights based on the reward function,

r(t) = [sgn(y − ŷ) + r(t−∆t)] · e(t̂i−t)/τ (9)

where t̂i is the time of the last presynaptic spike occurring
before the current time t, and τ is a time constant that
controls the decay rate of the reward. This function, inspired
by biological mechanisms for synaptic plasticity, has the
effect of changing the weights in the direction of the sign

3385

of the error (y − ŷ) slowly when the time since the last
spike is large and quickly when the time since the last spike
is small. Figure 7 shows the reward function over time if
sgn(y − ŷ) > 0 for an arbitrary spike train.

Fig. 7. Reward function for an arbitrary spike train.

Finally, a learning rate constant µ is included in the weight
change equation for more control over the speed at which the
network is allowed to change its weights. Thus, the complete
function for the change in synaptic weights is

∆wij(t) = µ · r(t) (10)

where the subscript ij denotes that this is the change in
weight of the synapse between neurons i and j.

V. SIMULATION RESULTS

The spiking neural network described in Section III is sim-
ulated using the brian neural simulator developed in [29]. At
every time step, the simulator calls a function to update the
RoboBee state and another function to compute the weight
changes for each set of synapses following equation (10). At
the onset of the simulation, the neural network is initialized
with synaptic weights sampled from a standard uniform
distribution U(0, 1). The neuron firing thresholds were all
initialized by sampling a uniform distribution U(0.7, 1.7).
The network was not trained a priori. Thus, its ability to
successfully control the simulated RoboBee when starting
from a semi-random state demonstrates the ability of the
network to quickly adapt to unknown dynamics and flight
conditions.

The initial robot configuration is characterized by a
nonzero attitude θ0. The goal of the robot controller is to
navigate to two target states in sequence, each one with a
different x and z value, but with zero attitude and velocity.
Based on the general form of the state vector q given in
equation (3), the first study is characterized by the following
initial state and two target states:

q0 = [−0.6 0 0 0.02 0 0]T

q1 = [0 0 0.05 0.08 0 0]T

q2 = [0 0 0.01 0.05 0 0]T

For the first 500 ms of the simulation, the state q was held
constant at q0 so that the leaky integrator used to decode the
output of the network had sufficient time to build up to an

initial steady-state value accurately representing the output
of the network corresponding to q.

The trajectory of the robot during simulation is overlaid
on the trajectory of the robot as controlled by the LQR
controller in Fig. 8, which shows the ability of the SNN
controller to closely follow the LQR controller. The initially
skewed attitude of the robot forces it to begin its movement
in the negative x̂ direction, but the controller is able to
successfully correct the trajectory to settle just above q1.
For the purposes of this paper, it is unimportant that the
robot slightly overshoots the target q1. The key metric is
the ability of the spiking neural network to control the robot
in a manner that closely mimics the LQR-controlled robot.
Improved reference controllers would reduce the steady-state
error and overshoot, and the spiking neural network would
likely be able to follow the slightly modified control outputs
similarly well.

Fig. 8. The RoboBee trajectory for the first simulation.

The output-error time history plotted in Fig. 9 illustrates
the difference between the desired LQR control inputs and
the SNN control inputs. Large deviations in error are visible
at both 0.5 s and 1.5 s, when the robot receives a new
target waypoint. Otherwise, the error resembles gaussian
noise centered at approximately 0. The output of the spiking
neural network, ŷ(t), is then plotted against the target output
from the LQR controller y in Fig. 10. What appears to be
noise in the output is an artifact of the rate coding used to
decode the network output. A larger group of output neurons
would produce a smoother decoded output signal. Below the
network output in Fig. 10, the time histories of the closed-
loop RoboBee state variables, θ and x, show the relationship
between the change in the state values and SNN control input
ŷ(t).

A second simulation was run to test the ability of the
controller to transition between different waypoints. The
structure of the SNN was identical to that used for the first
simulation (Section III), and again, the training algorithm
described in Section IV was used to adapt the weights of
the network online. For this simulation, the waypoints were
chosen to exemplify landing of the RoboBee. The robot is

3386

Fig. 9. The output error (y − ŷ(t)).

Fig. 10. Comparing the lateral control signals.

first guided to a hovering position slightly above the ground
before a second target waypoint causes the robot to slowly
lower and contact the ground at a low velocity ż while
in an upright position. The resulting trajectory is shown in
Fig. 11, demonstrating that the SNN controller is capable
of closely following the target LQR controller. Moreover,
these results demonstrate the ability of the bio-inspired SNN
controller and training algorithm to learn from a reference
input accurately and rapidly online, as required for adaptive
in-flight control.

VI. CONCLUSIONS

This paper presents a RoboBee SNN controller that closes
the loop between the onboard sensors and actuators by
means of a leaky integrate-and-fire spiking neural network.
The spiking neural network adapts in flight using a reward-
modulated Hebbian plasticity mechanism that is biologically

Fig. 11. Trajectory for the second simulation.

inspired and rapid enough to allow for online implemen-
tations. The proposed SNN architecture is modeled based
on neuromorphic chips and biological brains such that it
can potentially enable nanoscale hardware fabrication and
studies aimed at reverse-engineering the insect brain and
flight apparatus. Furthermore, the spiking neural network
ability to learn rapidly and accurately from a target reference
signal provides the opportunity for the future development
of control systems that can account for significant parameter
variations, unmodeled dynamics, and unstructured environ-
mental uncertainty.

ACKNOWLEDGMENT

This research was funded by the National Science Foun-
dation grants ECCS-1545574, ECCS-1028506 and CMMI-
1251729.

REFERENCES

[1] M. F. Land and T. Collett, “Chasing behaviour of houseflies (fannia
canicularis),” Journal of Comparative Physiology, vol. 89, no. 4, pp.
331–357, 1974.

[2] S. Dalton, Borne on the Wind. Reader’s Digest Press; distributed by
Dutton, 1975.

[3] S. B. Fuller, M. Karpelson, A. Censi, K. Y. Ma, and R. J. Wood,
“Controlling free flight of a robotic fly using an onboard vision sensor
inspired by insect ocelli,” Journal of the Royal Society Interface,
vol. 11, 2014.

[4] M. Hempstead, M. J. Lyons, D. Brooks, and G.-Y. Wei, “Survey of
hardware systems for wireless sensor networks,” Journal of Low Power
Electronics, vol. 4, no. 1, pp. 11–20, 2008.

[5] S. Ferrari and R. F. Stengel, “Online adaptive critic flight control,”
Journal of Guidance, Control, and Dynamics, vol. 27, no. 5, pp. 777–
786, 2004.

[6] ——, “An adaptive critic global controller,” in Proceedings of the
2002 American Control Conference (IEEE Cat. No. CH37301), vol. 4.
IEEE, 2002, pp. 2665–2670.

[7] S. Balakrishnan and V. Biega, “Adaptive-critic-based neural networks
for aircraft optimal control,” Journal of Guidance, Control, and
Dynamics, vol. 19, no. 4, pp. 893–898, 1996.

[8] A. Censi, J. Strubel, C. Brandli, T. Delbruck, and D. Scaramuzza,
“Low-latency localization by active led markers tracking using a
dynamic vision sensor,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 891–
898.

3387

[9] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-slam–based
navigation for autonomous micro helicopters in gps-denied environ-
ments,” Journal of Field Robotics, vol. 28, no. 6, pp. 854–874, 2011.

[10] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-uav testbed,” Robotics & Automation Magazine, IEEE,
vol. 17, no. 3, pp. 56–65, 2010.

[11] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time
indoor autonomous vehicle test environment,” Control Systems, IEEE,
vol. 28, no. 2, pp. 51–64, 2008.

[12] B. Hérissé, T. Hamel, R. Mahony, and F.-X. Russotto, “A terrain-
following control approach for a vtol unmanned aerial vehicle using
average optical flow,” Autonomous robots, vol. 29, no. 3-4, pp. 381–
399, 2010.

[13] S. Lupashin and R. DAndrea, “Adaptive fast open-loop maneuvers
for quadrocopters,” Autonomous Robots, vol. 33, no. 1-2, pp. 89–102,
2012.

[14] J. M. Grasmeyer, M. T. Keennon et al., “Development of the black
widow micro air vehicle.” Progress in Astronautics and aeronautics,
vol. 195, pp. 519–535, 2001.

[15] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood,
“Controlled flight of a biologically inspired, insect-scale robot,”
Science, vol. 340, no. 6132, pp. 603–607, 2013. [Online]. Available:
http://science.sciencemag.org/content/340/6132/603

[16] A. T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, and R. J. Wood, “High
speed locomotion for a quadrupedal microrobot,” The International
Journal of Robotics Research, p. 0278364914521473, 2014.

[17] P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Adaptive
control of a millimeter-scale flapping-wing robot,” Bioinspiration &
Biomimetics, vol. 9, no. 2, p. 025004, 2014. [Online]. Available:
http://stacks.iop.org/1748-3190/9/i=2/a=025004

[18] ——, “Fly on the wall,” in 2014 5th IEEE RAS & EMBS, International
Conference on, Aug 2014, pp. 1001–1008.

[19] G. C. de Croon, M. Groen, C. De Wagter, B. Remes, R. Ruijsink, and

B. W. van Oudheusden, “Design, aerodynamics and autonomy of the
delfly,” Bioinspiration & biomimetics, vol. 7, no. 2, p. 025003, 2012.

[20] P. Mazumder, D. Hu, I. Ebong, X. Zhang, Z. Xu, and S. Ferrari,
“Digital implementation of a virtual insect trained by spike-timing
dependent plasticity,” Integration, the VLSI Journal, 2016.

[21] J. V. Arthur and K. Boahen, “Learning in silicon: Timing is every-
thing,” Advances in neural information processing systems, vol. 18,
p. 75, 2006.

[22] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[23] P. S. Sreetharan, J. P. Whitney, M. D. Strauss, and R. J. Wood,
“Monolithic fabrication of millimeter-scale machines,” J. Micromech.
Microeng., vol. 22, no. 5, 2012.

[24] K. Y. Ma, S. M. Felton, and R. J. Wood, “Design, fabrication, and
modeling of the split actuator microrobotic bee,” in Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on.
IEEE, 2012, pp. 1133–1140.

[25] W. F. Phillips, Mehanics of Flight. John Wiley & Sons, Inc., 2010.
[26] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge, UK: Cambridge University Press,
2006.

[27] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. Cambridge, MA:
MIT Press, 2001.

[28] G. Foderaro, C. Henriquez, and S. Ferrari, “Indirect training of a
spiking neural network for flight control via spike-timing-dependent
synaptic plasticity,” in Decision and Control (CDC), 2010 49th IEEE
Conference on, Dec 2010, pp. 911–917.

[29] M. Stimberg, D. F. M. Goodman, V. Benichoux, and R. Brette,
“Equation-oriented specification of neural models for simulations,”
Frontiers in Neuroinformatics, vol. 8, no. 6, 2014.

3388

