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Abstract— This paper presents a novel approximate dynamic
programming (ADP) algorithm for the optimal control of
multiscale dynamical systems comprised of many interacting
agents. The ADP algorithm presented in this paper is obtained
using a distributed optimal control approach by which the
performance of the multiscale dynamical system is represented
in terms of a macroscopic state, and is optimized subject to a
macroscopic description provided by the continuity equation.
A value function approximation scheme is proposed and tested
using a data set obtained by solving the necessary conditions
for optimality for the distributed optimal control problem. The
results shows that the proposed approximation method can
learn the value function accurately and, thus, may be applied
to adapt the optimal control law.

I. INTRODUCTION

The control and stability analysis of a formation of a
large number of robots, or swarm, has been investigated
by several authors and various proposed methods were suc-
cessfully implemented [1]–[6]. Achieving and maintaining a
desired configuration or behavior, such as translating as a
group (schooling), or maintaining the center of mass of the
group stationary (flocking), was illustrated by conveniently
describing the group of interacting agents by probability
density functions (PDFs). These methods, however, have yet
to provide an approach such that the agents performance
is optimized. Optimal control and approximate dynamic
programming are currently the most general and effective
approaches for optimizing the performance of one or few
dynamical systems over time [7]–[10], but their application
to multi-agent systems has been very limited due to the
computation required to solve the optimal control problem
for N coupled dynamical systems. For example, it was shown
that optimizing the trajectories of N agents in an obstacle-
populated environment is polynomial-space-hard (PSPACE-
hard) in N [11].

Distributed optimal control (DOC) has recently overcome
this computational complexity to effectively solve multi-
agent trajectory optimization problems by seeking to op-
timize a restriction operator, such as a PDF and/or its
lower moments, that capture the agents performance on large
spatial and temporal scales [12], [13]. By this approach, the
agents’ macroscopic behavior, or coarse dynamic equation,
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can be represented by partial differential equations (PDEs),
such as the continuity equation known as the advection
equation [12], [13].

Considerable research efforts have focused on the optimal
control and estimation of PDEs and stochastic differential
equations (SDEs) driven by non-Gaussian processes, such as
Brownian motion combined with Poisson processes, and var-
ious other stochastic processes [14]–[16]. The microscopic
agent state is viewed as a random vector and the dynamic
equation, which takes the form of an SDE that involves the
evolution of the statistics of the microscopic vector function,
can be integrated using stochastic integrals [14], [16]. The
performance of N agents can therefore be expressed as an
integral function of N vector fields to be optimized subject
to N SDEs. Solutions obtained using this approach, however,
are only for relatively few and highly idealized cases in
which finite-dimensional, local approximations can be con-
structed (e.g. via moment closure [14], [15]). As a result,
while optimal control of SDEs can be useful to selected
applications in population biology and finance [14]–[16], it
has yet to be successfully applied to multiscale dynamical
systems, as their coarse dynamics do not obey these idealized
conditions. Rather, they are dictated by realistic constraints,
such as vehicle dynamics, and practical objectives, such
as minimizing energy consumption or maximizing sensing
performance.

Although DOC is ideally suited to adaptive, robust control
of multiscale dynamical systems, all DOC methods to date
assume that the microscopic agent dynamics, the macro-
scopic evolution equation, and the definition of the restriction
operator are known a priori [13], [17].In most applications,
however, these models are subject to significant sources of
error, or may not be available in closed form or only in
the form of a computer simulation. Approximate dynamic
programming (ADP) is not affected by these limitations.
Therefore, developing an ADP method associated with a
DOC problem is extremely valuable. Unlike existing DOC
approaches [12], [13], which assume the system dynamics
are known a priori, the ADP approach presented can be
used to learn the optimal control law and value function
online, based on observations of the state obtained from
the real system or its computer simulation. This method is
called distributed ADP of multiscale dynamical systems or
distributed ADP for short.

In this paper, an ADP approach is developed by deriving
the policy-improvement routine and the value-determination
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operation for DOC problems. The latter is used to learn
and update the value function of the multiscale dynamical
system. Because the value function of the DOC problem is
a functional expressed in terms of the macroscopic state, in
this case a PDF, a parametric method based on the Gaussian
mixture model (GMM) [18], [19] is applied to perform the
functional regression.

The main novelty of this paper resides in the value func-
tional approximation scheme. The value functional is approx-
imated by transforming the PDF representing the collection
of agents into a Reproducing Kernal Hilbert Space (RKHS)
and then performing functional regression in RKHS. This
allows our value function, which is highly non-linear, to be
learned by existing reinforcement learning algorithms, such
as least squares temporal difference (LSTD) and recursive
least squares temporal difference (RLSTD), which often fail
for non-linear functions.

The rest of the paper is organized as follows. In Section
II, the DOC method is reviewed briefly and an application of
DOC method is demonstrated. In Section III, the distributed
ADP algorithm is presented. The implementation of the
value function learning is then demonstrated on the DOC
problem in Section IV. Finally, conclusions and future work
are discussed in Section V.

II. DISTRIBUTED OPTIMAL CONTROL PROBLEM

Consider a multiscale dynamical system comprised of N
cooperative microscopic dynamical systems, referred to as
agents, that can be described by a small system of stochastic
differential equations (SDEs),

ẋi(t) = f[xi(t),ui(t), t]+Gwi(t),

xi(T0) = xi0 , i = 1, ...,N (1)

referred to as the detailed equation. These dynamical sys-
tems can describe mechanical, chemical, or robotic systems,
or even the distribution of resources in a disaster-stricken
environment. In this paper, the multiscale dynamical system
describes dynamic constraints on N robotic agents. Agents
are assumed to be conserved in a bounded subset of an Eu-
clidean space, denoted by X ∈Rnx , for a fixed time interval
(T0, Tf ]. Also, for simplicity, the approach is presented for
agents with perfect measurements and communications, such
that each agent state xi ∈X and microscopic control ui, can
be assumed known without error at any time t ∈ (T0, Tf ]
for all i. The agent dynamics (1) are characterized by an
additive Gaussian distribution noise, denoted by w∈Rnx and
G ∈ Rnx×nx is a constant matrix.

It is assumed that, on large spatial and temporal scales,
the interactions of the N agents give rise to macroscopic
coherent behaviors, or coarse dynamics, that are modeled
by PDEs. The macroscopic state of the multiscale system,
X =℘(x, t) ∈P , is provided by a so-called restriction op-
erator, denoted by Φt : X ×R→P . A restriction operator
is used to describe the collection of agents in a number
of parameters much less than the number of individual
agents. These parameters could be, for example, the means,
covariances, and weights of the components of a Gaussian

Mixture Model (GMM), where the number of the parameters
are not dependent on the number of agents.

For many multiscale dynamical systems, particularly very-
large-scale robotic systems (VLRSs), the restriction operator
can be provided by a time-varying agent distribution. Since
xi is a time-varying continuous vector, the agent distribution,
i.e. the restriction operator, is a time-varying PDF, ℘(x, t),
and P denotes the probability function space. The proba-
bility of the agent state x ∈ B⊂X at any time t ∈ (T0, Tf ]
is,

P(x ∈ B, t) =
∫

B
℘(x, t)dx, (2)

where ∫
X

℘(x, t)dxi = 1, (3)

and ℘(x, t) is a non-negative function that, hereon, will be
abbreviated to ℘ for simplicity.

It is also assumed that the performance of the multiscale
dynamical system is an integral function of the macroscopic
state and microscopic control,

J = φ [℘(·,Tf )]+
∫ Tf

T0

∫
X

L [℘(x, t),u(x, t), t]dxidt (4)

where L is the Lagrangian, φ is the terminal cost based
on the PDF ℘(·,Tf ) at the final time Tf , and u(x, t) ∈U is
the control law, which is a function defined in the function
space U . The evaluations of the control law u(x, t) is the
microscopic control for agent state x at time t.

The DOC method was developed to solve the optimization
problem in (4). In the rest of this section, the DOC method
is reviewed and demonstrated with a multi-agent trajectory
optimization problem.

A. Review of DOC Method

From (4) it can be seen that, unlike other multi-agent
or swarming control approaches [4], [20], which assume
the agent distribution is given, the DOC approach seeks
to determine the agent distribution such that the agents’
performance is optimized. Also, it can be seen that the DOC
cost function (4) is formulated as a general functional of
the distribution ℘, not as the expectation of the Lagrangian,
such as in stochastic optimal control [8], [16], or as the
expectation of the PDF, as in NCE (Mean Field) methods
[21], [22]. In fact, the Lagrangian in (4) denotes a functional
of ℘ that may or may not include the expectation operator.
For example, L can be formulated in terms of information
theoretic functions, such as divergence or mutual information
between different distributions, or in terms of a potential
navigation function for obstacle avoidance. As a result, the
DOC approach affords the optimization of a broad class of
objectives, including non-convex functions and non-Gaussian
distributions.

As shown in [23], when the agents are conserved in
X , the macroscopic evolution equation can be derived by
considering an infinitesimal control volume in X . Then the
time-rate of change of the distribution ℘ is given by the
advection equation, which governs the motion of a conserved
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scalar quantity as it is advected by a known velocity field
[24],

∂℘

∂ t
= −∇ · [℘(x, t)v]+

1
2

∇ · [(GGT )∇℘(x, t)]

= −∇·[℘(x, t)f(x,u, t)]+ν∇
2
℘(x, t) (5)

where the gradient ∇ is a row vector of partial derivatives
with respect to the elements of x, ν = ∇(GGT ), and (·)
denotes the dot product.

Under the stated assumptions, the macroscopic evolution
equation is a hyperbolic PDE that provides the dynamic
constraints for the optimization of the cost function (4). The
initial and boundary conditions (I.C. and B.C.) for (5), as
well as an admissability constraint (A.C.), are given by an
initial agent distribution, ℘0(xi), and by the normalization
condition, i.e.:

I.C.: ℘(x,T0) = ℘0(x); (6)
B.C.: ℘(x ∈ ∂X , t) = 0, ∀t ∈ [T0,Tf ]; (7)

A.C.:
∫

X
℘(x, t)dxi = 1;

℘(x 6∈ ∂X , t) = 0, ∀t ∈ [T0,Tf ]. (8)

When the agents are not conserved or the disturbances wi
are not zero, alternate forms of the macroscopic equation
(5), such as the advection-diffusion equation [17], can still
be obtained in closed form from the continuity equation.

The DOC problem seeks to determine the optimal agent
distribution ℘∗, and control law u∗, that minimize the cost
function (4) over a time interval (T0,Tf ], subject to the
dynamic and equality constraints (5)-(8). As shown in [12],
calculus of variations can be used to derive new necessary
conditions for optimality for the DOC problem in (4)-(8).
Also, direct and indirect numerical methods were developed
in [13], [17] for determining optimal agent distributions and
control laws. As illustrated by the results in the next section,
existing DOC methods and algorithms have been shown
very effective at solving multi-agent trajectory optimization
problems in which the agent dynamics and macroscopic
evolution equation are known a priori.

B. Multi-agent Trajectory Optimization via Indirect DOC

The numerical results presented in this section illustrate
some of the properties of indirect DOC algorithms [13],
[17]. Consider the problem of determining optimal agent
trajectories for a system of N agents that are each described
by a single integrator model,[

ẋi
ẏi

]
=

[
υxi

υyi

]
+σI2

[
ηx
ηy

]
(9)

where q = [x,y]T denotes the configuration vector of the ith

agent, and x and y are the xy-coordinate. The terms υx and
υy are linear microscopic velocities in the x and y directions,
respectively. The disturbance vector is w = [ηx,ηy]

T , where
ηx and ηy are independent random variables with values
given by a standard Gaussian process, σ = 0.01, and I2
is a 2× 2 identity matrix. The agents must travel across

a workspace W = [0,Lx]× [0,Ly], with four obstacles (Fig.
1), Lx = 20 (Km), and Ly = 16 (Km), in order to move
from an initial distribution g0 to a goal distribution g, while
minimizing energy consumption and avoiding collisions with
the obstacles during a time interval (t0, t f ], where t0 = 0 hr,
and t f = 15 hr.

The evolutions of the optimal agent PDF and microscopic
states obtained are plotted in Fig. 2. For the details of
DOC methods, the reader is referred to [13], [23], [25], and
especially the multi-agent trajectory optimization problem in
Fig. 1 and 2 presented in [23]. In the next section, the data
obtained from that simulation is used to implement the value
function learning.

III. VALUE FUNCTION APPROXIMATION

The results in the previous section illustrate that the DOC
approach is ideally suited to adaptive, robust control of
multiscale dynamical systems. However, all DOC methods
to date assume that the microscopic agent dynamics, the
macroscopic evolution equation, and the definition of the
restriction operator are known a priori [13], [17]. In most
applications, however, these models are subject to significant
sources of errors, or may not be available in closed form but
only in the form of a computer simulation. ADP algorithms
seek to optimize a cost-to-go or value function conditioned
upon knowledge of the actual system. They reduce the
computational complexity of the optimal control problem by
modeling the control law and the estimated future cost as
parametric structures known as actor and critic, respectively.

The actor and critic parametric structures are improved by
solving the ADP Recurrence Relations iteratively subject to
online measurements of the system state, and knowledge of
the probability distribution of uncertainties. Several authors
have demonstrated that ADP can be used to solve complex,
nonlinear control problems in the absence of an accurate
system model, and optimize performance in the face of
unforeseen changes and uncertainties [10], [26]–[29]. Due
to its ability to learn the solution of an optimal control
problem from repeated observations of a system state, ADP
is very effective for model-free control, that is, for learning
an optimal control law from a computer simulation when a
system model is not available in closed form [30]–[32].

A. Value Function for DOC Problems

Since ADP algorithms progress forward in time to improve
the control law approximation in real time, the DOC problem
in (4)-(8) is discretized with respect to time. Letting tk = kδ t
denote the discrete time index, where δ t is a small discrete
time interval, the macroscopic equation (5) can be written as

℘(x, tk+1) = ℘(x, tk)+ν∇
2
℘(x, tk)δ t

−∇ · {℘(x, tk)f[x(tk),u(x, tk), tk]}δ t

, F [℘(x, tk),u(x, tk), tk] (10)

Assume that the map t 7→℘(xi, t) is injective, that is to say
that the distributions ℘(x, tk) and ℘(x, t ′k) are distinguishable
for tk 6= t ′k. Then, the (agent) microscopic control law C (·)
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Fig. 1: Initial (left) and goal (right) agent distributions for a workspace with four obstacles shown in black.

(a) (b)

(c) (d)

Fig. 2: Optimal agent PDF and microscopic agent states obtained by the indirect DOC algorithm at four sample moments
in time.

can be treated as a function of ℘(x, tk) and, using the short-
hand notations ℘k =℘(x, tk) and uk = u(x, tk) = C (℘k) ∈
U , the macroscopic equation in discrete time (10) can be
rewritten as

℘k+1 = F (℘k,uk) (11)

It can be seen that F and C are both operators, such that
F : P×U 7→P and C : P 7→U , and, for a given detailed
equation f[·] in (1), the operator F can be determined
according to (10). The cost function (4) in discrete time is

given by

J = φ [℘t f ]+

t f−1

∑
tk=t0

∫
X

L (℘k,uk)dx. (12)

Since uk =C (℘k), at any time tk ∈ [T0,Tf ), the value func-
tion representing the cost-to-go of the multiscale dynamical
system is defined as

V , φ [℘k f ]+

t f−1

∑
tk

∫
X

L [℘k,C (℘k)]dx = V [℘k,C (·)] (13)

and, thus, depends on the present agent distribution ℘k, and
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on the chosen control law C . From Bellman’s principle of
optimality, the optimal cost-to-go at any time tk can be
obtained by minimizing the right-hand side of (13) with
respect to the present control inputs as provided by the
chosen control law, such that

V ∗ = min
uk

{∫
X

L (℘∗k ,uk)dxi +V ∗[℘∗k+1,C
∗(·)]

}
(14)

Equation (14) can be viewed as the recurrence relationship of
Dynamic Programming (DP) for the DOC problem in Section
II.

Once the proposed value-function is learned, a distributed
ADP algorithm can be obtained by solving the DP problem
forward in time, iterating between a policy-improvement
routine and a value-determination operation. At every cycle
of the distributed ADP algorithm, indexed by `, the control
law C and value function V are approximated based on the
macroscopic state ℘k of the multiscale dynamical system.
For example, when the restriction operator represents the
agent distribution, ℘k can be estimated using a kernel density
estimation algorithm that can be decentralized as shown in
[33]. Given the observed value of ℘k, the distributed ADP
algorithm iterates over ` to search for the optimal DOC
solution online, by cycling between the following operations:

Policy-Improvement Routine: Given a value function
V [·,C`] corresponding to a control law C`, an improved
control, C`+1, can be obtained as follows,

C`+1(℘k) = argmin
uk

{∫
X

L (℘k,uk)dx+V [℘k+1,C`(·)]
}

(15)
Value-Determination Operation: Given a control law C ,

the value function can be updated according to the following
rule

V`+1[℘k,C (·)] =
∫

X
L (℘k,uk)dx+V`[℘k+1,C (·)] (16)

The operator optimization required by the distributed
ADP algorithm is much harder than the usual function
minimization required by classical ADP algorithms. Also,
while classical ADP algorithms rely on the observation of a
state vector that is clearly defined, distributed ADP relies
on a restriction operator that, in the simplest case, is a
PDF defined over X , but, in the most general case, is an
operator that must be learned from data obtained by bursts
of appropriately initialized microscopic simulation.

B. Implementation of Value Function Learning

The proposed value function in (13) is a map V : P →
R, which is a functional regression problem. For such a
problem, in general, there are two kinds of approaches:
1) parametric method where the distribution function ℘k is
specified by some parameters pk ∈Rnp and the map Rnp→R
is learned from data sets to represent the functional map,
2) non-parametric method where the distribution function
℘k is represented by non-parametric approach and then the
functional map is constructed and learned from data sets
directly [34]. In this paper, a parametric method is proposed

to implement the value function learning because it is simpler
and less computationally demanding than the non-parametric
method.

First, the expectation-maximization (EM) algorithm [18],
[19] is applied to learn the GMM representing the distri-
bution ℘k at every time step k. Therefore, the distribution
℘k of the agents is approximated by the GMM, ℘̃k, which
is specified by the parameter set p̃k = {(ωk,τ ,µk,τ ,Σk,τ)}n

τ=1,
such that,

℘̃k(x) =
n

∑
τ=1

ωτN (x|µk,τ ,Σk,τ), (17)

where n is the number of the components of the GMM,
N (x|µk,τ ,Σk,τ) denotes the normal distribution with mean
µk,τ and covariance matrix Σk,τ , and ωk,τ is the corresponding
mixture weight.

Because the parameter tube (ωk,τ ,µk,τ ,Σk,τ) for τ = 1, ...,n
cannot be ordered for each distribution ℘k, the map from p̃k
to V cannot be learned directly. To obtain the input vector
for the regression, the following neural network is used to
learn the map. In Fig. 3, I j is a integral function defined by

I j(℘̃k) =
∫

x∈X
℘̃k(x)b j(x)dx, for j = 1, ...,m (18)

where b j(x) is a predefined basis function. Here, the
basis functions are all normal distributions, i.e. b j(x) =
N (x|µ j,Σ j) for j = 1, ...,m. For simplicity, the means µ j
are chosen from a grid on the workspace and the same
basis covariance matrices Σ j are applied. In addition, the
parameters α j are the output weights of the integral function
in (18). Let the output of the jth integral function be denoted
by p j = I j(℘̃k). Then, the approximate value function Ṽ (℘̃k)
can be expressed by,

Ṽ (℘̃k) = α
T pk, (19)

where α = [α1, ...,αm]
T and pk = [p1, ..., pm]

T .

Fig. 3: Neural network for learning the map from GMM
parameters to value function.

It can be shown that the structure of the proposed neural
network is very similar to the radial basis function network
(RBFN) with the exception of the integral function. For
the RBFN, the output is the evaluation of the radial basis
function, while for the proposed neural network the output is
obtained from the integral in (18). According to the Gaussian
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identity property [35], the integral function has the following
the closed-form expression:

I j(℘̃k) =
∫

x∈X
℘̃k(x)b j(x)dx

=
∫

x∈X

[
n

∑
τ=1

N (x|µk,τ ,Σk,τ)

]
N (x|µ j,Σ j)dx

=
n

∑
τ=1

∫
x∈X

N (x|µk,τ ,Σk,τ)N (x|µ j,Σ j)dx

=
n

∑
τ=1

N (µk,τ |µ j,Σk,τ +Σ j). (20)

Furthermore, the integral function can be treated as the
inner product between the approximate distribution ℘̃k and
the basis function b j in the function space P , such that
I j(℘̃k) = 〈℘̃k,b j〉P . Therefore, the integral function can be
redefined as

I j(℘̃k) = 〈℘̃k,
b j

‖b j‖
〉P =

〈℘̃k,b j〉P
‖b j‖

=
〈℘̃k,b j〉P
〈b j,b j〉P

=

∫
x∈X ℘̃k(x)b j(x)dx∫
x∈X b j(x)b j(x)dx

=
∑

n
j=1 N (µk,τ |µ j,Σk,τ +Σ j)

N (µ j|µ j,2Σ j)
, (21)

where b j/‖b j‖ is a normalized basis.
From (19) and (21), it can be seen that the approximate

value function Ṽ can be learned by obtaining the coefficient
vector α = [α1, ...,αm]

T using existing reinforcement learn-
ing algorithms, such as the least squares temporal difference
(LSTD) and recursive least squares temporal difference (RL-
STD) algorithms. The former is an off-line (batch learning)
algorithm, while the latter is an on-line algorithm. There-
fore, these two proposed value-function learning algorithms
are named the least squares temporal difference based on
GMM (LSTD-GMM) and recursive least squares temporal
difference based on GMM (RLSTD-GMM), respectively.

The proposed algorithm is implemented based on the EM-
GMM algorithm and the reinforcement learning. The EM-
GMM algorithm is applied for each step to estimate the
distributions of agents. Thus the computational complexity
of the proposed algorithm is specified by EM-GMM and
reinforcement learning algorithms.

IV. SIMULATIONS

To evaluate the proposed value-function learning algo-
rithm, the data obtained from the multi-agent trajectory
optimization problem in [23], presented in Section II, are
used as the training data set. This data consists of the agent
positions determined by the indirect DOC method and the
corresponding value function evaluations obtained from (13).
In this simulation, there are n = 5 components of the GMM
for each approximated agent distribution ℘̃k. The means of
basis functions b j, j = 1, ...,m, are set on the points of
the grid where the interval is 1 km and the corresponding

covariance matrices are set as Σ j =

[
1 0
0 1

]
. For simplicity,

Fig. 4: The KL-divergence between the agent distribution ℘k
and the goal distribution g.

Fig. 5: The actual value function and the approximate value
function.

the Lagrangian is defined by the KL-divergence between ℘k
and the goal distribution g as follows,

L (℘k) =
∫

x∈X
℘k(x) log

℘k(x)
g(x)

dx, (22)

and can be approximated from the agent positions. Fur-
thermore, the terminal cost is also defined using the KL-
divergence, plotted in Fig. 4.

Based on the Lagrangian terms (KL-divergence), the ac-
tual value function V (℘k) can be evaluated from the agent
positions. Then, V (℘k) and the corresponding PDFs, ℘k, k =
t0, ..., t f , are used to learn the coefficient vector α . Finally,
the approximate value function, Ṽ (℘̃k), is calculated from
(19). The actual value function and the approximate value
function are both plotted in Fig. 5 for comparison. Also,
the approximation error is plotted in Fig. 6, demonstrating
the high accuracy achieved by the proposed approximation
scheme. The approximate value function has a normalized
means squares error (NMSE) of only 3.7145×10−5.

V. CONCLUSIONS AND FUTURE WORK

This paper presents new recurrence relationships for dis-
tributed ADP of multiscale dynamical systems comprised
of many interacting agents. A novel functional regression
algorithm is proposed to learn the value function as an
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Fig. 6: The error between the actual value function and the
approximate value function.

unknown functional of the agent time-varying PDF. The pro-
posed algorithm is tested using data obtained from the DOC
optimality conditions solved in [23]. The simulation results
show that the approximate value function approximates the
actual value function very closely, and thus the learning
algorithm can be applied for distributed ADP. In future work,
on-line value function learning algorithms, such as RLSTD-
GMM, will be applied to implement the policy update in the
distributed ADP method.
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