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M
any complex systems, ranging from renewable resources [1] to very-large-scale 
robotic systems (VLRS) [2], can be described as multiscale dynamical systems 
comprising many interactive agents. In recent years, significant progress has 
been made in the formation control and stability analysis of teams of agents, 
such as robots, or autonomous vehicles. In these systems, the mutual goals of 

the agents are, for example, to maintain a desired configuration, such as a triangle or a star 
formation, or to perform a desired behavior, such as translating as a group (schooling) or 
maintaining the center of mass of the group (flocking) [2]–[7]. While this literature has suc-
cessfully illustrated that the behavior of large networks of interacting agents can be conve-
niently described and controlled by density functions, it has yet to provide an approach for 
optimizing the agent density functions such that their mutual goals are optimized.
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This article describes a coarse-grained optimal control 
approach for multiscale dynamical systems, referred to as 
distributed optimal control (DOC), which enables the opti-
mization of density functions, and/or their moments, sub-
ject to the agents’ dynamic constraints. (See Table 1 for DOC 
notation.) The DOC approach is applicable to systems, such 
as swarms or teams, composed of many collaborative agents 
that, on small spatial and time scales, are each described by 
a small set of ordinary differential equations (ODEs) 
referred to as the microscopic or detailed equations. On 
larger spatial and temporal scales, the agent behaviors and 
interactions are assumed to give rise to macroscopic coher-
ent behaviors, or coarse dynamics, described by partial dif-
ferential equations (PDEs) that are possibly stochastic.

In recent years, the optimal control of stochastic differ-
ential equations (SDEs) has gained increasing attention. 
Considerable research efforts have focused on the optimal 
control and estimation of SDEs driven by non-Gaussian 
processes, such as Brownian motion combined with Pois-
son processes, or other stochastic processes [8]–[10]. In 
these efforts, the microscopic agent state is viewed as a 
random vector, and the dynamic equation takes the form of 
an SDE that describes the evolution of the statistics of the 
microscopic vector function and may be integrated using 
stochastic integrals. Then, the performance of N  agents is 
expressed as an integral function of N  vector fields to be 
optimized subject to N  SDEs. However, solutions can only 
be obtained for relatively few and highly idealized cases in 
which finite-dimensional, local approximations can be 
constructed, for example, via moment closure [8], [9]. While 
the optimal control of SDEs has been primarily shown 
useful to selected applications in population biology and 
finance [8]–[10], recently it has also been successfully 
applied to obtain equilibrium strategies for multiagent sys-
tems (MAS) that obey a game-theoretic framework where 
each agent has its own cost function and the macroscopic 
system performance is expressed by a predefined collective 
potential function (see [11] and the references therein).

Other approaches that have been proposed for tackling 
the control of multiscale dynamical systems and provide 
practical yet tractable solutions even when the number of 
agents is large include prioritized planning techniques [12] 
and path-coordination methods [13], which first plan  
the agent trajectories independently and then adjust 
the microscopic control laws to avoid mutual 
collisions. Behavior-based control methods 
seek  feasible  solutions  by  program-
ming a set of simple behaviors for each 
agent and by showing that the agents’ 
interactions give rise to a macroscopic 
behavior, such as dispersion [2]. Swarm-
intelligence methods, such as foraging 
and schooling [5], [14], [15], view each 
agent as an interchangeable unit sub-
ject to local objectives and constraints 
through which the swarm can con-
verge to a range of predefined distribu-
tions or a satisfactory strategy. When 
the  agents’  dynamics  and  costs  are 
weakly coupled, useful decentralized 
control strategies for multiscale dy-
namical systems can be obtained via 
the Nash certainty equivalence (NCE) or 
mean field principle [16], [17].

Similarly to DOC, NCE methods rely on 
identifying a consistency relationship between 
the microscopic agent dynamics and a macroscopic 
description, which in the NCE is the mass of the agents. 
However, while in NCE methods the (weak) couplings 

Symbol Meaning

i Agent index

x Agent microscopic state

u Agent control

U Admissible control space

p Agent distribution

p) Optimal agent distribution

pt Estimated agent distribution

J Integral cost function

L Lagrangian function

z Terminal cost function

T0 Initial time

Tf Final time

d Gradient (column) vector

fi jth Gaussian mixture component

j~ Weight of the jth Gaussian mixture component

jn Mean of the jth Gaussian mixture component

j
/ Covariance matrix of the jth Gaussian mixture 

component

z Number of Gaussian mixture components

kt FV approximation of advection operator

, xt3 3 Temporal and spatial
discretization intervals

,K L Number of temporal and spatial collocation points

m Lagrange multiplier or costate vector

K Kernel function

H , , ,i k i kc Bandwidth matrix and weighting coefficient of 
kernel k  stored by agent i

U Potential function

Urep Repulsive potential function

TABLE 1  Distributed optimal control notation.
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between agents are produced by averaging the microscopic 
agent dynamics and costs, in DOC couplings need not be 
weak, and may arise as a result of collaborative objectives 
expressed by the macroscopic cost function. As a result, the 
cost function can represent objectives of a far more general 
form than other methods and admit solutions that entail 
strong couplings between the agent dynamics and control 
laws. Furthermore, while NCE methods rely on a macro-
scopic state description defined in terms of the expectation 
(or mean) of the evolving agent distribution, the DOC 
approach is applicable to other macroscopic descriptions, 
such as the agent probability density function (PDF) and its 
moments, thereby admitting a wide range of collaborative 
behaviors and objectives.

Unlike prioritized and path-coordination methods [12], 
[13], the DOC approach does not rely on decoupling the 
agent behaviors, or on specifying the agent distribution a 
priori. Instead, DOC optimizes the macroscopic behavior 
of the system subject to coupled microscopic agent dynam-
ics and relies on the existence of an accurate macroscopic 
evolution equation and an associated restriction operator 
that characterize the multiscale system to reduce the com-
putational complexity of the optimal control problem. As a 
result, the computation required is far reduced compared 
to classical optimal control [18], and coupled agent objec-
tives and control laws can be considered over large spatial 
and time scales without sacrificing optimality or com-
pleteness [19].

This tutorial provides an introductory overview of the 
DOC problem and of how it compares to existing optimal 
control methods. Two existing DOC solution methods are 
described, and the necessary and sufficient conditions for 
optimality are reviewed in the context of direct and indi-
rect DOC methods. Similarly to classical optimal control, 
indirect DOC methods seek to determine solutions to the 
optimality conditions [20]. Direct DOC methods discretize 
the original problem formulation, in this case both with 
respect to space and time, to obtain a mathematical pro-
gram that, in the general case, takes the form of a nonlinear 
program (NLP). Subsequently, each agent can compute its 
feedback control law based on the optimal time-varying 
agent PDF determined by DOC and on the actual agent dis-
tribution, which may be obtained via kernel density esti-
mation. Finally, the applicability of the DOC approach is 
illustrated through a multiagent formation and path-plan-
ning application and an image-reconstruction problem.

Background on Optimal Control
Optimal control can be considered the most general approach 
to optimizing the performance of a dynamical system over 
time. Over the years, it has been successfully applied to con-
trol a wide range of processes, including physical, chemical, 
economic, and transportation systems. The classical optimal 
control formulation considers a system whose dynamics can 
be approximated by a small system of SDEs

	 ( ) [ ( ), ( ), ] ( ) ( ), ( ) ,x f x u G w x xt t t t t t T0 0= + =o � (1)

where x  and u  are the system state and control input vectors, 
respectively, and w Rs!  is a vector of random inputs with 
Gaussian distribution and zero mean [21]. The dynamics in 
(1) also depend on system parameters that represent the 
physical characteristics of the system and are expressed in 
units that scale both the inputs and outputs to comparable 
magnitudes. The term ( ) ( )G wt t  is typically assumed to cap-
ture the random effects associated with parameter variations 
and uncontrollable inputs known as disturbances [21, p. 422].

Classical optimal control seeks to determine the state and 
control trajectories that optimize an integral cost function

	 [ ( )] [ ( ), ( ), ] ,x x uJ T t t t dtLf

T

T f

0

z= + # � (2)

over a time interval ( , ],T Tf0  subject to (1) and, potentially, 
to an d-dimensional inequality constraint

	 [ ( ), ( ), ] .q x ut t t 0d 1# # � (3)

When random effects can be neglected, optimal control 
problems in the form (1)–(3) can be approached by solving 
the necessary conditions for optimality known as Euler–
Lagrange equations, which may be derived using calculus 
of variations [21]. Another approach is to use the recurrence 
relationship of dynamic programming to iteratively 
approximate candidate optimal trajectories, known as 
extremals, by optimizing the value function or cost-to-go. 
For a nonlinear system and a general cost function, the 
Euler–Lagrange equations amount to a Hamiltonian 
boundary-value problem for which there typically are no 
closed-form solutions. In this case, the optimal control 
problem is typically solved numerically using direct or 
indirect methods [21]–[23].

Indirect methods solve a nonlinear multipoint bound-
ary value problem to determine candidate optimal trajecto-
ries. This requires deriving analytical expressions for the 
necessary conditions for optimality and then implement-
ing a root-finding algorithm to solve the optimality condi-
tions numerically. Direct methods determine near-optimal 
solutions by discretizing the continuous-time problem 
about collocation points and then transcribing it into a 
finite-dimensional NLP. A numerical optimization algo-
rithm, such as sequential quadratic programming (SQP), is 
then used to find the optimal dynamic state and control 
variables directly from the discretized optimal control 
problem [24], [25]. Direct methods are typically easier to 
implement than indirect methods because they do not 
involve the derivation of analytical expressions, which may 
be challenging especially for nonlinear systems, have 
better convergence properties, and do not require initial 
guesses for the adjoint variables, which can be difficult to 
provide in the presence of inequality constraints [26]–[28].

When random effects are too important to be neglected, 
the stochastic principle of optimality can be obtained by 
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taking the expectation of the integral cost (2), ultimately 
reducing the stochastic optimal control problem to the min-
imization of a value function that differs from its determin-
istic counterpart by a term containing the spectral density 
matrix of the random input [21, pp. 422–432]. Traditionally, 
stochastic optimal control has dealt with a single dynamical 
system modeled by a small system of ODEs with additive 
Gaussian random inputs, such as (1). In recent years, how-
ever, considerable efforts have gone into the optimal control 
and estimation of stochastic differential equations driven 
by non-Gaussian processes such as Brownian motion and 
Poisson processes [8]–[11]. Let the state of the ith agent be 
represented by a random vector, ,xi  subject to a stochastic 
process that takes the form of the SDE

	
( ) { [ ( ), ] ( )} [ ( ), ] ( ),

( ) ,
x f x Bu G x w

x x

d t t t t dt t t d t

t
i i i i i

i i0 0

= + +

=
�

(4)

where wi  denotes a Brownian motion process [11]. Then, 
the performance of N  agents can be expressed as an inte-
gral function of [ ( )], , [ ( )],f x f xt tN1 f  and must be optimized 
subject to N  SDEs in the form of (4), which can be inte-
grated using stochastic integrals. While this approach 
allows modeling and optimizing stochastic processes that 
are not well described by ODEs with additive Gaussian dis-
tributions, it does not resolve the computational challenges 
associated with many collaborative agents. In fact, the opti-
mal control of SDEs, such as (4), typically requires solving 
optimality conditions that are numerically more challeng-
ing than the Euler–Lagrange equations and do not afford 
any computational savings.

In many MAS, the goal is to control processes that can 
each be described by the ODEs in (1) but, because of common 
goals and objectives, ultimately lead to coupled optimality 
conditions and emergent behaviors governed by PDEs. To 
date, the control of PDEs or distributed-parameter systems 
has focused primarily on parabolic models, such as

	
{ ( , )} ( , ), , ,

{ ( , )} , , ( , ) ( ), ,

z z z

z z z z z
t
X X t U t D t

X t D X X D

0

0 0

N
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2
2

2

! $

! !

= +

= =
�

(5)

where [ ]z x y T=  are the coordinates of the spatial domain 
D R2!  with boundary denoted by ,D2  { }N $  and { }B $  are 
well-posed linear or nonlinear spatial differential operators, 
X0  is a known function, and ( , )zU t  is the forcing function or 
control input to be determined. In a typical distributed-
parameter system, the scalar input U  can be used to control 
the spatial and temporal evolution of the state X  and can be 
designed to be a function of X  via feedback [29]. Thus, opti-
mal control of PDEs seeks to optimize an integral cost func-
tion of X  and U  over a domain ,D  subject to a PDE such as 
(5). The solution to this class of distributed control problems 
can be obtained from the Karush–Kuhn–Tucker (KKT) con-
ditions, as described in detail in [29].

The methods reviewed above show that optimal control 
is a promising framework for controlling the behavior of 

MAS because it enables the optimization of integral cost 
functions in dynamic and uncertain settings. Like many of 
the aforementioned methods, DOC seeks to extend opti-
mal control theory to new problem formulations that are 
not restricted to systems described by ODEs. In particular, 
DOC addresses the optimization of restriction operators 
that capture the macroscopic performance of a multiscale 
dynamical system by means of a reduced-order represen-
tation of the agents’ state that is governed by PDEs. The 
DOC methods reviewed in this article focus on the opti-
mal control of time-varying PDFs subject to a parabolic 
PDE known as the advection-diffusion equation, which 
can be obtained from (5) by considering multivariable state 
and control and vector-valued operators { }N $  and { } .B $  
Unlike existing methods for the control of parabolic PDEs, 
DOC considers multiscale systems in which agents have 
microscopic control inputs and dynamics that influence 
the advection and diffusion terms in (5), rather than opti-
mizing the macroscopic state and control, X  and .U  As a 
result, DOC can be used to obtain agent control laws that 
optimize the macroscopic performance subject to the 
microscopic agent dynamics and constraints, as shown in 
the following sections.

Distributed Optimal Control Problem
Consider the problem of controlling a group or team of N  
collaborative dynamical systems, referred to as agents. 
Assume every agent can be described by a small system of 
SDEs in the form

	 ( ) [ ( ), ( ), ] ( ), ( ) ,x Gwf x u x xt t t t t Ti i i i i i0 0= + =o � (6)

where x RXi
n! 1  and u RUi

m! 1  denote the micro-
scopic agent state and control, respectively, X  denotes the 
microscopic state space, U  is the space of admissible 
microscopic control inputs, and xi0  is the initial conditions. 
Random parameter variations and disturbance inputs are 
modeled by an additive Gaussian disturbance vector 
w Ri

s!  and the constant matrix .G Rs s! #

It is assumed that the agents cooperate toward one or 
more common objectives by virtue of the microscopic con-
trol such that, at large spatial and temporal scales, their 
performance over a time interval ( , ]T Tf0  can be expressed 
as an integral cost function of ui  and a macroscopic state 
variable ( ) ( , )xX t p ti=

	 [ ( , )] [ ( , ), ( ), ] ,x x u xJ p T p t t t d dtLi f i i i
T

T

X

f

0
z= + ## � (7)

where :p R RX "#  is a restriction operator [30]. Based on 
the literature on swarm intelligence, MAS, and sensor net-
works, in this article the restriction operator is chosen to be 
a time-varying PDF such that, at any time ,t  the probability 
that the agent state xi  is in a subset B X1  is

	 ( ) ( , ) ,x x xP B p t di
B

i i! = # � (8)



106  IEEE CONTROL SYSTEMS MAGAZINE »  april 2016

where p  is a nonnegative function that satisfies the normal-
ization property

	 ( , ) ,x xp t d 1i i
X

=# � (9)

and ( , )xNp ti  is the density of agents in .X
Then, assuming ( )x t Xi !  for all t  and all ,i  the macro-

scopic dynamics of the multiscale system can be derived 
from the continuity equation as follows. From the detailed 
equation (6), the agent PDF p  can be viewed as a conserved 
quantity advected by a known velocity field ( )v ti =  

[ ( ), ( ), ]f x ut t ti i  and diffused by the additive Gaussian noise 
Gwi  [31]. From the continuity equation and Gauss’s theo-
rem, the time-rate of change of p  can be defined as the sum 
of the negative divergence of the advection vector ( )vp i  and 
the divergence of diffusion vector ( )GG pTd  [32]. Then, the 
evolution of the agent PDF is governed by the advection-
diffusion equation

	
o

[ ( , ) ( )] [( ) ( , )]

[ ( , ) ( , , )] ( , ),

x v GG x

x f x u x
t
p

p t t p t

p t t p t

i i
T

i

i i i i
2

$ $

$

2

2
d d d

d d

= - +

= - +

�
(10)

which is a parabolic PDE in the form of (5), where o  is the 
diffusion coefficient, the gradient d  denotes a row vector of 
partial derivatives with respect to the elements of ,xi  and ( )$  
denotes the dot product.

Because the agent initial conditions are typically given, 
the initial agent distribution is a known PDF, ( ),xp i0  and 
the macroscopic evolution equation (10) is subject to the ini-
tial and boundary conditions

	 ( , ) ( ),x xp T pi i0 0= � (11)

	 [ ( , )] , ( , ],x np t t T T0i f0$d !=t � (12)

where nt  is a unit vector normal to the state-space bound-
ary .X2  The zero-flux condition (12) prevents the agents 
from entering or leaving the state-space ,X  such that the 
continuity equation assumptions are satisfied. Addition-
ally, p  must obey the normalization condition (9) and the 
state constraint

	 ( , ) , ( , ] .andx xp t t T T0 Xi i f0! != Y � (13)

Thus, the DOC problem consists of finding the optimal 
agent distribution p)  and microscopic controls ui

)  that min-
imize the macroscopic cost J  over the time interval ( , ],T Tf0  
subject to the parabolic PDE (10), the normalization condi-
tion (9), the initial and boundary conditions (11)–(12), and 
the state constraint (13).

Distributed Optimal Control Solution
The solution to the DOC problem can be obtained either via 
direct methods that discretize the DOC equations (9)–(13) 
with respect to space and time or via indirect methods that 
solve the optimality conditions numerically for the optimal 
agent PDF. Similarly to traditional feedback control, the 

optimality conditions are derived by assuming that the 
agent microscopic control law is a function of the state, 
such as [ ( ), ] .u c p t ti =  Assume for simplicity that the 
random inputs wi  and the diffusion term in (10) are both 
zero. Then, the advection-diffusion equation (10) reduces to 
the advection equation, and from the distributive property 
of the dot product and by a change of sign, it  can be rewrit-
ten as the time-varying equality constraint

	 ( ) ( ) ,f f
t
p

p p 0$ $
2

2
d d+ + = � (14)

where function arguments are omitted for brevity.
Because (14) is a dynamic constraint that must be satis-

fied at all times, a time-varying Lagrange multiplier 
( , )x tim m=  is used to adjoin the equality constraint (14) to 

the integral cost (7). Then, introducing the Hamiltonian

	 [( ) ( )] [ , , , ],f f up p p tLH H i$ $d d/ m m+ + = � (15)

the DOC necessary conditions for optimality can be derived 
from the fundamental theorem of calculus of variations 
[33] such that the adjoint equation,

	 ( ),f
p p

LH $
2
2

2
2

dm m= = +o � (16)

and the optimality condition,

	 ( ) ( ) ,
u u u

f
u

fp p0 LH
i i i i

$
2
2

2
2

d
2
2

2
2 dm= = + +; E � (17)

are to be satisfied for ,T t Tf0 # #  subject to the terminal 
condition

	 ( , ) .x xT d
pi f i

t TX
f

2

2
m

z
= -

=

# � (18)

A detailed proof of the above optimality conditions can be 
found in [19]. The optimality conditions for the DOC prob-
lem with nonzero random inputs can be found in [20].

The optimal agent distribution p)  is one that satisfies 
(16)–(18) along with the normalization condition (9), the ini-
tial and boundary conditions (11)–(12), and the state con-
straint (13). When all of these conditions are satisfied, the 
extremals can be tested using higher-order variations to 
verify that they lead to a minimum of the cost function. In 
particular, sufficient conditions for optimality can be 
obtained from the second-order derivatives of the Hamilto-
nian (15) with respect to ,ui  or a Hessian matrix that is pos-
itive definite for a convex Hamiltonian.

Numerical Solution
The DOC optimality conditions (16)–(18) consist of a set of 
parabolic PDEs for which analytical solutions are presently 
unknown. Therefore, indirect numerical methods of solu-
tion are needed to solve the optimality conditions numeri-
cally for the optimal agent PDF ,p)  which can then be used 
to design the agent feedback control law [ ( ), ],u c p t ti = )  as 
shown in the next section. One indirect DOC method was 
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recently developed in [20] based on the generalized reduced 
gradient (GRG) method. The GRG method belongs to the 
class of nested analysis and design numerical methods for 
solving PDE-constrained optimization problems [34].

The GRG DOC method presented in [20] relies on itera-
tively solving the forward (14), adjoint (16), and optimality 
criterion (17) as a PDE-constrained minimization problem. 
Inspired by indirect methods for classical optimal control 
[23], in the GRG DOC method the microscopic control is 
parameterized as the sum of linearly independent Fourier 
basis functions and then used to obtain approximations of 
the costate and macroscopic state from the solution of the 
parabolic optimality conditions. Subsequently, holding the 
costate and macroscopic-state approximations fixed, the 
microscopic control input approximation is updated by a 
gradient-based algorithm that minimizes the augmented 
Lagrangian function and, ultimately, satisfies the third and 
final optimality condition (17).

The adjoint and forward equations are two coupled par-
abolic PDEs that can be solved efficiently using a modified 
Galerkin method, referred to as CINT [35], which is chosen 
for its nondissipative property [36], [37]. In CINT, the PDE 
solution is approximated by a linear combination of poly-
nomial basis functions used to satisfy the PDE operator 
and Gaussian or radial basis functions used to enforce the 
boundary conditions at each grid point [35]. Given a con-
trol-law parameterization, the forward equation becomes a 
parabolic PDE with Neumann boundary conditions that 
can be solved numerically to obtain a macroscopic state 
approximation. Once an approximate solution is obtained 
from the forward equation, the adjoint equation becomes a 
parabolic PDE in m  with Dirichlet boundary conditions, 
and a numerical solution for m  can be obtained by a super-
position of polynomial basis and radial basis functions [20]. 
The new and improved control input approximation is then 
held fixed and used to obtain new CINT approximations 
for p  and .m  This iterative process is repeated until all three 
optimality conditions are satisfied within a user-specified 
tolerance, at which point the algorithm has converged to 
the optimal agent distribution .p)

As in classical optimal control, direct DOC methods are 
typically easier to implement than indirect methods. A 
direct NLP method of solution is reviewed here and ana-
lyzed in detail in [18]. The agent PDF p  is a conserved quan-
tity that satisfies the Hamilton equations [18]. As a result, 
the DOC problem can be discretized using a conservative 
finite-volume (FV) numerical scheme for representing and 
evaluating PDEs in algebraic form. This method does not 
incur dissipative errors associated with coarse-grained 
state discretization, a method that may require reduction 
in computation [38]. Using the FV approximation, the con-
tinuous DOC problem is discretized about a finite set of 
collocation points and then transcribes into a finite-dimen-
sional NLP that can be solved using an efficient mathemat-
ical programming algorithm, such as SQP.

To discretize the DOC problem, the agent PDF p  must 
be parameterized over the solution domain .X  As a simple 
example, a finite Gaussian-mixture model is chosen here to 
provide this parametric approximation as a superposition 
of z  components with Gaussian PDFs, denoted by , , ,f fz1 f  
and corresponding mixing proportions or weights, denoted 
by , ..., .w wz1  The n-dimensional multivariate Gaussian PDF

	 ( , )
( ) | |

xf t e
2

1
/ /

[ ( / )( ) ( )]x x
j i n

j
2 1 2

1 2 i j
T

j i j
1

r R
= n nR- - -

-

� (19)

is referred to as the component density of the mixture and is 
characterized by a time-varying mean vector Rj

n!n  and a 
time-varying covariance matrix Rj

n n!R #  with , ,j z1 f=  
[39]. Assume that at any ( , ]t T Tf0!  the optimal agent distri-
bution can be represented as

	 ( , ) ( ) ( , ),x xp t w t f ti j
j

z

j i
1

=
=

/ � (20)

where w0 1j# #  for all , ,j w 1jj

z

1 =
=
/  and z  is fixed and 

chosen by the user. Then, an optimal (time-varying) agent 
distribution p)  can be obtained by determining the opti-
mal trajectories of the mixture model parameters from the 
DOC problem. An example of time-varying distribution 

Figure 1  An example of a probability density function (PDF) mod-
eled by a six-component Gaussian mixture. (a) An example of a 
PDF plotted at time t1  and (b) an example of PDF plotted at time ,t2  
for a state vector .x x x T
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described by a three-component Gaussian mixture with a 
two-dimensional state vector [ ]x x x T

1 2=  is shown in 
Figure 1 at two moments in time t1  and ,t2  where, in this 
case, ,z 6=  and the mixture centers , ,1 6fn n  and weights 

, ...,w w1 6  all change over time.
The mixture model parameters to be optimized over 

time are the weights ,wj  the elements of ,jn  and the vari-
ances and covariances in ,jR  with , , .j z1 f=  In addition to 
satisfying the DOC constraints and optimality conditions, 
the mixture model parameters must be determined such 
that the component densities , ,f fz1 f  are nonnegative and 
obey the normalization condition for all ( , ] .t T Tf0!  This is 
accomplished by discretizing the continuous DOC prob-
lem in state space and time, about a finite set of collocation 
points in ( , ] .T TX f0#  Let tD  denote a constant discretiza-
tion time interval and k  denote the discrete time index, 
such that ( )/ ,t T T Kf 0D = -  and thus ,t k tk D=  for 

, , .k K0 f=  It is assumed that the microscopic control 
inputs, ,ui  with , , ,i N1 f=  are piecewise constant during 
every time interval, and that the agent distribution at time 
tk  can be represented by

	
( , ) ( ) ( , )

( ) | |
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x xp p t w t f t

w e
2

1
/ /

[ ( / )( ) ( )]x x

k i k j
j

z

k j k

jk
j

z

n
jk

1

1
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(21)

The set of weights { }wjk  and the elements of jkn  and ,jkR  for 
all , ,j k  are grouped into a vector |  that represents the tra-
jectories of the mixture model parameters in discrete time.

The FV approach partitions the state-space X  into FVs 
defined by a constant discretization interval x Rn!D  that 
are each centered about a collocation point ,x RXl

n! 1  
with , ...,l L1=  [38]. Let p ,l k  and u ,l k  denote the finite-differ-
ence approximations of ( , )xp tl k  and [ ( , )],c xp tl k  respectively. 
Then, the finite-difference approximation of the advection 
equation is obtained by applying the divergence theorem 
to (14) for every FV such that ,p p tk k k1 tD= ++  where

	 [ ( , , )] ,f u np p t dS, ,k
S

k l k l k k $_t - t# � (22)

and S  and nt  denote the FV boundary and unit normal, 
respectively.

Now, letting x( )jD  denote the jth element of ,xD  the dis-
cretized DOC problem can be written as the finite-dimen-
sional NLP
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where ( )p, ,l K l Kz z=  is the terminal constraint. The solution 
|)  of the above NLP can be obtained using an SQP algo-

rithm that solves the KKT optimality conditions by repre-
senting (23) as a sequence of unconstrained quadratic 
programming subproblems [40]. The reader is referred to 
[18] for a detailed description and analysis of the above 
direct DOC method, including the computational complex-
ity analysis and comparison with classical direct optimal 
control methods.

Distributed Optimal Control Feedback Control Law
Although the optimal agent control laws are obtained 
together with the optimal agent PDF, it is often more useful 
in practice to separate the planning and control designs 
such that state measurements can be fed back and accounted 
for by the agent while attempting to realize or “track” the 
optimal time-varying PDF .p)  By this approach, the actual 
agent PDF can be estimated and considered by the feed-
back control law, and the feedback control can be designed 
to achieve additional local constraints or account for com-
munication constraints. Various techniques, including Vor-
onoi diagrams, Delaunay triangulations, and potential 
field methods, have been proposed in the literature to 
design agent control laws that achieve a desired PDF evolu-
tion over time [2], [5], [14]. Because in DOC the optimal PDF 
is computed subject to the agent dynamics (6), the agents 
are guaranteed to be able to follow p)  over the time interval 
( , ] .T Tf0  The agent control law can also be designed to pro-
vide additional guarantees, such as closed-loop stability 
and mutual collision avoidance, accounting for communi-
cation protocols for exchanging state information.

In this tutorial, the feedback control law design is illus-
trated by means of a potential field method combined with 
a decentralized kernel density estimation algorithm that 
requires the network of N  agents to be connected at any 
time ( , ] .t T Tf0!  Although p)  can be determined offline by 
solving the optimality conditions in the section “Numeri-
cal Solution” via centralized or decentralized optimization 
algorithms, once the agents are deployed in an uncertain 
environment, their individual microscopic state (or output) 
measurements must be considered to ensure that they 
follow p)  over time. Thus, to track ,p)  the microscopic feed-
back control law [ ]c $  must be a function of the deviations 
between p)  and the actual agent PDF obtained from the 
microscopic state ,xi  with , , .i N1 f=  Assume for simplic-
ity that the microscopic state xi  is fully observable for all ,i  
and let ( )x tit  denote its estimated value at time .t  Then, esti-
mating the actual agent PDF at time t  requires N  observa-
tions ( ), , ( ) .x xt tN1 ft t

In large systems of agents, it is unrealistic to assume that 
each agent can communicate and acquire the state estimate 
of all other ( )N 1-  agents at all times. To implement the 
DOC approach in a decentralized network, the actual agent 
density must be approximated locally by the ith agent, 
without requiring direct communication with all other 
agents in the network. This can be achieved through a 
decentralized adaptation of the nonparametric technique 
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known as kernel density estimation (KDE). In KDE, each 
node of a decentralized network repeatedly exchanges data 
with its neighbors through information spreading and then 
performs a local KDE calculation. Through this process, 
each local estimate separately converges asymptotically to 
the distribution that can be obtained using the centralized 
KDE method. Other decentralized techniques have been 
presented for estimating a distribution from a data set 
using distributed expectation maximization (EM) algo-
rithms. While other EM techniques may perform poorly 
with small data sets, remain trapped in local maxima, or 
display sensitivity to initial parameter choices, the distrib-
uted KDE approach described in this section was found to 
not suffer from any of these limitations.

KDE is a well-known nonparametric approach for esti-
mating a PDF from a set of independent and identically dis-
tributed (iid) data samples. Although in DOC the agents 
are not independent, their state values can be assumed to 
be iid for the purpose of estimating their instantaneous 
PDF without significant loss of accuracy. Given the data set 
{ ( ): , ( , ], , ..., },x xt t T T i N1Ri i

n
f0! ! =t t  assumed drawn from 

an unknown PDF, ( , ),xp ti  the kernel density estimation 
takes the form

	 ( , ) [ ( )], ,x K x x xp t t RHi i
i

N

i
n

1
i !c= -

=

tt / � (24)

where , , N1 fc c  are the weighting coefficients that satisfy 
the condition 1ii

N

1 c ==
/  [41]. The ith kernel centered at 

( )x ti  is defined as

	 | | { [ ( )]},K H K H x x t/ /
H i i i

1 2 1 2
i = -- - t � (25)

where the kernel function K  is a user-defined n-variate 
nonnegative symmetric real-valued function [42]. The 
bandwidth matrix H j  is a parameter that controls the 
smoothing of the KDE algorithm, and it must be positive 
definite and symmetric. With appropriate parameter 
choices, KDE has been shown to be an effective method for 
estimating the underlying PDF, often requiring a few sam-
ples to produce adequate results [42].

A decentralized KDE (DKDE) algorithm that does not 
require centralized processing and is asymptotically con-
sistent with the centralized version for fully connected net-
works was recently proposed in [43]. This DKDE algorithm 
uses an information-sharing protocol to incrementally 
exchange kernel information between agents with a 
bounded communication radius ,r  until a complete and 
accurate approximation of the global KDE is achieved by 
each agent in the network. It has been shown in [44] that, for 
a fully connected network, the connectivity structure will 
only affect the convergence speed and will not worsen the 
estimation accuracy. In DKDE, each agent maintains a local 
estimate of the agent PDF, governed by a stored kernel set, 

c{ , , , , ..., },S x H k N1, , ,i i k i k i k i1 2= =t  where x ,i kt  denotes the 
position of agent k  perceived by agent ,i  Ni  is the number 

of kernels stored by agent ,i  and H ,i k  and ,i kc  are the band-
width matrix and weighting coefficient of the kth kernel 
stored by agent .i  Initially, the kernel set of each agent only 
contains the kernel generated using its own position. Each 
agent i  also maintains a neighbor set, defined as agents 
located within a distance r  of .xi  Then, using an informa-
tion spreading protocol, the agent can choose to communi-
cate with a neighbor in the set at random and mutually 
compare kernel sets. When an agent sees a newer or previ-
ously unknown kernel, it saves the corresponding informa-
tion into its own stored kernel set. Then, a new neighbor is 
chosen at random, and the process is repeated over time.

The information exchanged by the agents should include 
their state estimates, kernel parameters, indices, and time 
stamps to enable overwriting of old data. For homogeneous 
networks, such as those considered in this tutorial, the 
bandwidth matrices H ,i k  and weighting parameters ,i kc  
may be defined to be consistent across the network, making 
their communication unnecessary and reducing communi-
cation requirements. For example, in the simplest case, the 
bandwidth matrix can be chosen as ,H Ic,i k 2=  where c  is a 
constant and I2  is the two-dimensional identity matrix, 
and /N1,i k ic =  for all i  and .k  Then, from a stored set of 
agent state estimates, each agent can generate the corre-
sponding kernels and combine them to obtain a local esti-
mate of the actual agent PDF. Consider the standard 
two-dimensional Gaussian kernel function

	 ( ) ( ) , ,x xK e2 R/ x x n1 1 2 T

!r= - - � (26)

which is consistent with the chosen parameterization of the 
optimal agent PDF. The kernels of agent i are

	 | | { [ ( )]},K H H x xK t,
/

,
/

H i k i k i
1 2 1 2

,i k = -- - t � (27)

and its estimate of the agent PDF is

	 ( , ) [ ( )] .x K x xp t t, Hi i i k i
k

N

1
,i k

i

c= -
=

tt / � (28)

Once agent i has performed its local density estimation, the 
feedback control law is computed from the optimal agent 
PDF p)  using a potential field approach.

Potential field methods are commonly used for obstacle 
avoidance by generating a virtual navigation function that 
“repels” the robot or vehicle away from obstacles and“pulls” 
it toward a desired state or configuration [45]. Stabilization 
and potential navigation methods for nonholonomic sys-
tems can also be obtained with some additional precau-
tions, such as the use of time-varying smooth control laws 
[46]–[48], discontinuous feedback control [49], and switched 
control systems [50], [51]. A potential field method for 
designing DOC feedback control laws that attract or pull 
the agents toward the optimal PDF p)  was recently pre-
sented in [19]. By this approach, since p)  represents the goal 
PDF of all N  agents, the event of an agent assuming a state 
value xit  downgrades the probability mass such that the 
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probability of another agent in the network assuming the 
same state value is decreased.

Thus, agent i must construct a feedback control law 
using its knowledge of p)  and the estimated agent distribu-
tion pit  obtained via DKDE as follows. Let the attractive 
potential of agent i be defined as

	 ( , ) ( , ) ( , ) ,x x xU t p t t p t t
2
1

att
i

i i i i
2_ d d+ - +)t6 @ � (29)

where td  is a time-shift parameter that allows the control 
law to look ahead in time to prevent agents from lagging 
behind. The estimate ( , )xp t ti i d+t  is computed by stepping 
the advection equation (14) forward in time by td  from the 
DKDE estimate ( , )xp ti it  in (28). An example of attractive 
potential and the corresponding optimal agent distribution 
is shown in Figure 2, where the agents shown by yellow 
circles and are navigating an environment populated with 
obstacles. Then, the potential navigation function for agent 
i can be generated as the sum of the attractive potential in 
(29) and a repulsive potential Urep

i  constructed to avoid 
mutual collisions or obstacles

	 ( , ) ( , ) ( , ),x x xU t w U t w U tatt repi i a
i

i r
i

i= + � (30)

where wa  and wr  are user-defined weighting coefficients.
A feedback control law that follows the navigation func-

tion (30) can be obtained from its gradient

	 [ ( , )] ,u v Q Ui c i i
Tdi= -t � (31)

where the minimum difference between the desired heading 
angle ( )UidH -  and the agents’ actual heading angle iit  is

	 ( ) { ( ) [ ( )]}sgn{ [ ( )] ( )},Q a a U a U ai i i i$ d di iH H= - - - -t t � (32)

where sgn( )$  is the sign function, ( )a $  is an angle wrapping 
function, and vc  is the agent speed.

The DOC concept is illustrated in Figure 3. As a first 
step, the microscopic agent states are mapped to a macro-
scopic description via the restriction operator ,p  defined 
based on the desired system performance or cost function. 
Subsequently, the optimal evolution of restriction operator 
p)  is determined with significant computational savings 
using a direct or indirect DOC numerical method. From ,p)  
microscopic agent control laws that meet the desired opti-
mal performance are obtained, for example using a poten-
tial field method.

Figure 2  A network of agents navigating an obstacle-populated 
environment (the obstacles are shown in black). (a) An optimal 
probability density function and (b) attractive potential for the net-
work of agents.
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Application Examples
Although in principle, it is ap-
plicable to other restriction op-
erators, the DOC approach is 
described in this tutorial using 
PDFs because they lend them-
selves to a broad range of appli-
cations involving networks or 
teams of collaborative agents, 
such as sensors, robots, or au-
tonomous vehicles. Also, be-
cause DOC optimizes a general 
functional of the macroscopic 
state and not the expectation 
like many distributed control 
methods  [3],  [11],  [16],  it  is  
applicable to a broad range of 
objectives that may include, for 
example, the use of information-
theoretic functions, as shown in 
the next section.

Very-Large-Scale Robotic Systems Path Planning
A common application of VLRS is to safely and efficiently 
navigate a complex environment while performing multi-
ple tasks, such as searching for a target or communicating 
with a central station. These environments may contain 
hazards to be avoided such as obstacles or water bodies, as 
well as a destination that the agents must reach with mini-
mum energy consumption. Other tasks may require forma-
tion maintenance during navigation, for example to provide 
coverage or maintain connectivity in the network of agents. 
This class of problems, commonly known as multiagent 
path planning, is known to be computationally very bur-
densome for large numbers of agents. In particular, it was 
recently shown that optimizing the trajectories of N  agents 
in an obstacle-populated environment is PSPACE-hard 
and, thus, is generally considered a computationally intrac-
table problem for large N  because it requires exponential 
deterministic time in the worse case [52].

This example considers a system of N  collaborative uni-
cycle robots traveling through an obstacle-populated com-
pact space ,RW 21  referred to as the workspace, and 
occupied by M  obstacles , , ,B BM1 f  where .B Wj 1  The 
dynamics of each agent are described by the nonlinear uni-
cycle model

	 , , ,cos sinx v y vi i i i i i i ii i i ~= = =o o o � (33)

where [ ]x x yi i i i
Ti=  is the microscopic state of agent ,i xi  

and yi  are the agent’s xy-coordinates, ii  is the heading 
angle, and , , .i N1 f=  The microscopic control vector is 

[ ] ,u vi i i
T~=  where vi  and i~  are the linear and angular 

velocities, respectively. Given an initial distribution ( ),xp0  
the agents must travel in W  to meet a goal distribution 

( ),xg  while avoiding obstacles, maintaining a triangular 

formation, and minimizing energy consumption. The goal 
distribution p0  and all M  obstacles are assumed fixed and 
known a priori.

Figure 4 shows both the microscopic and macroscopic 
view of the same network of unicycle robots controlled 
using an optimal PDF obtained via DOC, as they enter a 
narrow passage. A red agent is identified in both views, 
and its trajectory is plotted as a blue line for illustration. It 
can be seen that, at this stage in the simulation, two robots 
from the lower group of agents are about to join the denser 
group above, in this case to be able to navigate around the 
bottom obstacle.

The agent objective of reaching the goal distribution g 
can be formulated using the instantaneous Kullback–
Leibler (KL) divergence at time t

	 ( || ) ( , )
( )

( , )
,x

x
x

xlogD p g p t
g

p t
di

i

i
i2

X
= # � (34)

where, by definition, the support set of p  is contained by 
the support set of ,g  and the value ( / )log0 0 02  is replaced 
with zero for continuity [53]. Although the KL divergence is 
not a true distance function because it is not symmetric and 
does not obey the triangle inequality, it is a suitable objec-
tive function because its value increases when the differ-
ence between p and g increases, and vice versa. Also, the 
KL divergence of p and g is zero when the two distributions 
are equal.

The agent objective of avoiding collisions with known 
obstacles can be formulated by first generating a repulsive 
potential Urep  based on the obstacle geometries and loca-
tions in ,W  as shown in [45], and then minimizing the 
product .pUrep  Additional objectives, such as holding an 
equilateral triangular distribution pattern, can also be 

Figure 4  An example representation of robots as microscopic agents following an optimal macro-
scopic description.
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introduced by specifying higher-order moments of the dis-
tribution. For example, a triangular formation can be speci-
fied by imposing a constant distance ,a  specified by the 
user, between the centers of a Gaussian mixture with 
( )z 3=  components. The center of the jth component is the 
first moment or mean vector

	 ( ) ( , ) ,x x xt f t dj i j i i
W

n = # � (35)

thus, the desired formation can be maintained by minimiz-
ing the objective function

	 ( ) ( ) ( ) , , , , .S p t t a j l z1j l
j l

fn n= - - =
!

/ � (36)

Modeling the agent energy consumption as a quadratic 
function of the microscopic control, the DOC cost function 
to be minimized is

	
[ ( || ) ( )

] ,u Ru x

J w D p g w S p

w pU w d dtrep

d S
T

T

r e i
T

i i
W

f

0
= +

+ +^ h
#
# � (37)

where R  is a diagonal positive-definite matrix, and the 
scalar weights ,wd  ,wr  ,wS  and we  are chosen by the user 
based on the desired tradeoff between the four competing 
objectives.

As described in the section “Distributed Optimal Control 
Solution,” once an optimal agent distribution p)  is obtained 
from the DOC problem (33)–(39), the microscopic control 
laws are obtained using the gradient of the potential func-
tion, as shown in (31). In this example, the trajectories of 
N 300=  unicycle agents are simulated via DOC in a work-
space with one obstacle (Figure 5), with initial and goal dis-
tributions, p0  and ,g  plotted in Figure 5, over the time 
interval (0; 22] h. The initial microscopic states xi0  are 
obtained by sampling .p0  The cost function weights are 

,w 15d =  ,w 100q =  . ,w 0 15r =  and . ,w 1 5e =  and .z 3=  
Time is discretized in intervals of t 1D =  h, such that ,K 22=  
and the state space is discretized using X 900=  FVs. The 
optimal agent distribution and the microscopic state values 
obtained by implementing the microscopic control law in 
(31) are plotted in Figure 6 at four sample moments in time: 
(a)  t 0=  h, (b) t 8=  h, (c) t 15=  h, and  (d) t 21=  h. It can be 
seen that the agents move from an initial distribution that 
does not obey the desired formation [Figure 6(a)] to an equi-
lateral formation that also is able to avoid the obstacle and 
reach the goal distribution at the final time.

Control of Multiple Agent Distributions
Many distributed systems have different classes of agents 
that must interact to achieve collaborative objectives. The 
DOC methodology can be applied to such systems by rep-
resenting the distribution of each class of agents as a dis-
tinct PDF. This concept is illustrated here by considering a 
toy problem in which three classes of agents are to be con-
trolled subject to the same microscopic dynamics to match 
three final distributions defined by the color of a target 
image. In this example, the agents can be thought of as 
masses of color pigments that coordinate to form the 
desired distribution of pixels in the given image. Although 
the approach can be easily extended to classes with differ-
ent dynamic equations, for simplicity in this example all 
agents are modeled by single integrator dynamics with an 
additive Gaussian noise term

	 ( ) ( ) ( ),x u I wt t ti i i2v= +o � (38)

where the agent microscopic state is [ ] ,x x y Wi i i
T !=  

[ ]u u ux y
T=  is the control, w R2!  is a vector of iid Gauss-

ian random disturbances, and v  is a constant coefficient.
The performance of the system is represented in terms 

of three agent PDFs, ( , ),xp tR i  ( , ),xp tG i  and ( , ),xp tB i  corre-
sponding to three classes of agents denoted by red (R), 
green (G), and blue (B), respectively. Because the goal distri-
butions, denoted by ( ),xQR i  ( ),xQG i  and ( ),xQB i  occupy the 
same workspace ,W  the RGB color model is adopted to 
show the superposition of the three densities as one target 

Figure 5  Agent distributions for a workspace with one obstacle (solid 
black). (a) Initial agent distribution and (b) goal agent distribution.
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image in .W  The target image consists of m n#  pixels and 
is decomposed into its RGB color intensities, such that the 
intensity of each color is defined uniquely in .W  Let the 
goal distribution ( )xQI i  denote the intensity of color ,I C!  
where { , , }C R G B=  is the color index set. Because, in this 
case, the RGB color intensities will differ depending on the 
target image, the agent distributions will not technically be 
PDFs but rather conserved densities. To guarantee that the 
agent densities are conserved, the agent densities are 
defined such that ( , ) ( )x x x xp t d Q dI i i I i i

W W
=# #  for all , ,t I  

where typically ( ) .x xQ d 1I i
W

!#
The cost function to be minimized subject to the agent 

dynamics (38) represents the sum of the energy expendi-
tures and the errors between the final agent densities and 
the corresponding color intensity in the target image

	 [ ( , ) ( )] ,x x u R u xJ p T Q dt di
T

I i f I i
T

T
I i i

I C W

f

0
= - +

!

' 1/ # # � (39)

where the weight matrices RI  are chosen by the user. Then, 
given the initial RGB distribution in Figure 7(a), the agents 
must navigate to the target RGB image in Figure 7(b).

Because the agent dynamics in (38) are characterized by 
random disturbances, the DOC problem takes the form of 
(6)–(10) and, thus, it is solved using the GRG indirect DOC 
numerical method described in the section “Numerical 
Solution” and presented in [20]. By this approach, the three 
agent PDFs are optimized over time, and the final distribu-
tion obtained at time Tf  is shown in Figure 7(c). As another 
example, given an initial uniform RGB distribution analo-
gous to that in Figure 7(a) (but with different intensities) 

Figure 6  The optimal evolution of agent distribution and microscopic state (white circles) for N =  300 microscopic agents at four sample 
instants in time. (a) t =  0 (h), (b) t =8 (h), (c) t =  15 (h), and (d) t =  21 (h).
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This article describes a coarse-grained optimal control approach for 

multiscale dynamical systems, referred to as distributed optimal control.
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and the target image shown in Figure 8(a), the GRG DOC 
solution achieves the final RGB distribution shown in 
Figure 8(b), subject to the agent dynamics in (38). The PDFs 
evolutions and individual agents are omitted here for sim-
plicity, but it can be seen from Figures 7 and 8 that the con-
trol objective of matching the target images is well 
accomplished by the DOC method, while also minimizing 
energy. In these examples, the final agent distributions 
appear blurry because of the diffusion effect of the random 
disturbances .wi

Conclusions and Recommendations
This article provides an introduction to DOC methods for 
planning and control in multiscale dynamical systems. The 
DOC approach seeks to extend the capabilities of classical 
optimal control to multiscale dynamical systems of inter-
acting agents in which optimal state and control laws must 
be determined for each (microscopic) agent but the cost 
function depends on the state of all agents over time. DOC 
methods rely on a restriction operator, such as a time-vary-
ing PDF or its moments, to reduce the computation re-
quired by optimizing system dynamics over large temporal 
and/or spatial scales. Because the resulting closed-loop 

Figure 7  Agent distributions for a multiple-distribution distributed 
optimal control problem. (a) Initial agent distributions, (b) target 
red-green-blue image, and (c) final agent distributions.
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Figure 8  Images for a second multiple-distribution distributed 
optimal control problem. (a) Target red-green-blue image and (b) 
final agent distribution.
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dynamics can be shown to be a Hamiltonian system, the 
agent performance is not compromised by the discretiza-
tion carried out by direct DOC methods.

The agent performance can, however, be improved sub-
stantially by DOC methods that afford a general form of 
the PDF. By constraining the structure of the PDF, for 
example by parameterizing the PDF using a relatively 
small number of Gaussian mixture components, the com-
putation required is reduced at the expense of optimality. 
Furthermore, a PDF operator may not be well suited to 
problems where it is important to impose highly accurate 
hard constraints on the PDF evolution, such as the bound-
aries in the petals and colors of Figure 7(b). Once the opti-
mal PDF is determined, the agent behavior obtained by the 
proposed feedback control laws is found to be robust. 
Because the control law of each agent is based on the opti-
mal PDF, it does not require simulating the advection equa-
tion and is computationally inexpensive. However, a 
control design different from the one reviewed in this arti-
cle may be needed when agents must meet local perfor-
mance objectives in addition to the system-level objectives 
expressed by the DOC cost function.

To date, DOC methods have been developed and dem-
onstrated for trajectory optimization and control in MAS 
comprised of many dynamical systems with decoupled 
dynamics but mutual objectives. Future research will 
address multiscale systems with coupled agent dynamics 
as well as new restriction operators, such as maximum like-
lihood density estimators. To implement the DOC methods 
reviewed in this tutorial, the multiscale dynamical system 
should be composed of distributions of agents with the 
same dynamic characteristics. While multiple distributions 
can be considered, as shown in the application of control of 
multiple agent distributions, completely heterogeneous 
systems may not be easily treated within the current DOC 
framework. Furthermore, for the DOC approach to be 
applicable in its present form, the agent performance must 
be expressed as a functional of the agent PDF. For systems 
that obey these simplifying assumptions, the DOC 
approach significantly reduces computational cost com-
pared to classical optimal control methods. As a result, 
DOC is found to be computationally feasible for large num-
bers of agents without decoupling agent behaviors or aver-
aging agent dynamics and, thus, without sacrificing 
optimality or completeness.

Acknowledgment
This research was funded by the ONR Code 321.

Author Information
Silvia Ferrari (ferrari@cornell.edu) is a professor of me-
chanical and aerospace engineering at Cornell University. 
Prior to that, she was professor of engineering and com-
puter science, and founder and director of the NSF Integra-
tive Graduate Education and Research Traineeship and Fel-
lowship program on Wireless Intelligent Sensor Networks 
at Duke University. She is the director of the Laboratory 
for Intelligent Systems and Controls, and her principal re-
search interests include robust adaptive control of aircraft, 
learning and approximate dynamic programming, and op-
timal control of mobile sensor networks. She received the 
B.S. degree from Embry-Riddle Aeronautical University 
and the M.A. and Ph.D. degrees from Princeton University. 
She is a Senior Member of the IEEE and a member of ASME, 
SPIE, and AIAA. She is the recipient of the ONR Young In-
vestigator award (2004), the NSF CAREER award (2005), 
and the Presidential Early Career Award for Scientists and 
Engineers (PECASE) award (2006). She can be contacted at 
214 Upson Hall, Cornell University, Ithaca, NY, 14853 USA.

Greg Foderaro received the B.S. degree in mechanical en-
gineering from Clemson University in 2009 and the Ph.D. de-
gree in mechanical engineering and materials science from 
Duke University in 2013. He is currently a staff engineer at 
Applied Research Associates, Inc. His research interests are 
in underwater sensor networks, robot path planning, multi-
scale dynamical systems, pursuit-evasion games, and spik-
ing neural networks. He is a Member of the IEEE.

Pingping Zhu received the B.S. degree in electronics and 
information engineering and the M.S. degree in the institute 
for pattern recognition and artificial intelligence from the 
Huazhong University of Science and Technology and the M.S. 
and Ph.D. degrees in electrical and computer engineering from 
the University of Florida. He is currently a research associate 
in the Department of Mechanical and Aerospace Engineer-
ing at Cornell University. Prior to that, he was a postdoctoral 
associate at the Department Of Mechanical Engineering and 
Material Science at Duke University. His research interests in-
clude approximate dynamic programming, optimal control of 
mobile sensor networks, signal processing, machine learning, 
and neural networks. He is a Member of the IEEE.

Thomas A. Wettergren received the B.S. degree in elec-
trical engineering and the Ph.D. degree  in applied math-
ematics, both from Rensselaer Polytechnic Institute. He 
joined the Naval Undersea Warfare Center in Newport in 
1995, where he has served as a research scientist in the tor-
pedo systems, sonar systems, and undersea combat systems 
departments. He currently serves as the U.S. Navy senior 

This tutorial provides an introductory overview of the DOC problem  

and compares the DOC to existing optimal control methods.



116  IEEE CONTROL SYSTEMS MAGAZINE »  april 2016

technologist for operational and information science, with 
a concurrent title as a senior research scientist at the center. 
He also is an adjunct professor of mechanical engineering 
at Pennsylvania State University. His personal research in-
terests are in planning and control of distributed systems, 
applied optimization, multiagent systems, and search theo-
ry. He is a Senior Member of the IEEE and a member of the 
Society for Industrial and Applied Mathematics.

REFERENCES
[1] J. Sanchirico and J. Wilen, “Optimal spatial management of renewable 
resources: Matching policy scope to ecosystem scale,” J. Environ. Econ. Man-
ag., vol. 50, no. 1, pp. 23–46, 2005.
[2] J. H. Reif and H. Wang, “Social potential fields: A distributed behav-
ioral control for autonomous robots,” Robot. Auton. Syst., vol. 27, no. 3, pp. 
171–194, 1999.
[3] T. Balch and R. C. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Trans. Robot. Automat., vol. 14, no. 6, pp. 926–939, 1998.
[4] J. P. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of forma-
tions of nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol. 17, 
no. 6, pp. 905–908, 2001.
[5] V. Gazi and K. M. Passino, “Stability analysis of social foraging swarms,” 
IEEE Trans. Syst., Man, Cybern., vol. 34, no. 1, pp. 539–557, 2004.
[6] L. P. F. Giulietti and M. Innocenti, “Autonomous formation flight,” IEEE 
Contr. Syst. Mag., vol. 20, no. 6, pp. 3444–3457, 2000.
[7] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coor-
dinated control of groups,” in Proc. Conf. Decision Control, 2001, pp. 2968–2973.
[8] A. Singh and J. P. Hespanha, “Moment closure techniques for stochastic 
models in population biology,” in Proc. IEEE American Control Conf., 2006, 
pp. 4730–4735.
[9] A. Singh and J. P. Hespanha, “A derivative matching approach to mo-
ment closure for the stochastic logistic model,” Bulletin Math. Biol., vol. 69, 
no. 6, pp. 1909–1925, 2007.
[10] S. Peng and Z. Wu, “Fully coupled forward-backward stochastic differ-
ential equations and applications to optimal control,” SIAM J. Contr. Optim., 
vol. 37, no. 3, p. 825–843, 1999.
[11] S. T. Li and J.-F. Zhang, “Asymptotically optimal decentralized control 
for large population stochastic multiagent systems,” IEEE Trans. Automat. 
Contr., vol. 53, no. 7, pp. 1643–1660, 2008.
[12] S. Thrun, M. Bennewitz, and W. Burgard, “Finding and optimizing 
solvable priority schemes for decoupled path planning techniques for 
teams of mobile robots,” Robot. Auton. Syst., vol. 41, no. 2, pp. 89–99, 2002.
[13] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for mul-
tiple robots having independent goals,” IEEE Trans. Robot. Automat., vol. 14, 
no. 6, pp. 912–925, 1998.
[14] C. C. Cheah, S. P. Hou, and J. J. E. Slotine, “Region-based shaped control 
for a swarm of robots,” Automatica, vol. 45, no. 10, pp. 2406–2411, 2009.
[15] S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “A cooperative homicidal 
chauffeur game,” Automatica, vol. 45, pp. 1771–1777, July 2009.
[16] M. Huang, P. E. Caines, and R. P. Malhame, “The NCE (mean field) 
principle with locality dependent cost interactions,” IEEE Trans. Automat. 
Contr., vol. 55, no. 12, pp. 2799–2805, 2010.
[17] M. Huang, R. P. Malhame, and P. E. Caines, “Large population stochastic 
dynamic games: Closed-loop Mckean-Vlasov systems and the Nash certainty 
equivalence principle,” Commun. Inform. Syst., vol. 6, no. 3, pp. 221–252, 2006.
[18] G. Foderaro, S. Ferrari, and T. A. Wettergren, “Distributed optimal control 
of sensor networks for dynamic track coverage,” submitted for publication. 
[19] G. Foderaro, S. Ferrari, and T. Wettergren, “Distributed optimal con-
trol for multi-agent trajectory optimization,” Automatica, vol. 50, no. 1, pp. 
149–154, 2013.
[20] K. Rudd, G. Foderaro, and S. Ferrari, “A generalized reduced gradient 
method for the optimal control of mobile robotic networks,” submitted for 
publication. 
[21] R. F. Stengel, Optimal Control and Estimation. New York: Dover Publica-
tions, Inc., 1986.
[22] M. Athans and P. Falb, Optimal Control. New York: McGraw-Hill, 1966.
[23] J. Betts, “Survey of numerical methods for trajectory optimization,” J. 
Guidance, Contr., Dyn., vol. 21, no. 2, pp. 193–207, 1998.
[24] P. Gill, W. Murray, and M. Wright, Practical Optimization. Cambridge, 
MA: Academic, 1981.

[25] (2004). Mathworks, Matlab Optimization Toolbox. [Online]. Available: 
http://www.mathworks.com
[26] G. Huntington and A. Rao, “Optimal reconfiguration of spacecraft for-
mations using a Gauss pseudospectral method,” J. Guidance, Contr., Dyn., 
vol. 31, no. 3, pp. 689–698, 2007.
[27] P. Williams, “A comparison of differentiation and integration based 
direct transcription methods,” in Proc. AAS/AIAA Spaceflight Mechanics 
Meeting, Copper Mountain, CO, Jan. 2005.
[28] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using 
nonlinear programming and collocation,” J. Guidance, Contr. Dyn., vol. 10, 
no. 4, pp. 338–342, 1987.
[29] F. TrÖltzsch, Optimal Control of Partial Differential Equations: Theory, 
Methods, and Applications (Graduate Studies in Mathematics, vol. 112). Provi-
dence, RI: Amer. Math. Soc., 2010. 
[30] I. Kevrekidis, C. Gear, J. Hyman, P. Kevrekidis, O. Runborg, and C. 
Theodoropoulos, “Equation-free, coarse-grained multiscale computation: 
Enabling microscopic simulators to perform system-level analysis,” Com-
mun. Math. Sci., vol. 1, no. 4, pp. 715–762, 2003.
[31] J. P. Boyd, Chebyshev and Fourier Spectral Methods, II Ed. New York: Do-
ver, 2001.
[32] X. Mao, Stochastic Differential Equations and Applications. Chichester, 
U.K.: Horwood Publishing, 1997. 
[33] C. Fox, An Introduction to the Calculus of Variations. New York: Dover 
Publications, Inc., 1987.
[34] L. Biegler, Large-Scale PDE-Constrained Optimization, (series Lecture 
Notes in Computational Science and Engineering, no. 30). Berlin, Germany: 
Springer-Verlag, 2003.
[35] K. Rudd and S. Ferrari, “A constrained integration (CINT) approach 
to solving partial differential equations using artificial neural networks,” 
Neurocomputing, vol. 155, pp. 277–285, May 2015.
[36] M. Kaazempur-Mofrad and C. Ethier, “An efficient characteristic Galer-
kin scheme for the advection equation in 3-D,” Comput. Methods Appl. Mech. 
Eng., vol. 191, no. 46, pp. 5345–5363, 2002.
[37] T. K. Sengupta, S. B. Talla, and S. C. Pradhan, “Galerkin finite element 
methods for wave problems,” Sadhana, vol. 30, no. 5, pp. 611–623, 2005.
[38] J. C. Tannehille, D. A. Anderson, and R. H. Pletcher, Computational Fluid 
Mechanics and Heat Transfer. New York: Taylor and Francis, 1997.
[39] G. McLachlan, Finite Mixture Models. Hoboken, NJ: Wiley, 2000.
[40] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific, 
2007.
[41] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visual-
ization. Hoboken, NJ: Wiley, 1992.
[42] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visual-
ization. Hoboken, NJ: Wiley, 1992.
[43] Y. Hu, J.-G. Lou, H. Chen, and J. Li, “Distributed density estimation 
using non-parametric statistics,” in Proc. Int. Conf. Distributed Computing 
Systems, June 2007. p. 28.
[44] O. B. M. Jelasity and A. Montresor, “Gossip-based aggregation in large 
dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 3, pp. 219–252, 2005.
[45] J. C. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[46] C. Samson, “Time-varying feedback stabilization of car-like wheeled 
mobile robots,” Int. J. Robot. Res., vol. 12, no. 1, pp. 55–64, 1993.
[47] A. Astolfi, “On the stabilization of nonholonomic systems,” in Proc. 
IEEE Conf. Decision Control, 1994, pp. 3481–3486.
[48] K. D. Do, Z.-P. Jiang, and J. Pan, “A global output-feedback controller for 
simultaneous tracking and stabilization of unicycle-type mobile robots,” 
IEEE Trans. Robot. Automat., vol. 20, no. 3, pp. 589–594, June 2004.
[49] A. Bloch, M. Reyhanoglu, and N. McClamroch, “Control and stabiliza-
tion of nonholonomic dynamic systems,” IEEE Trans. Automat. Contr., vol. 
37, no. 11, pp. 1746–1757, Nov. 1992.
[50] K. Pathak and S. Agrawal, “An integrated path-planning and control 
approach for nonholonomic unicycles using switched local potentials,” 
IEEE Trans. Robot., vol. 21, no. 6, pp. 1201–1208, 2005.
[51] W. Lu, G. Zhang, and S. Ferrari, “An information potential approach 
to integrated sensor path planning and control,” IEEE Trans. Robot., vol. 30, 
no. 4, pp. 919–934, 2014.
[52] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of mo-
tion planning for multiple independent objects; PSPACE-hardness of the 
‘warehouseman’s problem’,” Int. J. Robot. Res., vol. 3, no. 4, pp. 76–88, 1984.
[53] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, 
NJ: Wiley, 1991.

�


