
A Constrained Backpropagation Approach to Solving Partial
Differential Equations in Non-stationary Environments

Gianluca Di Muro and Silvia Ferrari

Abstract— A constrained-backpropagation (CPROP) training
technique is presented to solve Partial Differential Equations
(PDEs). The technique is based on constrained optimization
and minimizes an error function subject to a set of equality
constraints, provided by the boundary conditions of the dif-
ferential problem. As a result, sigmoidal neural networks can
be trained to approximate the solution of PDEs avoiding the
discontinuity in the derivative of the solution, which may affect
the stability of classical methods. Also, the memory provided
to the network through the constrained approach may be used
to solve PDEs on line when the forcing term changes over
time, learning different solutions of the differential problem
through a continuous nonlinear mapping. The effectiveness of
this method is demonstrated by solving a nonlinear PDE on a
circular domain. When the underlying process changes subject
to the same boundary conditions, the CPROP network is capa-
ble of adapting online and approximate the new solution, while
memory of the boundary conditions is maintained virtually
intact at all times.

I. INTRODUCTION

PARTIAL Differential Equations (PDEs) occur in many

problems in science and engineering, but in many cases

they do not allow for a solution in closed analytic form.

Therefore, a plethora of effective numerical methods have

been established, such as the finite difference method (FDM)

[1] and the finite element method (FEM) [2]. Although these

methods provide good approximations to the solution, they

require a domain discretization via meshing, which may be

challenging in two or higher-dimensional problems. Also, the

approximate solution’s derivatives are discontinuous and may

seriously impact its stability. Furthermore, in order to obtain

a satisfactory solution accuracy it may be necessary to deal

with fine meshes that significantly increase the computational

cost.

Another approach to solving PDEs numerically is to adopt

artificial neural networks (ANNs), exploiting their ability

to provide universal function approximation for multivariate

input/output spaces on a compact set. In this approach, the

PDE solution is approximated by a feedforward ANN, and

the adjustable parameters or weights are chosen to minimize

an error function of the solution and its derivatives, based

on the differential operator. Different techniques have been

developed to take into account the boundary conditions. One

line of research [3] expresses the solution as the sum of

two functions. One function is problem dependent and is

This work was supported by National Science Foundation, under grants
ECS CAREER 0448906, and ECS 0823945.

G. Di Muro is a graduate student of Mechanical Engineering at Duke Uni-
versity, Durham, NC 27707, USA gianluca.dimuro@duke.edu.

S. Ferrari is with Faculty of Mechanical Engineering at Duke University,
Durham, NC 27707, USA sferrari@duke.edu.

designed by the user to satisfy the boundary conditions

(BCs) with no adjustable parameters. The second function

is an ANN trained to approximate the differential operator.

However, this approach only is applicable to PDEs defined

on orthogonal box domains, and cannot be extended to non-

stationary environments in which the BCs change over time

because part of the solution must be designed by the user

off-line. A more recent study [4] overcomes some of these

limitations, but it adopts radial basis functions to correct the

solution on the boundaries, making difficult to implement this

technique in non-stationary environments, when the shape of

the boundaries may change over time.

Another approach consists of embedding the BCs in the

cost function [5], [6]. Although this approach has been shown

effective in solving linear PDEs, in order to match BCs with

high accuracy, which may be crucial in many engineering

applications, it require many points on the integration do-

main boundaries, thereby increasing the computational cost

dramatically. Also, it relies on evolutionary algorithms that

are computationally expensive and, typically, can only be

implemented reliably off line in non-stationary environments.

A methodology based on radial basis functions ANNs was

developed in [7], by learning the adjustable parameters using

a two-stage gradient-descent strategy. One advantage of this

methodology is that the ANN architecture is adapted over

time using a node insertion strategy. However, because it

includes the BCs in the cost function, this methodology

suffers from the same aforemention limitations, as [5].

Recently, the authors presented a novel constrained-

backpropagation (CPROP) approach to eliminate interference

and preserve long-term memory (LTM) in fully-connected

sigmoidal neural networks [8]. CPROP preserves LTMs by

embedding them into a set of equality constraints that are

formulated in terms of the neural weights by means of

algebraic training [9]. In [8], the CPROP approach was

illustrated by preserving LTM of gain scheduled controllers

in a neural network controller that adapted to nonlinear plant

dynamics on line, via an adaptive-critic architecture; whereas

in [10], it was extended to other engineering applications,

namely, function approximation, solution of ordinary differ-

ential equations, and system identification. The previous re-

sults demonstrated the ability of CPROP to retain procedural
memories, which refer to memories of actions and motor

sequences.

In this paper, the CPROP approach is extended to the

problem of solving PDEs in non-stationary environments,

in which the BCs constitute the LTMs to be retained during

on-line learning. Also, new relations to deal with nonlinear

PDEs and analytic expressions for the Jacobian of differential

operators, approximated by ANNs, are analytically derived.

The results clearly show the CPROP approach is effective at

providing the solution to nonlinear PDEs and BCs are always

satisfied during on-line learning of several forcing functions.

II. FORMULATION OF THE PROBLEM

Consider the nonlinear PDE,

Dk [u(y)] = f(y) (1)

where Dk is a non-linear differential operator of order k,

y ∈ I ⊂ R
N , and I ∈ R

N is a compact set with associated

boundary conditions (BCs),

Gj [u(y)] = h(y) (2)

G is a linear operator of order j < k. The functions

y ∈ ∂I ⊂ R
N and f, h : R

N → R are assumed to

be continuous and known. Without the loss of generality,

assume that Dk = Lk1 + Hk2 , where k = max{k1, k2},

Lk1 is a linear differential operator of order k1, and Hk2 is

a nonlinear differential operator of order k2 of the form,

Hk2 =
N∑

m=1

k2∑
l=1

Rl∑
r=1

clmr
∂lu

∂yl
m

ur(y)

The solution û(y) is provided by the output of an ANN

with adjustable parameters W,d,v, and the output bias is set

to zero, for simplicity. The input-to-node operator is defined

as,

Φ (W,y,d) = W y + d (3)

where, W ∈ R
S×N ,d ∈ R

S are the input weights and bias,

respectively, S is the number of the hidden nonlinear units,

and Φ : R
n → R

S is the linear operator which maps the

input space into the node space. Furthermore, assume that the

hidden nonlinear units are sigmoidal, with a transfer function

σ(r) = (er−1)/(er+1). Then, define the sigmoidal operator

S (W,y,d) = σ (Φ) (4)

as the nonlinear mapping S : R
s → R

s which estimates the

output of the nonlinear hidden units of the network. Hence,

the approximation of the solution of the PDE (1) is given by

the ANN output provided it satisfies the relationship,

û(y) = S (W,y,d)vT (5)

where v ∈ R
1×S is the vector of the output weights. It is

then trivial to extend the approach to the case of multiple

outputs’ network because of their linearity with respect to

the output weights. Substituting (5) into (1), the differential

operator is applied to the ANN,

Dk
[S (W,y,d)vT

]
= f(y) (6)

Since the aim is to approximate the solution of the problem

(1) on D, let the set TSTM = {yk ∈ D, k = 1, 2, ..., P}
provide the training set for the PDE (1). The discretized

version of the input-to-node operator (3) is given by the

input-to-node matrix,

N = [WY + D]T (7)

where, Y =
[
y1 y2 · · ·yP

]
is an N ×P matrix of output

samples, and D = [d d · · ·d] is an S × P matrix of input

biases, and N ∈ R
P×S . Similarly, the discrete version of the

sigmoidal operator (4) is a P × S matrix that, from (7), can

be written as,

S0 = S (N) (8)

Consequently, when the ANN is fed the training set input

samples from TSTM its output is given by,

û(y)|y∈TSTM
= S0vT (9)

In order to solve (1), the ANN output must be differentiated

with respect to its inputs up to the kth-order derivative.

After some manipulations it is possible to extend the scalar

equations presented in [3], adopting the operators previously

introduced. The operators,

T =
n∏

i=1

Wmi
i and (10)

Rj =
{

Wmj−1
j

∏n
i=1, i �=j Wmi

i if mj ≥ 1
0 ∈ R

S×S otherwise
(11)

are introduced to obtain a more compact notation. Then, the

derivative of the ANN evaluated at the samples in TSTM is

given by,

∂m1

∂ym1
1

· · · ∂mj

∂y
mj

j

· · · ∂mn

∂ymn
n

[û(y)] |y∈TSTM
= Sλ T vT (12)

where Sλ denotes the λth derivative of the σ function with

respect to its scalar argument evaluated at the input-to-node

matrix (7), and from hereon will be referred to as transfer
function matrix of the λth order, where λ =

∑n
i=1 mi, and

d0σ/dr0 = σ. N diagonal matrices Wj ∈ R
S×S , with j =

1, 2, ..., N are defined such that the jth component on the

diagonal is given by the jth input weight of the ANN.

We are now ready to compute the Jacobian of the error

with respect to the ANN adjustable parameters required in

order to train the ANN by backpropagation. Making use of

equations (10)-(11), the Jacobian can be written as,

J = [JW1 | · · · | JWN | Jd | Jv] (13)

where,

JWi = (mi SλRi + YiSλ+1T) V i = 1, ..., N (14)

Jd = Sλ+1T V (15)

Jv = SλT (16)

and Yi ∈ R
P×P , i = 1, 2, ..., N are diagonal matrices,

defined as: [Yi]kl = yk
i δkl, where δkl is the Kronecker delta

and yk
i are the ith components of the kth samples’ inputs, with

no implied summation over indices. Similarly V ∈ R
S×S

refers to a diagonal matrix assembled with the components

of the v vector, or in components [V]mn = vmδmn m =
1, ..., S, and vm is the mth component of the output weights.

Introducing the vector f = f(y)|y∈TSTM
with f ∈ R

P , the

cost function to be minimized may be defined as,

V =
1
2
eT e (17)

where

e = Dk [û(y)] |y∈TSTM
− f (18)

III. EXTENSION TO NONLINEAR PDES

The methodology presented in the previous section can be

extended to nonlinear PDEs by adopting a useful property

of the Hadamard product. The Hadamard product of two

matrices A,B ∈ R
M×N , also known as entry-wise product,

is defined as,

(A ◦ B)ij = aijbij (19)

As shown in [11], the Hadamard product obeys the following

property,

∂ (A ◦ B)
∂α

=
∂A
∂α

◦ B + A ◦ ∂B
∂α

(20)

where, α is a scalar parameter, and A and B are matrices

or matrix functions. In order to derive the Jacobian for the

nonlinear part, we extend the property in (20) to the case of

differentiation with respect to vectors. After some algebraic

manipulations it may be shown that the following expression

holds,

∂ (A ◦ B)
∂a

=
∂A
∂a

◦ (B ⊗ γ) +
∂B
∂a

◦ (A ⊗ γ) (21)

where in (21) a ∈ R
l and γ ∈ R

l are row-vectors, with

γ defined as γ = [1 1 · · · 1]. The symbol ⊗ denotes

the Kronecker product between tensors. Expression (21)

may be adopted to extend the constrained methodology to

estimate the Jacobian operator in case of nonlinear equation.

Although still some class of nonlinear functions may not be

directly treated, it is possible to extend this approach, through

subsequent Taylor’s expansion.

IV. PARTITION OF THE WEIGHTS: ENFORCING

BOUNDARY CONDITIONS

Imposing only the minimization of the cost function de-

fined in (17) is not sufficient to have an approximate solution

of the problem (1), since it has to satisfy the boundary

conditions provided by (2). In order to achieve that, we

are going to sample ∂I and impose (2) at these discrete

points. According to the developed methodology we will

able to deal with any kind of boundary conditions (Dirichlet,

Neumann, mixed type) as long as the relations to be imposed

on the boundary are linear, with respect to the unknowns. For

simplicity we consider Dirichlet’s boundary conditions; first

of all let us define the set TLTM = {yj ∈ ∂D, j = 1, 2, ..., P̄}
where we are going to enforce the satisfaction of (2).

Using the approach in [8], partition the hidden nonlinear

units into Long Term Memory (LTM) and Short Term

Memory (STM) nodes and similarly we can refer to their

weights as LTM and STM weights. The former are to enforce

the constraints which have to be satisfied at any time by the

ANN, which -in this case- are constituted by the boundary

conditions; whereas the latter are used to acquire new knowl-

edge and minimize the cost function (17). In agreement with

this approach, we can claim that S = SSTM + SLTM where

SSTM and SLTM are the number of STM and LTM connec-

tions, respectively. In order to deal with linear equations we

keep constant input-to-node LTM matrices, so that we can

easily invert constraints equations using linear algebra and

LTM output weights will be computed to enforce (2).

A. Notation

From now on we will refer to the STM connections of

the network using Latin letters, whereas Greek letters will

address LTM connections. Also, inputs with a bar (¯) will

belong to the TLTM training set, whereas inputs with a breve
(˘) will refer to the TSTM training set. For example S̄0 refers

to the STM transfer function matrix of zeroth order fed with

the LTM inputs and similarly Σ̆2 refers to the LTM transfer

function matrix of second order fed with STM inputs.

B. The Constraints: Imposing Boundary Conditions

Given (2), we want the Boundary Conditions to be always

satisfied. Thus we can use (12) to evaluate (2); also, since

(2) is linear for hypothesis, choosing SLTM = C̄ we can deal

with equations linear with respect to the LTM output weights,

where C̄ is the total number of boundary conditions. Without

loss of generality, let us consider the case of Dirichlet

boundary conditions to be imposed for P̄ points, then the

ANN’s output has to satisfy,

S̄0vT + Σ̄0ωT = h (22)

where S̄0 ∈ R
SSTM×P̄ , Σ̄0 ∈ R

SLTM×P̄ ,h = h(xk), k =
1, 2, ..., P̄ , h ∈ R

P̄ ; finally v ∈ R
1×SSTM and ω ∈ R

1×SLTM

are the STM and LTM output weights, respectively. In

this case C̄ = P̄ and we have imposed SLTM = C̄,

hence Σ̄0 ∈ R
SLTM×SLTM is a square-matrix. According

to our assumptions we have fixed the input-to-node LTM

matrix, therefore Σ̄0 is completely known; moreover we can

predesign it in order to make it non-singular, for the given

boundary discretization. With these premises the constraints’

equation (22) may be inverted and the LTM output weights

may be expressed as a function of the STM weights; for

Dirichlet’s boundary conditions we would have explicitly,

ωT =
[
Σ̄0

]−1 (
h − S̄0vT

)
(23)

Thus the solution of the PDE may be obtained, minimizing

(17) subject to (23). In order to apply gradient-descent

methods we have to evaluate the augmented Jacobian, which

will be function only of the STM weights, since the LTM

internal matrix is fixed and the LTM output weights are

explicitly expressed in terms of the STM weights, through

equation (23).

V. APPLICATIONS AND RESULTS

In order to illustrate how the ANN is capable to adapt

and provide new solutions in a non-stationary environment,

we consider a nonlinear equation, forced by a known term,

which is subjected to some changes over time. Given the

following bidimensional PDE on the unit circle centred at

the origin,

∇2u + u
∂u

∂y2
= f j(y1, y2) j = 1, 2, 3 (24)

we assume that the solution has to satisfy the following

boundary conditions,

u(y1, y2) = 1 (25)

on the unit circle, for which y2
1+y2

2 = 1. Note that in (24) we

have omitted the dependence of u from y1, y2 for simplicity

of notation; f j(y1, y2) j = 1, 2, 3 are continuous functions,

whose values are supposed to be known on the discrete grid,

where we are aiming to solve (24). With the position (9), it

is straightforward to show that the error equation takes the

form,

e(X) = eLIN(X) + eNLIN(X) (26)

where f ∈ R
P is defined as: fk = f(y)|y∈TSTM

. In (26), the

explicit computation of the two contributions may be easily

made, using (12), therefore we have,

eLIN(X) = S̆2BvT + Σ̆2CωT − fk k = 1, 2, 3 (27)

with B = (W2
1 + W2

2) and C = (Ω2
1 + Ω2

2) and for the

nonlinear part we have the following expression,

eNLIN(X) = (Σ̆0ωT +S̆0vT)◦(Σ̆1Ω2ω
T +S̆1W2vT) (28)

We are considering the case of a forcing term f , transitioning

from f1 to f2 and finally to f3. We have predesigned the

analytic solution, to have an exact estimate of the error, and

have computed the fk subsequently. The solutions are: u1 =
y2
1 + y2

2 → u2 = 1.15 u1 − 0.15 → u3 = e−u1
+ 1.1 u1 −

e−1−0.1 and all satisfy (25). In order to solve (24) we need

to evaluate the Jacobian. Thus we have,

J = JLIN + JNLIN

And the explicit expressions of the two parts are respectively:

JLIN =
[
JW1
∇2 | JW2

∇2 | Jd
∇2 | Jv

∇2

]
+ Π1J2 (29)

where the different terms in (29) are,

JWi

∇2 = 2S̆2WiV + Y̆iS̆3B V i = 1, 2

Jd
∇2 = S̆3B V

Jv
∇2 = S̆2B

and Π1 is responsible to ensure that the BCs are respected,

for the part pertinent to the Laplacian, and is defined as,

Π1 = −Σ̆2 B
[
Σ̄0

]−1

similarly J2 takes into account the interaction between LTM

and STM weights, for the computation of the Laplacian

operator and it is defined accordingly as,

J2 =
[
Ȳ1S̄1V | Ȳ2S̄1V | S̄1V | S̄

]

whereas the nonlinear contribution to the jacobian takes the

expression,

JNLIN = [û ⊗ γ] ◦ [J3 + Π3J4] + [û,y2 ⊗ γ] ◦ [J5 + Π2J4]
(30)

where û and û,y2 refer to the ANN’s output and its partial

derivative with respect to y2, computed on the STM training

set respectively. Therefore they may be expressed through

the network weights as,

û = S̆0vT + Σ̆0ωT

û,y2 = S̆1W2vT + Σ̆1Ω2ω
T

Explicitly, in (30) we have the following expressions for the

different components of the nonlinear term of the Jacobian,

J3 =
[
JW1

3 | JW2
3 | Jd

3 | Jv
3

]

with

JW1
3 = Y̆1S̆2W2V

JW2
3 = (Y̆2S̆2W2 + S̆1)V
Jd

3 = S̆2W2V

Jv
3 = S̆1W2

where Π2 = −Σ̆0
[
Σ̄0

]−1
, Π3 = −Σ̆1Ω2

[
Σ̄0

]−1
and

analogously the other terms are defined as,

J4 =
[
Ȳ1S̄1V | Ȳ2S̄1V | S̄1V | S̄0

]
J5 =

[
Y̆1S̆1V | Y̆2S̆1V | S̆1V | S̆0

]

For the numerical simulations, we have adopted a 100 points

grid, posed on 10 different circles -equidistant from the

center of the domain of integration- and subdividing each

of them into 10 equidistant arcs. In order not to have a ho-

mogeneous radial distribution of points, we have imposed a

θ = π/8 swirl (positive counter-clockwise) from one circle to

another, beginning from the external one (of unitary radius).

We have used a 7 STM ANN architecture and have adopted

25 LTM nonlinear hidden nodes, to impose the boundary

conditions on the unit circle (subdividing it, again, into equal

parts). Results are shown from adaptation to the known terms

of equation (24) where the function f is supposed to have

changed after a certain number of epochs (namely: 50). The

final training has been run until satisfactory convergence has

occurred and no further improvement seemed possible (after

450 epochs). Again, as validation set, we have chosen a much

denser grid of 90 circles subdivided into twenty arcs. Figures

(1 - 2), (3 - 4), (5 - 6) show the ANN output and the error

surface respectively for the case of adaptation to f1, f2, f3.

To obtain surface polar plots we have used POLAR3D [12].

VI. CONCLUSIONS

A constrained-backpropagation approach is presented

to solve PDEs on non-rectangular domains and in non-

stationary environments. The methodology utilizes con-

strained optimization to minimize an error function provided

by the PDE operator, subject to equality constraints obtained

from the PDE’s boundary conditions. Since the equality

-1 0 1-1-0.500.51
0

0.2

0.4

0.6

0.8

1

Fig. 1. Neural Network output after being trained with f1

-101 -1-0.500.51
-2

-1

0

1

2
x 10-3

Fig. 2. Error surface comparing the analytic solution and the NN output
when trained with f1

-1 0 1-101
-0.5

0

0.5

1

1.5

Fig. 3. Neural Network output after being trained with f2

-1 0 1-1-0.500.51
-0.2

-0.1

0

0.1

0.2

Fig. 4. Error surface comparing the analytic solution and the NN output
when trained with f2

-1 0 1-1-0.500.51
0.4

0.6

0.8

1

1.2

1.4

Fig. 5. Neural Network output after being trained with f3

-101 -1-0.500.51
-0.03

-0.02

-0.01

0

0.01

Fig. 6. Error surface comparing the analytic solution and the NN output
when trained with f3

constraints are derived analytically via an algebraic training

approach, it is possible to satisfy the boundary conditions

exactly, up to machine precision. This feature is crucial

especially in the case of nonlinear PDEs, whose solution may

be greatly affected by even small errors on the boundaries.

The numerical results presented in this paper show that high

precision in matching the boundary conditions is obtained

using far fewer sample points on the boundaries than existing

methods based on unconstrained backpropagation. Another

important advantage of the proposed methodology is that the

boundary conditions are satisfied during on-line learning of

short-term memories comprised of new forcing functions,

as brought about by non-stationary processes. Future work

will investigate the computing requirements in case of larger

system models. Also, the methodology will be further applied

to study real-world data.

REFERENCES

[1] G. D. Smith, Numerical solution of partial differential equations:
Finite difference methods. Oxford: ClarendonPress, 1978.

[2] T. J. R. Hughes, The finite element method. New Jersey: Prentice
Hall, 1987.

[3] I. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE Trans. On
Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998.

[4] I. Lagaris, A. Likas, and D. Papageorgiou, “Neural-network meth-
ods for boundary value problems with irregular boundaries,” Neural
Networks, IEEE Transactions on, vol. 11, no. 5, pp. 1041–1049, Sep
2000.

[5] L. P. Aarts and P. V. D. Veer, “Neural network method for solving
partial differential equations,” Neural Process. Lett., vol. 14, no. 3,
pp. 261–271, 2001.

[6] Y. Shirvany, M. Hayati, and R. Moradian, “Numerical solution of
the nonlinear schrodinger equation by feedforward neural networks,”
Communications in Nonlinear Science and Numerical Simulation,
vol. 13, no. 10, pp. 2132 – 2145, 2008.

[7] L. Jianyu, L. Siwei, Q. Yingjian, and H. Yaping, “Numerical solution
of elliptic partial differential equation using radial basis function neural
networks,” Neural Networks, vol. 16, no. 5-6, pp. 729–734, 2003.

[8] S. Ferrari and M. Jensenius, “A constrained optimization approach
to preserving prior knowledge during incremental training,” IEEE
Transactions On Neural Networks, vol. 19, no. 6, pp. 996–1009, 2008.

[9] S. Ferrari and R. Stengel, “Smooth function approximation using
neural networks,” Neural Networks, IEEE Transactions on, vol. 16,
no. 1, pp. 24–38, Jan. 2005.

[10] G. Di Muro and S. Ferrari, “A constrained-optimization approach
to training neural networks for smooth function approximation and
system identification,” in Proc. International Joint Conference on
Neural Networks, Hong Kong, 2008, pp. 2354–2360.

[11] K. B. Petersen and M. S. Pedersen, The Matrix CookBook, February
2007.

[12] J. M. De Freitas, POLAR3D: A 3-Dimensional Polar Plot Function
in Matlab R©, QinetiQ Ltd, Winfrith Technology Centre, Winfrith,
Dorchester DT2 8DXJ. UK, June 2005.

