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Abstract— This paper presents a decentralized Gaussian
Process (GP) learning, fusion, and planning (RESIN) formalism
for mobile sensor networks to actively learn target motion
models. RESIN is characterized by both computational and
communication efficiency, and the robustness to rumor propa-
gation in sensor networks. By using the weighted exponential
product rule and the Chernoff information, a rumor-robust
decentralized GP fusion approach is developed to generate
a globally consistent target trajectory prediction from local
GP models. A decentralized information-driven path planning
approach is then proposed for mobile sensors to generate
informative sensing paths. A novel, constant-sized information
sharing strategy is developed for sensing path coordination,
and an analytical objective function is derived that significantly
reduces the computational complexity of the path planning. The
effectiveness of RESIN is demonstrated in simulations.

I. INTRODUCTION

The problem of learning the behavior and dynamics of
moving targets via mobile sensor networks has received
significant attention in recent years because of important
applications such as environmental monitoring [1], [2], secu-
rity and surveillance [3], [4], and the internet of things [5].
Bayesian nonparametric (BNP) models, such as Gaussian
Processes (GPs) and Dirichlet Process Gaussian Processes
(DPGPs), have been shown very effective at modeling
moving targets because of their flexibility, expressiveness,
and data-driven nature [6]. Unlike traditional, model-based
approaches, GPs require little prior information about target
behavior, and are applicable when the number of targets
of interest change over time, for example, as new targets
enter and old targets leave the ROI [4], [7]. As a result, GP
models provide a more flexible and systematic approach for
modeling moving targets when compared to semi-Markov
jump systems [8], linear stochastic models [9], and physics-
based models [10], [11]. Early works on BNP sensor net-
work control relied on centralized learning, data fusion and
planning [12]. In many applications, however, contested
communication and GPS-denied environments prevent cen-
tralized methods from performing robustly and reliably. This
is because the central station or fusion agent may be unable
to gather information and/or convey plans to all sensors con-
sistently over time. This paper presents a decentralized BNP
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Fig. 1: Sensors share information between neighbors and
coordinate their trajectories to actively learn the GP motion
models of multiple moving targets.

learning, data fusion, and planning formalism characterized
by easiness for parallelization, scalability, and robustness to
single-point failure compared to the centralized counterparts.

Several decentralized GP learning and fusion approaches
have been previously developed to distribute computations
among independent local agents operating on subsets of
the data. Two representative classes of methods include
the mixture of experts (MoEs) [13] and the product of
experts (PoEs) [14]. In MoEs, each agent locally learns a
GP model for a different partition of the state space and
the global prediction is made by collecting all of agents’
local predictions. In contrast, in PoEs, agents share the same
state space and each agent locally learns an independent
GP model using a subset of training data. Then, the global
prediction is made by the Bayes rule and the independence
assumption of local predictions. PoE methods allow for
efficient training and prediction and thus have attracted
great interest. However, current PoE approaches cannot be
directly applied to data fusion in sensor networks since PoE-
based approaches cannot handle rumor propagation. This
means common information between local agents, such as
the simultaneous measurements of the same target, may be
redundantly used and leads to incorrect fusion results [15].
This paper presents a “rumor-robust” PoE-based approach for
fusing GP models such that rumor propagation is prevented.

A decentralized information-driven path planning (IPP)
approach is also presented for controlling and coordinating
sensor trajectories so as to obtain the most informative
target measurements subject to communication constraints.
Previous methods for decentralized IPP include a decentral-
ized, gradient-based control approach that assumes all-to-all
agent communications [16]. This method usually incurs large
communication burden since the convergence of gradient-
based optimization requires multiple iterations. More re-
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cently, [17] proposes a multi-robot online sensing strategy
for the construction of communication maps using GP. The
work uses a leader-follower paradigm to coordinate with its
follower. However, no coordination is ensured between pairs.

To overcome these challenges, this paper develops a
rumor-robust decentralized GP learning, fusion, and planning
(RESIN1) approach for mobile sensor networks to actively
learn target motion models. To deal with time-varying target
motion models, a spatio-temporal kernel is used in GP mod-
eling. A rumor-robust decentralized GP learning and fusion
algorithm is then proposed and applied to combine individual
sensors’ local prediction of target trajectories into a globally
consistent one. The GP learning and fusion approach is
computationally efficient and can avoid rumor propagation
in the sensor network. We subsequently present a sequential
optimal control approach that is efficient both in computation
and communication for decentralized sensor path planning.
In particular, an analytical objective function is derived
via the use of decentralized GP fusion, which reduces the
original mixed integer nonlinear programming problem into
a low-dimensional nonlinear programming problem. Besides,
a new information sharing strategy is proposed for coor-
dination between sensors, which only requires a constant-
sized communication overhead. In contrast, prior works [18],
[19] require a communication overhead that is linear in the
number of sensors.

II. PROBLEM FORMULATION

Consider a network of N mobile sensors deployed to
learn the motion models of M targets moving across a
connected, compact, and non-empty workspace W ⊂ R2

(Figure 1). Each sensor is equipped with a fixed stereo-
camera and a wireless communication device. The number of
targets is unknown a priori and can change over time due to,
for example, targets entering or exiting the workspace. The
motion model of each target, indexed by i, is represented
by a time-varying, continuous, and differentiable function
fi : R2 × R → R2 defined over W , which maps the target
position to its velocity, i.e.,

ẋi(t) = fi [xi(t), t] , vi(t), (1)

where xi(t) ∈ W and vi(t) ∈ R2 represent the position and
velocity of the target’s center of mass, respectively.

The sensor’s state, defined as s = [sx sy sθ sv]
T ∈

R4, includes the sensor position [sx sy]T ∈ W , orientation
sθ ∈ [0, 2π), and velocity sv ≥ 0. The sensor control
input, defined as u = [a ω]T ∈ R2, includes the linear
acceleration, a ∈ R, and angular velocity, ω ∈ R. Let ∆T >
0 represent the discretization interval so that the kth step
corresponds to t = k∆T . The jth sensor’s kinematic model
can be represented by the following difference equation,

sj(k + 1) = sj(k) +

sv(k) cos(sθ(k))
sv(k) sin(sθ(k))

uj(k)

∆T (2)

1RESIN is the acronym of “Rumor-robust decentralized gp lEarning,
fuSIon, and planNing”.

For simplicity, in the rest of the paper, we refer to the
kinematic model (2) as g : R4 × R2 → R4 such that

sj(k + 1) = g(sj(k),uj(k)). (3)

Each sensor measures the target position and velocity
by computing the sparse scene flow of the target. Cam-
era frames containing targets are obtained when the tar-
gets are inside the sensor’s FOV, defined as F (sj(k)) ={
w ∈ W |

∥∥[sx(k) sy(k)]T −w
∥∥

2
≤ rj

}
, where rj > 0

denotes the jth sensor’s sensing range. The camera obeys the
following measurement model with additive Gaussian noise,

zij(k) = vi(k) + ε, if xi(k) ∈ F (sj(k)) (4)

where zij(k) ∈ R2 is the jth sensor’s measured velocity of
ith target, and ε ∈ R2 is a zero-mean Gaussian white noise
and it follows the distribution N (0,Σε), where Σε = ε20I.
Here we assume perfect data association between targets and
sensor measurements, as the data association problem is out
of the scope of this paper.

The sensors form a communication network where each
sensor can constantly communicate with its neighboring
sensors. Without loss of generality, it is assumed that the
communication network forms a connected graph such that
a tree-structured communication path exists at each time step.

A. Decentralized Learning and Fusion

In order to learn the target motion models, sensors must
accurately predict target positions and actively decide their
sensing trajectories to reduce the uncertainty in the target
states estimates. Each sensor first locally learns a GP model
based on its own sensor measurements to predict the targets’
future trajectories and then fuses the local prediction into a
global one via communicating with neighboring sensors. A
typical issue in decentralized fusion is the rumor propagation,
where the common information in sensors’ local data are
double counted [15]. Tracking and removing the common
information is needed to avoid rumor propagation, but is
usually computationally heavy. This paper proposes a decen-
tralized GP fusion approach to combine local predictions to
generate globally consistent prediction of target trajectories
while avoiding double counting, as described in Section III.

B. Information-driven Path Planning (IPP) Algorithm

The IPP can be formulated as an optimal control
problem. Let uj (k : kf ) =

[
uTj (k) . . . uTj (kf )

]T
represent the planned control inputs of jth sensor
over the planning interval [k, kf ] and U (k : kf ) =
[u1 (k : kf ) . . . uN (k : kf )] denote the control inputs
of all N sensors. The optimal control of all sensors,
U∗ (k : kf ), is computed by maximizing the objective func-
tion J (U (k : kf )) under system constraints, formulated as
the following optimization problem,

U∗ (k : kf ) = arg max
U(k:kf )

J (U (k : kf ))

s.t. sj(τ + 1) = g (sj(τ),ui(τ)) , sj(τ) ∈ S, uj(τ) ∈ U
τ = k, . . . , kf − 1, j = 1, . . . , N,

(5)
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where S and U represent the feasible set of sensor state and
control input, respectively.

In this work, the objective function uses the mutual
information (MI), which has been shown very effective for
information-driven path planning [4], [16], [20]. In partic-
ular, define X (k : kf ) = [x1 (k : kf ) . . . xm (k : kf )]
as the predicted target positions in the planning interval,
which are obtained using decentralized GP fusion. Also
define Z (k : kf ) as the predicted measurements of these
targets from all sensors, then J (U (k : kf )) is defined as
the conditional MI between X (k : kf ) and Z (k : kf ), given
existing sensor measurements, i.e.,

J (U (k : kf )) = I (X (k : kf ) ; Z (k : kf ) | Z (1 : k − 1)) .
(6)

Solving the centralized IPP (5) is in general computationally
expensive due to the exponentially growing search space with
respect to the sensor number and the planning horizon. This
paper propose a decentralized IPP algorithm to distribute the
computation among sensors to efficiently solve the problem,
as presented in Section IV.

III. DECENTRALIZED GP LEARNING AND FUSION FOR
TARGET PREDICTION

This works utilizes GP to model the velocity field of each
target, with the target position and time being the input
and the corresponding target velocity being the output of
GP. In particular, let Xi(k) = [xi(1) . . . xi(k)] and
Zij(k) = [zij(1) . . . zij(k)] represent the measured
positions and velocities of ith target by the jth sensor at time
steps 1 to k. Then jth sensor’s local GP model can predict
the velocity at time τ > 0 at a query position ξ ∈ W , and
the predicted value zij,ξ(τ) obeys a Gaussian distribution
zij,ξ(τ) ∼ N

(
µij(ξ),Σij(ξ)

)
, where the mean µij(ξ) and

covariance Σij(ξ) are [6]

µij(ξ) = K (ξ,X)
(
K (X,X) + ε20I

)−1
Z

Σij(ξ) = K (ξ, ξ)−K (ξ,X)
(
K (X,X) + ε20I

)−1
K (X, ξ) .

(7)
The kernel matrix K(·, ·) is the key component of GP and it
encodes the similarity between input data points. This paper
uses the following spatial-temporal Radial Basis functions
as the spatio-temporal kernel to account for the time-varying
nature of the motion model,

K (xi(ti),xj(tj)) = σ2
se
−
‖xi−xj‖22

2l2x e
− (ti−tj)

2

2l2τ ,

where lx and lτ represent the spatial and temporal length
scale, and σs is the hyperparameter for signal variance.

A. Local GP Learning and Prediction of Target Trajectory

Given the measurements of sensor j, the hyper-parameters
of the local GP can be learned by maximizing the logarithm
of the marginal likelihood function of the training data [6].
The resultant GP model is then used to predict the target
positions in the planning interval [k, kf ] . Using the Bayes
rule, the pdf of predicted target positions can be represented
as follows [21],

Pj (Xi(k + 1 : kf ) | Xi(k)) =
kf−1∏
τ=k

∫
R2

[P (xi(τ + 1) | vi(τ),xi(τ))Pj (vi(τ) | xi(τ))] dvi(τ)

(8)
where Pj (vi(τ) | xi(τ)) corresponds to jth sensor’s local
GP model and P (xi(τ + 1) | vi(τ),xi(τ)) can be obtained
from the target motion model (1).

In general, there is no analytical form for
Pj (Xi(k + 1 : kf ) | Xi(k)) when kf − k ≥ 2. To
make the prediction tractable, we define a nominal path
that is obtained by assuming that the target moves with
the mean velocity given by GP and then approximate
Pj (Xi(k + 1 : kf ) | Xi(k)) along the nominal path. In
particular, define the sequence of nominal positions as
X̂ij(k + 1 : kf ) = [x̂ij(k + 1) . . . x̂ij(kf )] where
x̂ij(τ + 1) = µij(x̂ij(τ))∆T + x̂ij(τ), τ = k, . . . , kf − 1,
with the initial condition x̂ij(k) = xi(k). The velocity term
µij(x̂ij(τ)) is the mean vector computed using (7). Then
the pdf of the predicted trajectory can be approximated as
follows [21],

Pj (Xi(k + 1 : kf ) | Xi(k))

≈
kf−1∏
τ=k

Pj

(
vi(τ) =

xi(τ + 1)− x̂ij(τ)

∆T
| x̂ij(τ)

)
(9)

where the equality (9) is obtained from the motion model (1).
Equations (9) indicates that the pdf of the predicted target
trajectory can be approximated as the pdf of predicted veloci-
ties along the nominal path, and the resultant pdf is a product
of Gaussian distributions. By simple algebraic manipulation,
it can be shown that (9) is actually a Gaussian distribution
N (µij,loc,Σij,loc), where the mean vector µij,loc and the
covariance matrix Σij,loc is

µij,loc =
[
x̂Tij(k + 1) . . . x̂Tij(kf )

]T
,

Σij,loc = diag [Σij(x̂ij(k + 1)) . . . Σij(x̂ij(kf ))] ,

where diag means the block diagonal matrix. It is easy to
see the mean is the vector of nominal positions.

B. Decentralized Target Trajectory Fusion and Prediction

To coordinate sensing paths, it is important for sensors
to fuse their local prediction to obtain a global consensus
on targets’ predicted trajectories. This subsection proposes a
rumor-robust decentralized GP fusion approach. Consider the
fusion of ith target’s prediction from sensors j and l, where
the pdfs of local prediction are Pj (Xi(k + 1 : kf ) | Xi(k))
and Pl (Xi(k + 1 : kf ) | Xi(k)), computed using (9). The
proposed fusion rule is as follows,

P (Xi(k + 1 : kf )|Xi(k)) ∝ P βjw
∗

j (Xi(k + 1 : kf )|Xi(k))

P
βl(1−w∗)
l (Xi(k + 1 : kf )|Xi(k)) ,

(10)
where βj and βl are weighting factors that indicate each
sensor’s contribution to the combined prediction. Following
the strategy in [14], βj and βl are chosen as the difference
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in differential entropy between the prior and the posterior
at Xi(k + 1 : kf ) to ensure that the more information an
agent contains about the ith target’s prediction, the more it
contributes to the combined prediction. Using the fact that for
a Gaussian distribution P (x) ∼ N (µ,Σ), its exponential is
also a Gaussian distribution with a scaled covariance matrix
[14], i.e. Pα(x) ∼ N (µ, α−1Σ), the predictive mean and
covariance matrix of P (Xi(k + 1 : kf ) | Xi(k)) are

µ∗i = Σ∗i

(
βjw

∗Σ−1
ij,locµij,loc + βl(1− w∗)Σ−1

il,locµil,loc

)
Σ∗i =

(
βjw

∗Σ−1
ij,loc + βl(1− w∗)Σ−1

il,loc

)−1

(11)
where

(
µij,loc,Σij,loc

)
and

(
µil,loc,Σil,loc

)
are the mean

and covariance pairs of sensor j and l ’s local GP prediction.
The use of the weighted exponential product w∗ and (1−

w∗) in (10) has been effective to remove rumor propagation
[22]. To compute the optimal fusion weight w∗, this work
uses the Chernoff information as the metric for measuring
distance between pdfs [22]. For two arbitrary pdfs Pa(x)
and Pb(x), the optimal Chernoff weight is obtained by
minimizing their Chernoff information, i.e.,

w∗ = arg max
w∈[0,1]

− log

∫
[Pa(x)]

w
[Pb(x)]

1−w
dx.

The combined pdf is then P (x) = [Pa(x)]
w∗

[Pb(x)]
1−w∗

.
The main difficulty of using Chernoff weight for infor-

mation fusion is that for genenral distributions, there is
usually no analytic expression for their Chernoff informa-
tion, thus computing the optimal weight causes significant
computational overhead [22]. However, the Chernoff infor-
mation for two multivariate Gaussian distributions, Pa(x) ∼
N (µa,Σa) and Pb(x) ∼ N (µb,Σb), can be expressed in
the closed form [23], and the optimal Chernoff weight can
be computed as follows,

w∗ = arg min
w∈[0,1]

1

2
log
|wΣa + (1− w)Σb|
|Σa|w|Σb|1−w

(12)

+
w(1− w)

2
(µa − µb)

T
(wΣa + (1− w)Σb) (µa − µb)

The optimal Chernoff weight, w∗, in (11) can therefore be
computed between the following two Gaussian distributions,

P βj (Xij(k + 1 : kf ) | Xij(k)) ∼ N (µij,loc, β
−1
j Σij,loc),

P βl (Xil(k + 1 : kf ) | Xil(k)) ∼ N (µil,loc, β
−1
l Σil,loc),

using nonlinear optimization algorithms. Using (11) and (12)
for each pair of sensors along the tree-structured commu-
nication network, the rumor-robust decentralized GP fusion
can be conducted efficiently. The fused prediction at the
root sensor is propagated back to all sensors such that
sensors have the same fused pdf, which we refer to as
Pfuse (Xi(k + 1 : kf ) | Xi(k)) for the ith target.

IV. DECENTRALIZED SENSOR PLANNING

This section presents the decentralized IPP algorithm used
in RESIN, which uses the sequential planning strategy [18],
[19]. In the sequential planning, given a planning order, each

sensor first receives the planning information from its pre-
decessors (Section IV-A), then it computes its own optimal
path (Section IV-B), and sends the new planning information
to the next sensor in the sequence. Without loss of generality,
we assume the planning order corresponds to sensors’ indices
in following analysis. The decentralized IPP algorithm is
characterized by efficiency in both communication (Section
IV-A) and computation (Section IV-B).

A. Fusing Predecessors’ Plans

For the jth sensor, given the planned paths of the first j−1
sensors, Sj−1(k : kf ) = [s1(k : kf ) . . . sj−1(k : kf )],
the local planning problem becomes

u∗j (k : kf ) = arg max
uj(k:kf )

Jj (uj (k : kf ) ; Sj−1(k : kf ))

s.t. sj(τ + 1) = g (sj(τ),uj(τ)) ,

sj(τ) ∈ S, uj(τ) ∈ U , τ = k, . . . , kf
(13)

The objective function is defined as the mutual information
between target prediction and jth sensor’s planned path,
conditioned on the first j − 1 sensors’ plans, i.e.,

Jj (uj (k : kf ) ; Sj−1(k : kf )) =

I (X (k + 1 : kf ) ; zj (k + 1 : kf ) |Zj−1(k + 1 : kf ))

where Zj−1(k + 1 : kf ) represents the predicted measure-
ments of the first j − 1 sensors’ planned paths.

In order to fuse predecessor sensors’ predicted
measurements, the globally fused target prediction,
Pfuse (Xi(k + 1 : kf ) | Xi(k)), is treated as the prior
distribution of targets’ prediction. Similar to Section III-A,
the Bayesian fusion approach is used to compute the
posterior distribution conditioned on Zj−1(k + 1 : kf ), and
it can be shown that [21],

Pj,pre (Xi (k + 1 : kf ) | Zj−1(k + 1 : kf ))

≈
kf−1∏
τ=k

P

(
vi(τ) =

xi(τ + 1)− x̂i(τ)

∆T

) j−1∏
l=1

P (zl(τ) | x̂i(τ))

(14)

The predicted measurement from lth sensor, zl(τ), is as-
sumed to be nonempty if the nominal position x̂i(τ) lies in
the sensor’s FOV at τ .

The prior P
(
vi(τ) = xi(τ+1)−x̂i(τ)

∆T

)
can be directly

obtained by marginalizing Pfuse (Xi(k + 1 : kf ) | Xi(k))
over all time steps except τ , and can be easily
shown to be a Gaussian distribution, denoted as
N (µi,fuse(τ),Σi,fuse(τ)). Since the measurement
model is linear Gaussian, an analytical expression
of Pj,pre (Xi (k + 1 : kf ) | Zj−1(k + 1 : kf )) can be
obtained. In particular, let I{x̂i(τ) ∈ F (sl(τ))} represent
the indicator function and it equals 1 if and only if the
the nomial position x̂i(τ) lies in the sensor’s planned
FOV at τ . Then it can be derived, using the conjugacy
property of Gaussian prior and likelihood functions, that
given the prior covariance matrix Σi,fuse(τ) and let
n(τ) =

∑j−1
l=1 I{x̂i(τ) ∈ F (sl(τ))} represent the number
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of sensors in the first j − 1 sensors that can measure the ith
target at time τ , then the posterior covariance is

Σij,pre(τ) =
(
Σ−1
i,fuse(τ) + n(τ)Σ−1

ε

)−1

, τ = k+1, . . . , kf .

Therefore, the fused pdf can be compactly represented as

Pj,pre (Xi (k + 1 : kf ) | Zj−1(k + 1 : kf ))

∼ N
(
µij,pre(k + 1 : kf ),Σij,pre(k + 1 : kf )

)
,

where the covariance matrix Σij,pre(k + 1 : kf ) is

Σij,pre (k + 1 : kf ) = diag [Σij,pre(k + 1) . . . Σij,pre(kf )] .

Since the objective function only depends on covariance
matrix, we ignore the expression of mean µij,pre(k+1 : kf ).

The key observation here is that, to compute
Σij,pre (k + 1 : kf ), the only information needed from
predecessor sensors is the times that each sensor can
expect to detect the target in the planning interval, i.e.,
n(t). Since all sensors share the same nominal path of the
target, X̂i (k : kf ), thanks to the decentralized GP fusion,
each sensor only needs to receive the counting from its
predecessor, then add its own measurement times to the
total counting, and send the updated counting to the next
sensor. The communication overhead between each pair
of sensors is therefore constant and independent of the
number of predecessor sensors. In contrast, the transmitted
information to each sensor in state-of-the-art works [18],
[19] is the planned paths from all predecessors, which
incurs a communication burden of O(N).

B. Local Objective Function

The fused pdf Pj,pre (Xi (k : kf ) | Zj−1(k : kf )) is now
used as the prior pdf for jth sensor’s path planning. Given
the jth sensor’s future control inputs uj (k : kf ) and the
consequent future measurements zj (k : kf ), the posterior
pdf can be obtained [21], i.e.,

Pj,plan (Xi (k + 1 : kf ) | zj (k + 1 : kf ) ,Zj−1(k + 1 : kf ))

∼ N
(
µij,plan(k + 1 : kf ),Σij,plan(k + 1 : kf )

)
,

where the covariance matrix is

Σij,plan (k + 1 : kf ) = diag [Σij,plan(k + 1) . . . Σij,plan(kf )] .

Again, using the conjugacy of Gaussian distribution, the
covariance matrix of the posterior pdf can be computed in a
closed-form, i.e., for τ = k + 1, . . . , kf ,

Σij,plan(τ) =
(
Σ−1
ij,pre(τ) + I{x̂i(τ) ∈ F (sj(τ))}Σ−1

ε

)−1
.

(15)
Now we derive the closed-form of the objective function.

It it easy to show that [21],

Jj (uj (k : kf ) | Sj−1(k : kf )) =

M∑
i=1

kf∑
τ=k

1

2
log det

Σij,pre(τ)

Σij,plan(τ)
.

The indicator function in (15) makes the IPP problem
a mixed integer nonlinear programming problem, which is
notoriously difficult to solve. To overcome this difficulty,
we consider an approximate objective function, where the

 

Fig. 2: Average prediction error of targets using different GP
fusion strategies.

indicator function is replaced by the constant 1 and the
following weighting factor is added to the MI at each step,

ψ(τ) = max

(
0, 1−

(
‖[sj,x(τ), sj,y(τ)]T − x̂i (τ) ‖2 − rj

2

)2
(
rj
2

)2

)
.

Then the objective function becomes

Jj =

M∑
i=1

kf∑
τ=k

ψ(τ)

2
log det

Σij,pre(τ)

Σ̃ij,plan(τ)
(16)

where Σ̃ij,plan(τ) =
(
Σ−1
ij,pre(τ) + Σ−1

ε

)−1
. The decen-

tralized IPP problem (13) can be efficiently solved using
nonlinear optimization algorithms.

V. SIMULATION SETUP AND RESULTS

Two simulations are conducted to evaluate the effective-
ness of RESIN. The first simulation evaluates the decen-
tralized GP learning and fusion in RESIN where stationary
sensors are used to avoid the influence of planning algo-
rithms. The second simulation considers mobile sensors and
evaluates the full pipeline in RESIN.

A. Evaluating Decentralized GP Learning and Fusion
In this simulation, four stationary sensors are randomly

placed in a 10m× 10m workspace. A total of eight targets
enter the workspace, each of which has a different trajectory.
The sensor’s sensing range is rj = 5m. Decentralized GP
learning and fusion in RESIN is compared to the centralized
GP and the GP without fusion methods. In the centralized
GP method, all sensors share their measurements with other
sensors. For GP without fusion method, sensors do not com-
municate with each other and therefore the local GP learning
and prediction only uses sensor’s local measurements.

Figure 2 compares the average prediction error of all
sensors’ predicted trajectory of every target in the planning
interval (five steps). As expected, the centralized GP has the
minimum prediction error among all three approaches, as the
sensors have direct access to all measurements and therefore
are able to make the most accurate prediction. RESIN has
a slightly larger prediction error than the centralized GP
fusion. In contrast, GP without fusion leads to the worst
prediction error since each sensor makes prediction only
based on its own measurements. The simulation result shows
that RESIN is an effective fusion approach that achieves
similar performance as that of the centralized GP.
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Fig. 3: Average prediction error of targets using different
fusion and planning strategies.

B. Evaluating RESIN

In this simulation, four mobile sensors are randomly
placed in a 30m × 30m workspace. There is a total of
eight moving targets and each target moves in a different
pattern. The velocity of each sensor is bounded in the range
of [0, 3](m/s) and the control input of each robot is also
bounded, defined as follows,[

−π
6
,−5(m/s)

]T
≤ u ≤

[π
6
, 5(m/s)

]T
.

RESIN is compared to three benchmark methods, including
the centralized GP planner, nearest target following planner,
and the random planner. In the centralized GP planner, the
GP learning, prediction, and planning are conducted in a
centralized way, where all sensors’ measurements are shared,
and the planning is conducted for all sensors simultaneously.
The nearest target following planner drives a sensor to pursue
the closest target based on its locally estimated target posi-
tion. The random planner generates random control inputs.

Figure 3 compares the performance of these four planners,
in which the average prediction error of all sensors’ predicted
trajectory of every target under different planning strategies
are quantitatively compared. RESIN outperforms both the
nearest target following planner and the random planner in
general, and has very similar performance as that of the
centralized GP planner.

VI. CONCLUSION

This paper proposes RESIN for sensor networks to actively
learn GP motion models of moving targets. Characterized
by the computational and communication efficiency, and
the robustness to rumor propagation, RESIN is a powerful
framework for mobile sensor networks. The future work will
consider the data association in the decentralized fusion and
also develop the parallel implementation of RESIN.
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