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Modeling of Human Driver Behavior via Receding Horizon and

Artificial Neural Network Controllers

Hongchuan Wei∗, Weston Ross∗, Stefano Varisco†, Philippe Krief†, and Silvia Ferrari∗

Abstract— This paper presents a comparison of receding
horizon and artificial neural network controllers for the
modeling of human driver behavior during coupled lateral-
longitudinal maneuvers. Driver models have been previously
developed using control theoretic approaches, such as model
predictive control, also known as receding horizon control,
and have been shown capable of providing satisfactory vehicle
control. However, these models tend to outperform human
drivers, for example, due to maneuvers that require high-
frequency driver compensation, counter-steering behaviors as
required to maintain stability, or modeling errors. Furthermore,
tuning these driver models to different drivers, automobiles, and
road conditions, can be very challenging, and requires expert
human intervention. This paper presents an artificial neural
network controller that overcomes these limitations, and, by
adapting to the experimental data obtained from the human
driver, is capable of reproducing the driver behavior more
closely and under a broader range of operating conditions.
The receding horizon and neural network controllers are tested
and compared to the response of a professional human driver
on a closed-course track using data obtained using a high-
fidelity Ferrari GT driving simulator. The results show that
the artificial neural network outperforms the receding horizon
controller in mimicking the response of the professional human
driver.

I. INTRODUCTION

To date, control theoretic approaches such as receding

horizon control (RHC), also known as model predictive con-

trol (MPC), have been shown effective at capturing the be-

havior of human drivers for a given vehicle model, trajectory,

and speed profile [1] [2] [3]. A structural-model approach,

originally developed for pilots involved in flight control

tasks, was first proposed in [3] to model the steering behavior

of a driver in lane-keeping tasks on a curvy road. Falcone

et. al [1] demonstrated the effectiveness of MPCs to control

a ground vehicle in real time by successively linearizing the

nonlinear model used by the MPC. An approach combing

ANN with MPC was shown to compensate for non-linearities

and modeling errors in [2]. The effectiveness of these MPC

approaches, however, is highly dependent on the accuracy of

the mathematical model used to represent the vehicle dynam-

ics. Also, experimental studies show that these models tend

to outperform human drivers, for example, during maneuvers

that require high-frequency driver compensation, sharp turns

that result in counter-steering behaviors and/or modeling
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errors [4], [5]. As a result, they may not always provide

a close representation of a driver behavior or, alternatively,

may require constant (expert) human intervention to closely

match the model to different human drivers, automobiles, or

road conditions.

This paper presents a comparison of receding horizon and

artificial neural network controllers used to model human

driver behavior during coupled lateral-longitudinal maneu-

vers. The artificial neural network controller (ANN) was

found to outperform the receding horizon controller (RHC) in

matching the human response, particularly under challenging

operating conditions, such as counter-steering. The ANN

controller benefits from learning from training data generated

by a professional human driver because it can learn from

dynamics that are not captured by physics based models used

in receding horizon controllers.

While existing approaches may be suitable to applications

involving feedback control of autonomous vehicles [1], the

ANN approach presented in this paper is better suited to

applications that require an accurate model of human driver

behavior. Such a model may be implemented during a vehicle

design phase to reduce manufacturing delivery times and

costs or to better test the vehicle safety and performance

through simulations before experimental testing begins. As

a result, the ability of the model to capture the performance

limitations and, possibly, the mistakes of a real human driver,

is just as important as its ability to control the vehicle.

This paper compares the response of the RHC and ANN

controllers to the response of a professional human driver

on a closed-course track in the Ferrari GT simulator.

The Ferrari GT driving simulator reproduces a representa-

tive environment for vehicle testing and evaluation. Through

the simulator – which includes a 120-degree screen with a

two-dimensional (2D) surface rendering of the track to scale

– the professional driver is able to drive the same vehicle

models used for virtual development (vehicle dynamics,

virtual durability, and control system development), both

in Software-in-the-Loop and Hardware-in-the-Loop layouts.

The same simulated vehicle can be driven by the automatic

feedback controller or by a professional human driver. The

simulator also includes elements like the cockpit, realistic

graphics, and sound, in order to provide the human driver

with a highly realistic driving experience.

The paper is organized as follows. Section II presents a

detailed description of the bicycle model used to develop

the RHC-based human driver model (HDM). The lateral and

longitudinal vehicle models are also described in Section II.

Section III presents the problem formulation and assump-
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Fig. 1: Schematic diagram of the body frame of reference,

F , the inertial frame of reference, F0 and the track.

tions. The design of the RHC-based and ANN-based HDMs

are presented in Section IV, and the results are presented in

Section V.

II. MATHEMATICAL MODELS

This section presents the mathematical models used to rep-

resent the dynamic properties of the vehicle to be controlled

for the RHC-based HDM design and simulations. The vehicle

dynamics are derived using a moving frame and an inertial

frame of reference, as shown in Fig. 1. The moving frame of

reference, denoted by F , is embedded in the vehicle, with

the origin at the center of gravity, and such that the x-axis

points in the direction of forward motion, the z-axis points

upward, and the y-axis direction is chosen by the right-hand

rule. The inertial frame of reference, denoted by F0, is fixed

with respect to the track.

A. Model of Lateral Vehicle Dynamics

The lateral dynamics model is based on the bicycle model

illustrated in Fig. 2, and taken from [6]. The equations of

motion are derived by applying Newton’s II Law in the y-

direction, as follows,

m(ÿ+ ψ̇ ẋ) = Fyr +Fy f , (1)

Izψ̈ = aFy f −bFyr, (2)

where a and b are the distances between the center of gravity

and the front and rear wheels along the x-axis, respectively.

The mass of the vehicle is denoted by m, and the moment

of inertia of the vehicle with respect to the z-axis is denoted

by Iz. The yaw angle, ψ , denotes the angle that the body

x-axis makes with the inertial x0-axis, and ψ̇ denotes the

yaw-rate. The front and rear lateral forces are modeled as

linear functions of the front and rear slip angles α f and αr,

respectively, such that,

Fy f
= K f α f , (3)

Fyr = Krαr, (4)

where K f and Kr are the front and rear tire cornering stiffness

factor, respectively. The front and rear slip angles, α f and

αr, are defined as the angles between a rolling wheel’s

F 0 

F 

Fxf 

y 

x0 

y0 

x Fxr 
\ 

Fig. 2: Bicycle model.

actual direction of motion (x-axis) and the orientation of the

wheel [7]. In addition to this definition, the front and rear

relaxation lengths, l f and lr, are introduced to describe a first

order delay to the change of slip angles, which increases the

accuracy of the lateral dynamics model,

l f

ẋ
α̇ f +α f = δ −

aψ̇ + ẏ

ẋ
, (5)

lr

ẋ
α̇r +αr =

bψ̇ + ẏ

ẋ
, (6)

where δ denotes the angle of front tires with respect to x-

axis, also known as, the steering angle [8].

As a result, the state-space representation of the lateral

dynamic model is,

ẋy = Axy +Buy, (7)

where the lateral vehicle state is xy = [y ẏ ψ̇ α f αr]
T ,

the lateral control vector is uy = [δ ], and the state-space

matrices are defined as follows,

A =













0 1 0 0 0

0 0 −ẋ K f /m Kr/m

0 0 aK f /Iz −bKr/Iz

0 −1/l f −a/l f −ẋ/l f 0

0 −1/lr b/lr 0 −ẋ/lr













, (8)

B = [0 0 0 ẋ/l f 0]T . (9)

B. Model of Longitudinal Vehicle Dynamics

The longitudinal vehicle dynamics are derived by applying

Newton’s II Law in the x-direction,

mẍ = 2Fx f
+2Fxr −Faero −Rx f

−Rxr −mgsinθ , (10)

where Fx f
and Fxr are the tire forces generated by one

front wheel or one rear wheel, respectively. Faero is the

aerodynamic drag force, Rx f
and Rxr are the front and rear

rolling resistances, respectively, and θ is the inclination angle

of the road in the direction of the z-axis. The tire forces

can be approximated by the Bakker-Nyborg-Pajecka (BNP)

equations, as functions of the normal forces on the wheel

and the tire slip ratio, σx,

σx =











rwωw − ẋ

ẋ
, in braking mode,

rwωw − ẋ

rwωw

, in acceleration mode,
(11)

6779



where rw denotes the effective rolling radius of the wheel,

and ωw is the angular velocity of the wheel.

The aerodynamic drag force is modeled as a quadratic

function of the vehicle forward speed,

Faero =
1

2
ρCdAF ẋ2, (12)

where ρ is the mass density of air, Cd is the aerodynamic

drag coefficient, and AF is the frontal area of the vehicle,

defined as the projected area of the vehicle in the direction

of travel.

The rolling resistances, Rx f
and Rxr , are assumed to be

proportional to the normal force on the wheels,

Rx f
+Rxr = µmgcosθ , (13)

where µ is the rolling resistance coefficient, and g is the

gravitational acceleration constant.

In order to relate the longitudinal vehicle dynamics to the

engine torque and the brake pressure, the dynamics of the

wheels are modeled as follows. For the front wheels, the

rotational dynamics can be written as,

Iw f
ω̇w f

= Tw f
− rwFx f

+PbCb f
, (14)

where Iw f
is the rotational inertia of one front wheel, and

ω̇w f
denotes the angular acceleration of the front wheels.

Pb is the braking pressure acting on the wheel, and Cb f
is

the front wheel braking coefficient that converts the braking

pressure to a negative torque on the front wheels. Tw f
is the

torque transmitted from the engine to the front wheel. Then,

a first order differential equation is utilized to represent the

response between the engine torque, Te, and the front wheel

torque, Tw f
, such that,

τṪw f
+Tw f

=
1

2
γCt f

RTe, (15)

where γ is a driven mode indicator, which represents whether

the vehicle is in a four-wheel-driven mode (γ = 1), or is in

a rear-wheel-driven mode (γ = 0). τ is a time constant, R is

the gear ratio, and Ct f
is the bias of front driven torque, that

is, the percentage of engine torque distribution to the front

wheels.

The dynamic equation for the rear wheels is similarly

derived, such that,

Iwr ω̇wr = Twr − rwFxr +PbCbr
, (16)

where Twr is the torque transmitted from the engine to the

rear wheels. A first-order differential equation is also utilized

to represent the response between the engine torque and the

rear wheel torque,

τṪwr +Twr =
Ctr

2(Ctr − (Ctr −1)γ)
RTe, (17)

where Ctr = 1−Ct f
is the bias of rear driven torque. Note

that, as a manual vehicle, Te and Pb cannot act on the wheel

simultaneously. Thus, an additional constraint must be added

to the model, such that TePb = 0.

Letting the longitudinal state be defined as xx =
[ẋ ωw f

ωwr Tw f
Twr ]

T , and the longitudinal control

vector be defined as ux = [Te Pb γ]T , the nonlinear equa-

tion that governs the longitudinal dynamics is,

ẋx = f (xx,ux), (18)

where f (·, ·) : R5 ×R
3 → R

5, such that the vehicle longitu-

dinal equations of motion are

ẍ = 2
Fx f

+Fxr

m
−

ρCdAF ẋ2

2m
−g(cosθ µ + sinθ), (19a)

ω̇w f
=−

1

Iw f

(rwFx f
+Cb f

Pb), (19b)

ω̇wr =
1

Iwr

(Twr − rwFxr −Cbr
Pb), (19c)

Ṫw f
=−

Tw f

τ
+

γ

2τ
Ct f

RTe, (19d)

Ṫwr =−
Twr

τ
+

γCtr

2(Ctr − (Ctr −1)γ)
RTe. (19e)

The following sections present the RHC and the ANN

human driver models obtained from the vehicle dynamics

model described in this section. Their performance is com-

pared to the response of a professional human driver in

Section V.

III. PROBLEM FORMULATION

The problem addressed in this paper is to develop a human

driver model that provides a mathematical description of a

professional human driver behavior. The goal of the HDM

is to generate control inputs that are as similar as possible

to the control inputs of the human driver, when presented

with the same road and vehicle conditions [9]. The input

to the HDM is a subset of the information that the human

driver can sense, which can be divided into two sets, the

track information, T, and the vehicle state, x, comprised of

lateral and longitudinal state variables, as well as vehicle

information known to the driver (denoted by xa). The track

information includes knowledge of the environment and

consists of three parts: the target speed profile V∗, the driver

line Γ
∗, and a portion of track ahead of the vehicle. The

target speed profile determines the optimal speed along the

track that the vehicle should follow, while the driver line

determines the trajectory along the track that the vehicle

should follow, specified by a preview distance Dc, which

is obtained from a preview time, tc,

Dc = tcẋ, (20)

as shown in Fig. 1.

The dashed line in Fig. 1 represents the target future

vehicle trajectory, also known as the driver line Γ
∗. The green

dashed line in Fig. 1 is the portion of the driver line that

is available to the HDM at t0. The target speed trajectory

and the driver line are both used as inputs to the HDM

because professional human drivers are well aware of the

dynamic constraints of the vehicle, and can take them into

account picking the optimal trajectory to follow, for example,

in order to minimize the lap time in a given track. The

track information, T, also includes the portion of the track
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immediately in front of the vehicle, which consists of the

center line, track width, and the (black) track boundaries in

Fig. 1. Since the target driver line is given to the controller,

the track information is utilized mainly as a boundary that

limits the error of the vehicle position with respect to the

driver line, in the RHC design.

The vehicle state x represents the variables that a human

driver can sense and that, in this paper, are assumed known

without error. Thus, x is a fully-observable vehicle state

vector that constitutes an input for the HDMs. It is comprised

of the lateral vehicle state, xy, the longitudinal vehicle state,

xx, and additional vehicle information, xa, which consists of

the engine revolutions per minute (RPM), the current gear,

and the lateral and longitudinal accelerations, such that,

x = [xT
y xT

x xT
a ]

T . (21)

In the HDM design, it is also assumed that the vehicle has a

manual transmission and that the vehicle dynamics, including

the models of lateral and longitudinal tire forces, the gear

ratio table, and the model of the maximum and minimum

engine torques, are known.

Given the track information, the vehicle state, x, and the

dynamic constraints, the HDM computes an output vector,

u, that consists of the human driver control inputs to the

vehicle. Thus, the output of the HDM consists of the lateral

control and the longitudinal control,

u = [uT
y uT

x ]
T . (22)

The design of the HDM can be formulated as the following

trajectory-following control problem. Given the track infor-

mation, T, and the vehicle state, x, determine the control

input to the vehicle, u, such that the vehicle follows a known

target speed profile, V∗, and the driver line, Γ
∗, subject to

the dynamic constraints in (7), (18) while minimizing the

cost function Jy. The trajectory-following control problem is

approached using the RHC and ANN techniques described

in the next section.

IV. METHODOLOGY

This section describes the designs for the RHC-based and

ANN-based human driver models. Lateral and a longitudi-

nal controllers are developed using the dynamical models

described in Section II. Experimental data obtained from

a professional human driving on the Ferrari GT vehicle

simulator [10] is used to train the ANN. Both controllers

are given identical information about vehicle state and target

trajectories.

A. RHC-based HDM

This subsection describes the design of the RHC-based

HDM. The principle of the RHC technique is shown in

Fig. 3, where t0 denotes the current time, tc is the control

horizon, and ∆t is the sample time. RHC solves an optimal

control problem over a fixed future interval [t0 t0 + tc],
given the current state x(t0), and obtains an optimal control

sequence u∗(t0+k∆t)k=0,...,N−1, where N = tc/∆t. Then, only

the first input in the resulting optimal control sequence,

Fig. 3: Principle of receding horizon control.

namely u∗(t0), is applied to the vehicle. The fixed horizon

optimization is repeated at each sample time until the final

time, t f [11].

Figure 4 is a diagram of the RHC-based HDM, which

consists of a lateral and a longitudinal receding horizon

controller. For the lateral controller, the model of the plant

is the time invariant linear system (7), with lateral state, xy,

and lateral control, uy. By solving (7) and using the following

relation [12], it is possible to estimate the sequence of future

vehicle states,

x̂y(t0 +(k+1)∆t) = Adx̂y(t0 + k∆t)+Bduy(t0 + k∆t), (23)

which would progress from the sequence of future control

inputs, where Ad = eA∆t , and Bd =
∫

∆t
0 eAtdt. The state space

matrices Ad and Bd are assumed to be time-invariant over

the sample time ∆t.

Then, the estimated vehicle state is used to minimize a cost

function, Jy, that represents the distance between xy, and a

yaw angle reference trajectory generated by the human driver

during field experiments, such that,

Jy(uy,xy(t0), tc) = ‖[ψ̂(t0 +∆t) . . . ψ̂(t0 +N∆t)]

− [ψ∗(t0 +∆t) . . . ψ∗(t0 +N∆t)]‖2,
(24)

where ‖ · ‖2 denotes the L2 norm.

The lateral controller also considers the constraint imposed

on the vehicle by the track boundaries, which can each be

approximated by a third-order polynomial function defined

with respect to the body frame, F [13]. The two polynomial

functions for the boundaries to the left and right of the

vehicle are denoted by y = hl(x) and y = hr(x), respectively,

and their coefficients are determined by a curve-fitting algo-

rithm, at each sample time. Therefore, the track-boundaries

constraints can be expressed as,

[hl(x̂y ·n)− x̂y ·n][hr(x̂y ·n)− x̂y ·n]< 0, (25)

where (·) denotes the inner product, and

n , [1 0 0 0 0]T . (26)

Another set of constraints to be imposed on the lateral

controller consists of the upper and lower bounds on the

steering angle, such that

δmin ≤ δ ≤ δmax. (27)
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As a result, the constrained optimal control problem for

the design of the lateral RHC-based HDM is,

min
uy(t0+k∆t)

Jy(uy,xy(t0), tc) (28a)

subject to the set of equality and inequality constraints on

the state and control,

x̂y(t0 +(k+1)∆t) = Adx̂y(t0 + k∆t)+Bduy(t0 + k∆t),
(28b)

δmin ≤ uy(t0 + k∆t)≤ δmax, (28c)

[hl(x̂y(t0 +(k+1)∆t) ·n)− x̂y(t0 +(k+1)∆t) ·n]

×[hr(x̂y(t0 +(k+1)∆t) ·n)− x̂y(t0 +(k+1)∆t) ·n]< 0,
(28d)

for k = 0, . . . ,N − 1. Since Jy is a function of the future

control inputs, the above constrained optimization will pro-

duce an optimal lateral control sequence denoted by u∗
y(t0 +

k∆t)k=0,...,N−1.

A similar approach is utilized for designing the longitu-

dinal controller, where the relation between two consecutive

estimated states are obtained by integrating (18), such that

x̂x(t0 +(k+1)∆t) = f (x̂x(t0 + k∆t),ux(t0 + k∆t)). (29)

The cost function is defined with respect to the target speed

profile, V∗,

Jx(ux,xx(t0), tc) = ‖[ ˆ̇x(t0 +∆t) . . . ˆ̇x(t0 +N∆t)]−V∗‖2.
(30)

Upper and lower bounds for the engine torque and brake

pressure are considered through the following inequality

constraint on the control,

[Temin
Pbmin

0]T ≤ ux ≤ [Temax Pbmax
1]T . (31)

In addition, for ground vehicles, the engine torque and

brake pressure should not act on the wheel simultaneously,

therefore,

det(Cux +D) = 0, (32)

where det(·) is the determinant of a matrix, and

C =





1 0 0

0 1 0

0 0 0



 , D =





0 0 0

0 0 0

0 0 1



 . (33)

Moreover, the driven mode indicator, γ should be either zero

or one, which requires,

ux ·m ∈ {0,1}, (34)

where

m = [0 0 1]T . (35)

As a result, the constrained optimal problem for the

longitudinal controller is,

min
ux(t0+k∆t)

Jx(ux,xx(t0), tc) (36a)

Lateral Vehicle 

Dynamics Model 

Optimizer 

Cost Function Constraints 

Estimated Lateral States 

)(Ö 0 tkty '�x , Nk :1  

Receding Horizon Controller 

Simulated 

Vehicle 

)(
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u  
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Dynamics Model 
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States 

)(Ö 0 tktx '�x , Nk :1  

 

Predicted Future 

Control Inputs 

)( 0 tkt '�u , Nk :1  

Past Inputs and States 

 

Fig. 4: Nonlinear receding horizon controller.

subject to the set of equality and inequality constraints,

x̂x(t0 +(k+1)∆t) = f (x̂x(t0 + k∆t),ux(t0 + k∆t)), (36b)

[Temin
Pbmin

0]T ≤ ux(t0 + k∆t)≤ [Temax Pbmax
1]T ,

(36c)

det(Cux(t0 + k∆t)+D) = 0, (36d)

ux(t0 + k∆t) ·m ∈ {0,1}, (36e)

for k = 0, . . . ,N − 1. Then, the solution of the above con-

strained optimization problem yields an optimal longitudinal

control sequence, u∗
x(t0 + k∆t)k=0,...,N−1.

B. ANN-based HDM

The ANN driver is obtained using a feed-forward sig-

moidal neural network with the architecture shown in Fig.

5 and Fig. 6 [14] [15]. Sigmoidal neural networks have

been shown capable of approximating nonlinear functions

arbitrarily well, given a sufficient number of nodes [16] [17].

The Levenberg-Marquardt backpropagation algorithm is used

to determine the network adjustable parameters, denoted

by a matrix W, from a set of training data obtained from

experiments involving a professional human driver. A sample

network layer is shown in Fig. 5. The neural network output

is the control vector, u, for driving the vehicle and the input

vector, p, as follows,

u = βββ [W(l)p(l)+d(l)], (37)

p( j) = σσσ ( j)[W( j−1)p( j−1)+d( j−1)], (38)

where l is the number of neural network layers. W( j) denotes

the matrix of weights associated with the jth hidden layer,

where the element W( j)[i,k] represents the weight of the

connection from the ith node in layer ( j−1) to the kth node

in layer j. The vector function

σσσ ( j) = [σ
( j)
1 (s

( j)
1 ) . . . σ

( j)
n j

(s
( j)
n j
)]T (39)

contains n j repeated transfer functions, σ
( j)
i (·), where n j is

the number of nodes in the jth layer, and s
( j)
i is the weighted

sum of the inputs to the ith node in the jth layer, for i =
1, . . . ,n j. In this paper, it is assumed that all transfer functions

are defined as the hyperbolic tangent,

σ
( j)
i (s) =

sinh(s)

cosh(s)
. (40)

The number of nodes required is determined by trial and

error. The linear vector function,

βββ = [β1(p
(l)) . . . βnl

(p(l))]T , (41)
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Fig. 5: Diagram of jth hidden layer.
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          Training 
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Fig. 7: Track used to collect the human driver data.

is used to obtain the control input, u, from the output vector

of the last hidden layer, p(l), where

βi(p
(l)) = bi ·p

(l)+d
(l)
i , (42)

and bi is a vector of nl weights, such that

d( j) = [d
( j)
1 d

( j)
2 . . . d

( j)
n j

]T (43)

represents the jth hidden-layer bias vector.

The professional Ferrari GT simulator generates driver-

input/vehicle-output pairs that are used to train the ANN.

The professional human driver provides inputs to the Ferrari

GT vehicle based on his expert knowledge of the optimal

trajectory and velocity profiles for the track in Fig. 7. The

training data consists of 8500 pairs of human driver control

input values uh = [η Pc G λ δ ]T , vehicle state values

x = [ẋ ẍ RPM], and target driver line values Γ
∗, where

λ and η are the percentages of brake and accelerator,

respectively, Pc is the percentage of clutch engagement, and

G is the gear. The training data is obtained from the blue

portion (75%) of the track in Fig. 7, and a set of validation

data is obtained from the green portion (25%) of the track in

Fig. 7, which is never used for training. The driver line Γ
∗

is a vector of coordinate pairs representing the future target

positions for the center of gravity of the vehicle over the

control horizon tc. Figure 6 illustrates the input/target values

for the ANN-based HDM.

V. SIMULATION AND RESULTS

In this section the behaviors of both the RHC-based HDM

and the ANN-based HDM are compared to the behavior of a
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Fig. 8: Lateral controller performance comparison (scale and

units are omitted to safeguard proprietary data).

professional human driver that is recorded on a high-fidelity

Ferrari GT simulator. The Ferrari GT simulator provides

the human driver, the ANN-based HDM, and the RHC-

based HDM with the same information of the track and

the vehicle. Additionally, this simulation of the GT vehicle

closely matches the dynamic properties of real Ferrari GT

vehicles. The same track, with the same start line and

finishing line, is adopted for all the experiments. For HDMs,

the driver line, Γ
∗, is specified by the recorded trajectory

of the vehicle in F0, which, in this paper, is generated by

the human driver. Since the goal of the controllers is to

mimic the response of the professional human driver, the

recorded trajectory and speed profile can be considered as the

optimal target trajectories to follow for the given track. All

the experiments are conducted using the two-wheel-driven

mode, with γ = 0.

Figure 8 shows the steering angle produced by the real

human driver (black), the RHC-based HDM (blue), and

the ANN-based HDM (red). The root-mean-squared (RMS)

error between the RHC-based HDM response and the human

driver response is 1.10 × 10−3. The ANN-based response

produces a RMS error of 1.97× 10−4. It can be seen that

the ANN-based HDM generates outputs that are closer to

the driver response, and thus the ANN-based HDM provides

a better representation of human driver behavior.

Similar results are obtained for the longitudinal controller.

Figure 9 shows that both the RHC-based HDM and the

ANN-based HDM are capable of generating control inputs
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Fig. 9: Speed profiles generated by the human driver (black),

the ANN-based HDM (red), and the RHC-based HDM

(blue).

that allow the simulated vehicle to follow the target speed

profile, V∗, within a reasonable error. The RHC RMS error

is 2.60 × 10−3 and the ANN RMS error is 1.60 × 10−3

for this particular test. However, when it comes to how

well the HDMs represent the human driver’s behavior, the

results are much different. Figure 11 shows that the gas

pedal percentage recorded from the human driver (black)

while accelerating displays an RMS error of 2.50 × 10−4

when compared to the ANN-based HDM (red) and an RMS

error of 3.70 × 10−3 when compared to the RHC-based

HDM (blue). Also, Fig. 12 shows that, for the gas pedal

percentage recorded from the human driver, the ANN-based

HDM displays an RMS error of 2.77×10−4, while the RHC-

based HDM displays an RMS error of 2.10×10−3.

All of the simulation results show that while both the

RHC-based HDM and the ANN-based HDM are capable

of generating commands that enables the simulated vehicle

to follow the target trajectory within a reasonable error,

the ANN-based HDM outperforms the RHC-based HDM in

representing the driver behavior thanks to the ANN’s ability

to learn from the experimental data obtained from a human

driver.

VI. SUMMARY AND CONCLUSION

This paper presents a comparison between ANN-based

and RHC-based HDMs for the purpose of representing the

behavior of a professional human driver in charge of control-

ling a Ferrari GT vehicle during coupled lateral-longitudinal

maneuvers. The RHC-based design is obtained using a

bicycle model for vehicle dynamics as well as the driver
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Fig. 10: Gear profiles generated by the Human Driver, RHC,

and ANN

line, the speed profile, and the track information. The ANN-

based design is obtained using a multi-layer sigmoidal neural

network trained using a standard Levenberg-Marquardt algo-

rithm with data generated by the professional human driver.

The results show that the ANN-based HDM is better able to

capture the human driver behavior than the RHC-based HDM

is, because it learns from the experimental data obtained from

the driver. In addition, designing the ANN-based HDM does

not require a mathematical model of the vehicle dynamics

and therefore does not require expert human intervention. As

a result, tuning the ANN-based HDM to different drivers,

automobiles, and road conditions is easier than tuning the

RHC-based HDM. It can be concluded that the ANN-based

HDM may some day be applied to enhance the efficiency

of automobile manufacturing, for example by reducing the

delivery time and cost or by enabling vehicle safety and

performance testing through extensive simulations.
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