
NN-Poly: Approximating
common neural networks with
Taylor polynomials to imbue
dynamical system constraints

Frances Zhu1*, Dongheng Jing2, Frederick Leve3 and
Silvia Ferrari2

1Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI, United States,
2Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States,
3Air Force Office of Scientific Research, Arlington, VA, United States

Recent advances in deep learning have bolstered our ability to forecast the

evolution of dynamical systems, but common neural networks do not adhere to

physical laws, critical information that could lead to sounder state predictions.

This contribution addresses this concern by proposing a neural network to

polynomial (NN-Poly) approximation, a method that furnishes algorithmic

guarantees of adhering to physics while retaining state prediction accuracy.

To achieve these goals, this article shows how to represent a trained fully

connected perceptron, convolution, and recurrent neural networks of various

activation functions as Taylor polynomials of arbitrary order. This solution is not

only analytic in nature but also least squares optimal. The NN-Poly system

identification or state prediction method is evaluated against a single-layer

neural network and a polynomial trained on data generated by dynamic

systems. Across our test cases, the proposed method maintains minimal

root mean-squared state error, requires few parameters to form, and

enables model structure for verification and safety. Future work will

incorporate safety constraints into state predictions, with this new model

structure and test high-dimensional dynamical system data.

KEYWORDS

neural networks, safety, interpretability, polynomial, dynamic systems, prediction

1 Introduction

Neural networks have emerged as general-purpose regression models and

revolutionized fields such as computer vision and machine translation, where

occasional errors are less likely to jeopardize human lives. To extend deep neural

networks (NNs) to dynamic system applications of high consequence while retaining

predictive capabilities, neural networks should be verifiable and conform to physical laws.

The original dynamical system adheres to physical laws but the exact form of the

dynamical system’s transition model is not known. A neural network excels in

learning a representation of the transition model but this representation can disagree

OPEN ACCESS

EDITED BY

Marcello Romano,
Naval Postgraduate School,
United States

REVIEWED BY

Pitoyo Hartono,
Chukyo University, Japan
Muhammad Khan,
Atılım University, Turkey

*CORRESPONDENCE

Frances Zhu,
zhuf@hawaii.edu

SPECIALTY SECTION

This article was submitted to Space
Robotics,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 13 June 2022
ACCEPTED 05 August 2022
PUBLISHED 07 November 2022

CITATION

Zhu F, Jing D, Leve F and Ferrari S (2022),
NN-Poly: Approximating common
neural networks with Taylor
polynomials to imbue dynamical
system constraints.
Front. Robot. AI 9:968305.
doi: 10.3389/frobt.2022.968305

COPYRIGHT

© 2022 Zhu, Jing, Leve and Ferrari. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 07 November 2022
DOI 10.3389/frobt.2022.968305

https://www.frontiersin.org/articles/10.3389/frobt.2022.968305/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.968305/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.968305/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.968305/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.968305&domain=pdf&date_stamp=2022-11-07
mailto:zhuf@hawaii.edu
https://doi.org/10.3389/frobt.2022.968305
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.968305

with physical laws, even within the bounds of training as the

learned features are agnostic/uninformed of the physical laws but

particularly outside bounds of training due to lack of

generalization. Furthermore, measurement (input) uncertainty

or disturbance gives rise to a state prediction that is inaccurate;

garbage in—garbage out. For example, if a camera obscurant

leads to an incorrect state estimate (not propagating position)

while other sensors continue to propagate, a physically

uninformed model will incorporate anomalous sensor reading

in generating a physically infeasible state prediction.

Restructuring a neural network or transforming the NN to a

different abstraction could ensure that the model output adheres

to physical laws as the original system that generated the

data does.

An ideal, interpretable solution leverages the power of neural

networks and incorporates physics through 1) trust: safety

guarantees in the output prediction and algorithm behavior,

2) causality: deriving relationships between the input and the

output, and 3) information: analyzing the abstraction learned

from the neural network and inferring system characteristics

from the learned parameters and relationships (Lipton, 2018).

Trust, or safety, can come in the form of adhering to constraints

set by the user to mitigate the impact of a disturbance spike in the

input signal on themodel prediction. Added domain information

in the way of physical laws could counter undesirable behavior.

Furthermore, adding constraints has the added benefit that the

user imposing some user-defined information into the

prediction; that is, there is some component of that system

that the user can explain and guarantee in behavior. Causality

may be captured by tracing the contribution of an input to

output, for which causality in a set of linear equations is very

straightforward to correlate contribution from the coefficient

matrix in analysis, whereas nesting layers within a neural

network is less obvious in drawing input/output casual

relationships (saliency maps). Information can include the

number of parameters/terms in a model, the familiarity of

bases, and the existence of another abstraction: “Computing a

tractable function model from the original model can also be

viewed as a form of knowledge distillation from the verification

perspective, as the function model should be able to produce

comparable results or replicate the outputs of the target neural

network on specific inputs” (Huang et al., 2019).

This article’s contribution is to solve the system identification

or state prediction problem by constructing a mapping from an

NN function to a polynomial function from which users can

more easily infer behavior (information and causality) and

handle changes in constraints (trust). The proposed method

approximates a trained NN function of various common

architectures (fully connected perceptron, convolution, and

recurrent) into a system of linear differential equations in

polynomial basis space. As neural networks are universal

approximators, the derivation assumes that the general NN

structure approximates the system mapping well (Hornik

et al., 1989; Pinkus, 1999). The final form of the

representation used to approximate the NN is a set of matrix

equations with polynomial entries. Constraints or invariant

quantities derived from physical laws may then be applied to

offer safety and viability to the system dynamics. The polynomial

approximation of neural networks is a straightforward mapping,

executes in real-time, requires minimal data storage, and limits

overfitting by limiting the polynomial expression power. Both the

neural network and polynomial abstraction increase the

interpretability of the dynamic system that generated the data.

Linear models, the simplest polynomial, are a favored

abstraction over neural networks by scientists for their

familiarity and analytic traceability. A polynomial basis is

capable of expressing nonlinear relationships with a linear

model. Polynomials are more computationally tractable, which

enables verification (Sidrane et al., 2022). Their analytic

traceability enables theoretical guarantees, inference rules

(Dutta et al., 2019), and analysis (Lyapunov stability and

coefficient stability). In polynomial space, users may apply

safety criteria or domain knowledge in the context of

constraints, invariant physical quantities, input/output

relations, and continuity or bounded sensitivity properties

(Narasimhamurthy et al., 2019). The polynomial form appears

in many physical contexts (energy, heat transfer, and friction),

which may be applied to the approximation as domain

knowledge or safety constraints, and could inform scientists of

the underlying physical system characteristics.

There is value in obtaining both the universal (NN)

approximation and a polynomial representation. Polynomials

and NNs with polynomial activation functions are not universal

approximators like NNs with sigmoid or tanh activation

functions are (Hornik et al., 1989). A generic dataset

generated by a dynamic system does not guarantee a sum of

squares polynomial solution, which is why a neural network

universal approximation is necessary in capturing the transition

model from the dynamic data (Ahmadi and Parrilo, 2011). Deep

NNs train a non-convex optimization problem, where the

constraints do not usually make the solution more tractable as

the training protocol typically uses a stochastic gradient search in

the first place. Turning the mapping for the dynamics into a

polynomial imposes the dynamics as a constraint to be semi-

algebraic (i.e., p(x) > = 0 or p(x) = 0, including many other

polynomial constraints). Semi-algebraic optimization has new

powerful results (e.g., sum-of-squares and moment sequences)

that allow the highly non-convex optimization program to be

converted to an iterative set of semi-definite programs (SDPs)

that converge to the global minima. This article’s optimization

solution provides the initial mapping for the dynamics

represented as a polynomial constraint. Tools, like semi-

definite programs, make such optimization problems tractable.

The proposed method advances upon previous methods

(Ferrari et al., 2013; Ferrari and Stengel, 2005) by deriving a

polynomial abstraction of a trained neural network that is

Frontiers in Robotics and AI frontiersin.org02

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

capable of incorporating knowledge and constraints into state

prediction by solving the end-to-end polynomial function and

constraints simultaneously. Outputs, like a state prediction, can

be constrained to adhere to guarantees if the function is

polynomial form, whereas neural networks traditionally lack

that ability (Rudy et al., 2017; Lagaris et al., 1998; Psichogios

and Ungar, 1992). Recently, a class of neural networks ingrain

physics directly into the neural network structure, like PINNs

(Raissi et al., 2019; Wang et al., 2022), Lagrangian/Hamiltonian

NNs (Cranmer et al., 2020; Greydanus et al., 2019), neural ODEs

(Djeumou et al., 2022), and deep Markov models (Liu et al.,

2022). A difference in our proposed work lies in when the

imposition of physics occurs: physics-guided NNs during

training and NN-Poly post-training. Our work also differs

from strictly learning a polynomial directly from data as we

learn a polynomial from a neural network. Furthermore, the

polynomial that results from this approach does not have to

adhere to the properties of a Lyapunov function as is the case in

learning homogenous polynomial Lyapunov functions, in that

V(x) does not need to be strictly positive and _V(x) does not need
to be strictly negative, where V is traditionally a function of

energy (Ahmadi and Parrilo, 2011). While for some state

definitions and systems, this form may be the most

convenient form that is ultimately used, we do not impose

that form in our formulation. The constraint equations that

are used may not use energy and may use momentum or

distance.

The following sections detail the derivation to approximate a

neural network model by transforming the trained NN

parameters into coefficients of polynomial form. The

derivation consists of four general steps detailed in Sections 2–5:

• Section 2 derives a general Taylor series expansion for a

vector function in vector domain (i.e., tensor form) from a

trained NN model; higher than second-order derivatives

are tensor derivatives.

• Section 3 simplifies tensor derivatives and states to matrix

and vector form. An important contribution of this article

is unfolding the tensor derivatives into a matrix form and

the tensor states into a vector form, which results in matrix

manipulability and computation savings.

• Section 4 rewrites the general Taylor series expansion,

containing tensor derivatives into Taylor series

expansion with only matrix and vector form derivatives.

The Taylor series expansion with only matrix and vector

form derivatives is desirable because modern scientific

programming languages are optimized for vectorized

computations. The Taylor series expansion can be

presented as an expression in a polynomial form,

mapping inputs to outputs. Coefficients of each

polynomial entry are derived, and the subsequent

dynamic system that the NN approximates can be

interpreted.

• Section 5 extends the single-layer polynomial

approximation to a multi-layer network, resulting in a

polynomial that represents an arbitrarily deep network.

The remaining article sections give context as to how to apply

this methodology and show results for simulated dynamic

systems.

• Section 6 relates physical constraints for Newtonian

dynamics to semi-algebraic constraints that can be

applied to the output of the polynomial approximated

function.

• Section 7 demonstrates how to solve for state prediction

simultaneously with the proposed constraints.

• Section 8 analyzes the proposed NN-extracted polynomial

method under various cases. Results show high accuracy

and efficiency when dealing with test cases; we discuss how

to extend NN-Poly to various other cases.

2 Problem formulation: Taylor
expansion of a neural network

Representing the NN model as a Taylor polynomial

involves two steps. First, a Taylor expansion of vector

function f must be derived in state vector domain x. The
input to the NN model is the state vector at some time step, xk.
The output of the NN model is either the state vector at the

next time step, xk+1, or the derivative of the state vector, _xk.
The expansion includes various dimensions of tensors and

redundant multinomial cross terms. Next, the general

derivatives of a neural network are derived in tensor form.

The two efforts together produce the final polynomial

coefficients for the Taylor polynomial. To validate the

method and offer context for other methods, the last

section offers a comparison of model fidelity and

computation to other numerical system identification

methods.

Given a vector input x ∈ Rm×1 and output y ∈ Rn×1, a function

f maps the input state to the output state f(x): Rm×1 → Rn×1.

Assume the function f(·) is a smooth, continuous vector

function, where all derivatives with respect to x exist and are

smooth.

y � f x() (1)

Given the training pairs (x, y), a neural network predicts ŷNN

with a mapping fNN(W, b, x), given in Eq. 2 where the notation of

a hat (̂·) signifies a prediction of the variable. The learned

parameters are W and b in the neural network.

ŷNN � f NN W, b, x() (2)

A polynomial p(x) in the form of a Taylor expansion

approximates the neural network for which the order of the

Frontiers in Robotics and AI frontiersin.org03

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

polynomial d that approximates the NN is defined by the NN

structure (Rolnick and Tegmark, 2017). The polynomial output

ŷp is given in Eq. 3, where the expression consists of polynomial

coefficients \{a0, A
1, . . ., Ad\}.

ŷp ≔ p x() � a0 + A1 ⊙ x + 1
2!
A2 ⊙ x2⊗ +/ + 1

d!
Ad ⊙ xd⊗ (3)

The goal is to find coefficients a of a polynomial expression

that minimizes the error relative to the neural network model,

defined by the cost function, C, given in Eq. 4 where the

coefficients are the set a = {a0, A
1, . . ., Ad}.

Cp � argmin
a

‖fNN W, b, x() − p x, a, d()‖ (4)

The polynomial form is a terminal form of the Taylor

expansion, given in Eq. 5, where the kth partial derivative of

function f is given by zkf
zxk, analogously the Jacobian term, Jkf. The

polynomial terminates at order d, and the remaining higher order

terms are captured in R(x).

f x() � f 0() + zf
zx

⊙ x + z2f
zx2

⊙ x2⊗ +/ + R x()

� f 0() + J1f 0()x + 1
2!
J2f 0() ⊙ x2⊗ +/ + R x()

(5)
The outer product ⊗ is used in this manuscript to

exponentiate a vector, for which an exponentiated vector

equation example is given in Eq. 6 and the index notation in

Eq. 7, adopted from Granados (2015).

x3⊗ ≔ x ⊗ x ⊗ x (6)
x ⊗ x ⊗ x()ijk � xixjxk (7)

The inner product ⊙ is used in this manuscript to multiply

the function derivatives with the exponentiated states, for

which index notation is given in Eq. 8, adopted from

Granados (2015).

J2f ⊙ x2⊗ �∑
i

∑
j

J2ijkx
2⊗
ij (8)

The polynomial expression is a vectorial series defined with

Jacobian terms and exponentiated state vector terms in Eq. 9,

where the expansion is expressed in a summation over d + 1

Jacobian terms. For simplicity, the expansion is about the zero

state, assuming x0 = 0, which simplifies the lower dimension

terms. Note the equivalency of Eqs 3, 9.

p x() �∑d
k�0

Jkf x0()
k!

⊙ x − x0()k⊗

≔ ∑d
k�0

1
k!
Ak ⊙ x − x0()k⊗

(9)

Although Eq. 5 is elegant and may be able to derive a closed-

form expression for the original function, the subsequent derivative

terms incrementally increase in dimension, seen in Eq. 10.

f x() �
f1 x0()
f2 x0()

..

.

fn x0()

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

zf1

zx1

zf1

zx2
/

zf1

zxm

zf2

zx1

zf2

zx2
/

zf2

zxm

..

. ..
.

1 ..
.

zfn

zx1

zfn

zx2
/

zfn

zxm

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦
⊙

x1

x2

..

.

xm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1
2!

z2f1

zx2
1

z2f1

zx2zx1
/

z2f1

zxmzx1

z2f2

zx2
1

z2f2

zx2zx1
/

z2f2

zxmzx1

..

. ..
.

1 ..
.

z2fn

zx2
1

z2fn

zx2zx1
/

z2fn

zxmzx1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

, . . . ,

z2f1

zx1zxm

z2f1

zx2zxm
/

z2f1

zx2
m

z2f2

zx1zxm

z2f2

zx2zxm
/

z2f2

zx2
m

..

. ..
.

1 ..
.

z2fn

zx1zxm

z2fn

zx2zxm
/

z2fn

zx2
m

⎡⎢⎢⎣

⎤⎥⎥⎦

⎡⎢⎢⎣

⎤⎥⎥⎦

⊙

x2
1 x1x2 / x1xm

x2x1 x2
2 / x2xm

..

. ..
.

1 ..
.

xmx1 xmx2 / x2
m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+/ + R x()

.

(10)

Instead, we would like a set of linear equations that simply solves

for the polynomial coefficients with a single matrix operation, given

in Eq. 11. To transform the various tensors into a set of linear

equations, the derivative tensor terms must be unfolded and

compressed into matrices and vectors to achieve the desired

form, given in Eq. 11, described in the following sections.

f x() �

f1 x0() zf1

zx1
() /

zf1

zxm
() z2f1

zx2
1

() /
z2f1

zx1zxm
() /

z2f1

zx2
m

() / R1 xk⊗()()
..
.

fn x0() zfn

zx1
() /

zfn

zxm
() z2fn

zx2
1

() /
z2fn

zx1zxm
() /

z2fn

zx2
m

() / Rn xk⊗()()

⎡⎢⎢⎣

⎤⎥⎥⎦

1

x1

..

.

xm

1
2!
x2
1

..

.

2
2!
x1xm

..

.

1
2!
x2
m

..

.

1

⎡⎢⎢⎣

⎤⎥⎥⎦
(11)

3 Unfolding and compressing tensors
into matrices and vectors

The tensor equation that approximates the original

function may be collapsed into a set of linear equations,

consisting of a coefficient matrix and state vector, a useful

form for a linear least square solution or semi-algebraic

optimization. Exponentiated states of order higher than two

are in the form of tensors and contain redundant

multinomial terms as they are symmetric. By analogy, the

upper triangular part of a symmetric matrix contains all of

its unique values. To unfold and reshape the high

dimensional tensors to matrices and vectors, the tensor

indices of each higher dimension has a relationship to a

single index in the vector and the matrix. The derivation

may be intuited visually. The columns of the upper

Frontiers in Robotics and AI frontiersin.org04

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

triangular matrix are sequentially appended to a vector, seen

in Figure 1A. This process is extended to symmetric tensors,

Figure 1B, to yield the augmented state vector.

By grouping redundant multinomial cross terms together

into a coefficient vector, the input vector contains only the

unique states. The first step is gathering redundant state terms

in the same equation, highlighted (Eq. 12). The desired matrix

equation, (Eq. 11), of the tensor equation yields the same set of

linear equations, yet reduces the number of total state terms

and is in a more useful representation. The augmented state

vector in Eq. 11 contains scalar coefficients, which represent

the number of redundant terms in the multinomial expansion

of the state. These scalar coefficients are separated into a new

coefficient vector. Defining this new coefficient vector is

necessary to reform the exponentiated states into a state

vector of only unique states and in the process reveals the

reduction in computation by using only unique states. For

intuition, the unique multinomial state vector of third order is
~x⊗3, given in Eq. 13, where the addition of the tilde annotates

that the uniqueness operation has been performed on the

original state vector x⊗3. The corresponding multinomial

coefficient vector, a3, contains respective coefficients,

representing the combinatorial number of redundant

multinomial states, given in Eq. 14.

f (x) �

f1(x0) + (zf1

zx1
x1 + zf1

zx2
x2 +/ + zf1

zxm
xm) +/

+ 1
2!
(z2f1

zx2
1

x2
1 +

z2f1

zx2zx1
x2x1 +/ + z2f1

zxmzx1
xmx1)[+/

+ (z2f1

zx1zxm
x1xm + z2f1

zx2zxm
x2xm +/ + z2f1

zx2
m

x2
m) +/ + R1(xk⊗)

f2(x0) + zf2

zx1
(x1 + zf2

zx2
x2 +/ + (zf1

zxm
xm) +/

+ 1
2!
(z2f2

zx2
1

x2
1 +

z2f2

zx2zx1
x2x1 +/ + z2f2

zxmzx1
xmx1)[+/

+ z2f2

zx1zxm
x1xm(+ (z2f2

zx2zxm
x2xm +/ + z2f2

zx2
m

x2
m) +/ + R2(xk⊗)

..

.

fn(x0) + (zfn

zx1
x1 + zfn

zx2
x2 +/ + zfn

zxm
xm) +/

+ 1
2!
(z2fn

zx2
1

x2
1 +

z2fn

zx2zx1
x2x1 +/ + z2fn

zxmzx1
xmx1)[+/

+(z2fn

zx1zxm
x1xm + z2fn

zx2zxm
x2xm +/ + z2fn

zx2
m

x2
m) +/ + Rn(xk⊗)

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

(12)

~x⊗3 � x3
1 , x2

1x2 ,/ , x2
1xm, x1x

2
2 ,/ , x1x2xm,/ , x1x

2
m, x3

2 , x2
2x3 ,/ , x2

2xm, x2x
2
m,/ , x3

m[]
(13)

a3 � 1
3!

3
3
() 3

2, 1
() /

3
2, 1
() 3

1, 2
() /

3
1, 1, 1
() /

3
2, 1
() 3

3
() 3

2, 1
() /

3
2, 1
() 3

1, 2
() /

3
3
()[]

� 1
3!

1 3 / 3 3 / 6 / 3 1 3 / 3 3 / 1[]
(14)

This augmented state vector is the unique multinomial state

vector, ~x⊗d, which is ~x exponentiated to degree d in Eq. 15, where j is

the vector term index and i1, i2, . . ., id are the tensor dimension indices.

FIGURE 1
(A) Unfolding an upper triangular matrix into a vector. (B) Unfolding a tensor into a vector. (C) Reduction ratio between number of reductions
and number of full terms. The blue and orange arrows represent themovement of the reduction ratio curve at two extremes: blue as the state vector
dimension approaches infinity; orange as the state vector dimension approaches one.

Frontiers in Robotics and AI frontiersin.org05

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

~x⊗d j() � x⊗d i1, i2, . . . , id()
� xi1xi2/xid

where j � i1 + i2 i2 − 1()
2

+/ +∏d
k�1

id + k − 2
k

for i1 � 1: m,
for i2 � i1: m,
/ ,
for id−1 � id−2: m,
for id � id−1: m

(15)

nd �∏d
i�1

m + i − 1
i

(16)

This augmented state vector, ~x⊗d, is of size nd, given in

Eq. 16 and calculated with the multinomial

theorem (Hildebrand, 2009). Unfolding tensors is a non-

unique process, for which a different unfolding yields a

different vector of coefficients. These solution sets are

all minima for the same unfolding problem.

Supplementary Appendix Section S10.1 gives the

explicit description of augmented state vectors in

ascending degree and corresponding multinomial

coefficient vector.

The general solution for the multinomial coefficient

vector ad(j) is given in Eq. 17, where the operator (·) is

the binomial coefficient of choosing d states out of m total

number of states and ni is the number of individual xi states

in the multinomial state ~x⊗d(j) (Hildebrand, 2009). The size

of ad also follows (Eq. 16). The multinomial coefficient

vector index j in Eq. 17 aligns with the state j index in Eq.

17. Explicit coefficient definitions for ascending orders of
~x⊗d(j) are given in Table 8 in Supplementary Appendix

Section S10.1.

ad j() � 1
d!

d, n1, n2, , . . . , nm()

for n1� O x1() ∈ ~x⊗d j(), / , nm � O xm() ∈ ~x⊗d j() (17)

The general solution for the Jacobian matrix ~J
2
f(: , j) is

given in Eq. 18. The index j of the modified Jacobian ~J
d
f

mapping follows the index j of the multinomial

state vector ~x⊗d mapping with one additional rule:

the first dimension’s index i0 in the original

Jacobian tensor Jdf directly translates to the first

dimension’s index i0 in the modified Jacobian matrix ~J
d
f.

An example of the explicit definition of ~J
2
f(: , j) can be

found in Table 8 in Supplementary Appendix Section S10.1.

Note that for d ≤ m, i1 to id−m+1 does not increment

in index but stays at index 1 as dummy dimensions

for the multinomial state, coefficient, and Jacobian

derivations.

~J
d

f i0, j() � Jdf i0, i1, i2, . . . , id()
for j � i1 + i2 i2 − 1()

2
+/ +∏d

k�1

id + k − 2
k

for i0 � 1: n
for i1 � 1: m,
for i2 � i1: m,
/ ,
for id−1 � id−2: m,
for id � id−1: m

(18)

Compressing redundant state terms saves an immense amount

of computation, especially for the number of states in real-world

applications and for deriving approximations with more than two

derivatives. The general reduction ratio, r, between the number of

unique terms and the full expansion is given in Eq. 19.

r � 1 −∏d
i�1

m+i−1
i

md
(19)

The reduction can be seen to approach 100% for large states

and 0% for scalar domain, Figure 1C. The real reduction rate falls

somewhere beneath the m = ∞ bounding curve and the m = 1

origin. The minimum number of states and derivatives to yield a

significant computation reduction of 25% is already achieved at

m = 2 states and d = 2 derivatives. Table 6 in Supplementary

Appendix Section S10.1 illustrates how the reduction ratio scales

with the derivative order, explicitly calculating the corresponding

number of states for full state tensor expansion compared to the

unique state terms in the augmented state vector ~x⊗d. Motivated

by linear solutions and significant computational cost, a

framework was derived such that the tensor derivatives and

states in the Taylor expansion can be reshaped into a unique

multinomial matrix and vectors, respectively.

4 Tensor derivatives of a neural
network

This section derives different single-layer neural network’s

tensor derivatives Jdf that populate the Taylor series. The tensor

derivatives evaluated at the origin Jdf|x�0 are the coefficient tensors
Ad. This section’s derivation is the next step in the overall process

of approximating a single-layer neural network, with a polynomial

function. The derivative formulation covers a wide range of the

most popular networks, classified into network type and activation

function. Network layers contained in this section are feedforward,

convolution, and recurrent layers. Activation functions include

binary, max, linear, ReLU, softmax, sigmoid, tanh, and

probabilistic, referenced in Table 1.

The tensor derivatives that approximate the neural network

layer are dictated by the pairing of cell layer type and activation

Frontiers in Robotics and AI frontiersin.org06

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

function type; a feedforward layer with a ReLU activation has

different tensor derivatives than a feedforward layer with a

sigmoid activation. The following subsections vary the

relevant transformations σ(·) and calculates ascending orders

of different NN layer derivatives to then populate a Taylor

approximation in tensor form (Eq. 5), and then explicitly in

matrix form (Eq. 18). The layer types are illustrated in Figure 2.

4.1 Perceptron layer

A single-layer feedforward network with n number of

neurons in the layer is depicted in Figure 2A. The output

from a hidden layer yF is a transformation fF of the input x,
and a learned weight and bias matrix, W and b. The input and
output are in vector form, where x is of size Rm×1 and yF is of size
Rn×1. The vector equation is given in Eq. 20, where σ(·) is the
activation function.

yF � fF x() � σ W, b, x() (20)

The index equation is given in Eq. 21, where the order of

indices follows the dimension. The index, i, corresponds to a

value in input state x and the index, j, corresponds to a value in

output state yF.

yj � fj xi() � σ wji, bj, xi() (21)

For many activation functions, derivatives truncate in

finite order, such as binary, linear, and ReLU functions. The

coefficient tensors for these terminating derivatives are

trivial solutions as their Taylor series are equivalent to

their original function expressions. These derivations may

be found in Supplementary Appendix Section S10.2. For

continuously differentiable activation functions, like the

sigmoid, tanh, softmax, and probabilistic, the Taylor

approximation series is artificially truncated at a user-

defined order d (Eq. 22).

TABLE 1 Activation function type by ascending complexity with their associated vector and index expressions.

Activation function name Activation function vector
expression

Activation function index
expression

Binary
yj � 1, if∑m

i�1wjixi + bj ≥ 0
0, otherwise
{

Max y = max(Wx + b) yj = max(wjixi + bj) for i = 1, 2, . . ., m

Linear y = Wx + b yj � ∑m
i�1wjixi + bj

Softmax y � eWx+b
e1·(Wx+b) yj � e∑m

i�1wjixi+bj∑m

k�1e
∑m

i�1wkixi+bk

Probabilistic y � e−βi‖x−ci‖ yj � e−βi
������������∑m

i�1(xi − cij)2
√

FIGURE 2
Basis single layer types transforming input to output: (A) perceptron layer, (B) convolution layer, and (C) recurrent layer.

Frontiers in Robotics and AI frontiersin.org07

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

yj ≈ a0j +∑m
i�1

A1
jixi + 1

2!
∑m
i1�1
∑m
i2�1

A2
ji1 i2

x⊗2
i1i2

+/

+ 1
d!
∑m
i1�1

/∑m
id�1

Ad
ji1/id

x⊗d
i1/id

(22)

The higher order polynomial coefficient tensors are iteratively

derived with immediately previous polynomial coefficient tensors.

The general derivative relationships for each activation function are

proved by induction from lower order derivatives. The general

sigmoid derivative is given in Eq. 23 with the 0th to 2nd order

terms given in Eqs 88–90 in Supplementary Appendix as proof of

the iterative pattern.

Ad
ji1/id

� zAd−1
ji1/id−1
zσ

wjidσ bj() 1 − σ bj()() (23)

The tanh derivative is given by Eq. 24 with 0th to 2nd

derivatives in Eqs 91–93 in the Supplementary Appendix.

Ad
ji1/id

� zAd−1
ji1/id−1
zσ

wjid 1 − σ2 bj()() (24)

The softmax derivative is given by Eq. 25 with 0th to 1st

derivatives in Eqs 94, 95 in Supplementary Appendix.

Ad
ji1/id

� Ad−1
ji1/id−1wjid (25)

Probabilistic activation functions come in many

different forms of which the Gaussian or radial basis function

is the most popular function, given in Table 1. The polynomial

coefficients for this function are complicated expressions for

which two intermediate expressions simplify and reveal iterative

patterns more clearly in Eq. 26: αDt and sDt . Each polynomial

coefficient tensor is a sum nt terms composed of αDt and sDt ,

where t the increment of a subexpression andD is the term order.

The number of terms nt depends only on the term’s degree order

D, defined in Eq. 27.

Ad
ji1/id

�∑nt
t�1

αDt s
D
t (26)

nt � D + 1
2

⌈ ⌉ (27)

The most general terms, αDt and sDt , for any term and degree

definition are in Eqs 28, 29, with explicit definitions in Table 9 in

Supplementary Appendix Section S10.2 and 0th to 4th order

terms are explicitly given in Eqs 99–103 in Supplementary

Appendix.

αDt �∏t−1
k�1

2k − 1() −βj
‖cj‖()t−1

αD−t+1
1 (28)

sDt � ∏D−2 t−1()

l�1
∑D
k�l

βjcjik
‖cj‖

⎛⎝ ⎞⎠ (29)

4.2 Convolution layer

The convolution layer commonly uses two types of

activation functions, linear and max, to achieve filtering

and pooling. The derivatives of these activation functions

truncate either on the 0th or 1st order derivative. The

coefficient tensors when injected into the Taylor series

yield exact representations of the original activation

functions but offer standard indexing for matrix and

vector conversion. A single-layer convolution layer with n

filters of f spatial extent, s stride, and p zero padding is

depicted in Figure 2B. Like the perceptron layer, the output

from the hidden layer, Y, is a transformation of the input, X,

and a learned weight and bias tensor, W and b. Unlike the

perceptron layer, the input and output are typically in the

matrix or third order tensor form, where X is of size Rw1×h1×d1

and Y is of size Rw2×h2×d2 . The tensor equation is given in

Eq. 30.

Y � fC X() � σ W, b, X() (30)

The tensor equation with indices is given in Eq. 31. The

indices i, j, k for the output range from: i = 1, 2, . . ., w2, j = 1, 2,

. . ., h2, and k = 1, 2, . . ., d2. The indices l,m, n range from: l = 1, 2,

. . ., w1, m = 1, 2, . . ., h1, and n = 1, 2, . . ., d1.

Yijk � σ Wk
ij, bk, Xlmn() (31)

The linear activation function within a convolution layer is

often called a convolution filter and offers feature extraction of

input data. The convolution filter function utilizing the

convolution operator in matrix and index form is given in Eq.

32, where the definition of ~Xij is given in Eq. 33.

Yijk � Wk ⊛ ~Xij + bk (32)
~Xij � X s i − 1() − p + 1: s i − 1() − p + f, s j − 1() − p + 1: s j − 1() − p + f, 1: d1[]

(33)

The relationship between input and output sizes is defined by

the network hyperparameters, reiterated here: number of filters

n, height and width of the filter f, stride length s, and padding p,

given in Eq. 34.

w2 � w1 − f + 2p
s

+ 1, h2 � h1 − f + 2p
s

+ 1, d2 � n (34)

The hyperparameters n, f, s, p are user-defined for which a

common setting for the hyperparameters is: f = 3, s = 1 and p = 1.

The constraint p = (f − 1)/2 preserves input to output size. The

learned parameters W is of size Rf×f×n and b is of size Rn. The

output equation in strictly index form is given in Eq. 35.

Yijk �∑f
l�1
∑f
m�1
∑d1
n�1

Wk
lmnXl+s i−1()−p,m+s j−1()−p,n + bk (35)

Frontiers in Robotics and AI frontiersin.org08

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

The linear activation function is a continuously differentiable

function with a Taylor approximation series that truncates after

the 1st order term, given in Eq. 36.

Yijk � a0ijk +∑w1

l�1
∑h1
m�1
∑d1
n�1

A1
ijklmnXlmn (36)

The 0th and 1st order terms are given in Eqs 37, 38. A1
ijklmn is

a sparse six dimensional tensor that performs an equivalent

convolution operation with Wk. The Taylor approximation

yields an exact representation to the original function

expression despite the difference in operation representation.

a0ijk � fijk Xlmn � 0() � bk (37)
A1

ijklmn �
zfijk

zXlmn

∣∣∣∣∣∣∣
Xlmn�0

�
Wk

l+s 1−i()+p,m+s 1−j()+p,n, if 1 + s i − 1() + p≤ l≤f + s i − 1() + p

and 1 + s j − 1() + p≤m≤f + s j − 1() + p
0, otherwise

⎧⎪⎪⎨⎪⎪⎩
(38)

The maximum activation function within a convolution layer

is often called a pooling layer. A pooling layer typically follows a

filter layer, offering translation invariance in terms of

convolution filter output. The max function outputs the

maximum value of the input that falls within the kernel. The

matrix form is given in Eq. 39.

Yijk � max
i,j,k

X s i − 1() + 1: s i − 1() + f, s j − 1() + 1: s j − 1() + f, k[]()
(39)

As there are no distinct kernels and no padding, the only

hyperparameters are field size f and stride s for which the

relationship between input and output sizes is defined in Eq. 40.

w2 � w1 − f

s
+ 1, h2 � h1 − f

s
+ 1, d2 � d1 (40)

Common settings for the hyperparameters are f = 2 and s = 2.

The Taylor approximation follows the same form as Eq. 36,

which truncates after the 1st order term. The 0th and 1st order

terms are given in Eqs 41, 42. The Taylor approximation yields an

exact representation to the original function expression despite

the difference in operation representation.

a0ijk � fijk Xlmn � 0() � 0 (41)

A1
ijklmn � 1, if Xlmn � max ~Xijk()

0, otherwise
{ (42)

4.3 Recurrent layer

The structure of a single-layer with n number of recurrent

units in the layer is depicted in Figure 2C. The output from the

convolution hidden layer, ytC or equivalently st, is a transformation

of the current time step’s input, xt, the previous time step’s internal

state, st−1, and a learned weight and bias matrices,W,U, and b. The
input, internal state, and output are typically in vector form, where

xt is of size Rm×1 but st−1 and ytC are of size Rn×1. The weights are

typically in matrix form, whereW is of sizeRn×n,U is of sizeRn×m,

and b is of sizeRn×1. The vanilla recurrent unit vector relationship

is given in Eq. 43.

y � f st−1, xt() � σ W, st−1, U, xt, b() (43)

The index relationship is given in Eq. 44, where the order of

indices follows the dimension. The index i corresponds to a value in

the internal state st−1, the index k corresponds to a value in the input
state xt, and the index j corresponds to a value in the output state ytC.

yj � fj st−1i , xt
k() � σ wji, s

t−1
i , ujk, x

t
k, bj() (44)

The explicit vanilla RNN vector equation and index equation

are given in Eqs 45, 46, respectively.

y � σ Wst−1 + Uxt + b() (45)

yj � σ ∑
i

wjis
t−1
i +∑

k

ujkx
t
k + bj⎛⎝ ⎞⎠ (46)

The vanilla RNN vector equation can be reformed into a

feed-forward layer with analogous tensor and coefficient

derivations. The previous state st−1 and the current input xt

may be joined together into one input z, given in Eq. 47.

zt � st−1 xt[] (47)

The combined input z is of additive size R(n+m)×1 with

associated dimension index l. The combined weight matrix, V,

is given in Eq. 48 and is of size Rn×(n+m).

V � W U[] (48)

The reformed state prediction vector equation and index

equation are given in Eqs 49, 50.

ytC � σ Vzt + b() (49)

yj � σ ∑
l

vjlzl + bj⎛⎝ ⎞⎠ (50)

The similarity between the reformed equations of the

recurrent layer and feed-forward layer is apparent. To be

explicit, the modified Taylor series expansion about the

reformed state z is given in Eqs 51, 52.

f z() � f z0() + J1f z0()z + 1
2!
J2f z0() ⊗ z2⊗ +/ + Rn z() (51)

yj ≈ a0j + ∑n+m
l�1

A1
jlzl +

1
2!
∑n+m
l1�1
∑n+m
l2�1

A2
jl1 l2

z⊗2l1 l2 +/ + 1
d!
∑n+m
l1�1

/∑n+m
ld�1

Ad
jl1/ld

z⊗dl1/ld

(52)

Frontiers in Robotics and AI frontiersin.org09

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

The tensor and coefficient derivations can be found in

Supplementary Appendix Section S10.2] as the form of the

equations are identical but the input state, weight matrix, and

respective indices are directly analogous to the feedforward

derivation.

5 Multiple layer network
approximation

The output of the multi-layer network is an embedded Taylor

approximation of each individual layer. Given a network with k

layers, the final output y is a transformation of the kth

intermediate state zk. The output expression is given in Eq. 53.

y � f o zk()
� ak,0 + Ak,1zk + Ak,2zk,⊗2 +/ + Ak,dzk,⊗d

(53)

The last hidden layer prior to the output layer transforms

intermediate state zk−1 to zk, given in Eq. 54, repeated for all

intermediate states z for hidden layers 1 to k − 1. The input

layer transforms the data input x to the first intermediate

state z1, given in Eq. 55.

zk � f k zk−1()
� ak−1,0 + Ak−1,1zk−1 + Ak−1,2zk−1,⊗2 +/ + Ak−1,dzk−1,⊗d

(54)

z1 � f 1 x()
� ai,0 + Ai,1x + Ai,2x⊗2 +/ + Ai,dx⊗d

(55)

The mapping from the input to the output is a recursive

function embedding intermediate functions backward from the

final layer, given in Eq. 56.

y � f x() � f o f k /f 2 f 1 x()()/()() (56)

A verification of the multi-layer approximationmay be found

in Supplementary Appendix Section S10.4.

6 Physical constraints in the form of
semi-algebraic constraints

The development of new semi-algebraic optimization routines

motivate a polynomial representation of an unknown dynamical

system extracted fromNN. Since many physical vector fields are at

least piecewise smooth, we can use Taylor’s theorem to construct a

polynomial that uniformly approximates the underlying ground

truth arbitrarily tightly as the degree increases.

In the context of dynamical systems, physical laws provide

valuable context that may be applied to state prediction. A more

informed state prediction is found by combining the NN-derived

polynomial state equations and user-defined semi-algebraic

constraints. This is mainly enticing when learning and

updating the new polynomial expression on-the-fly when new

data is gathered. Hierarchies of semi-definite and sometimes

even, linear program relaxations may be possible toward

convergence of a global minimizer within the set of

coefficients as parameters for such a problem. Moreover,

incorporation of such constraints on the admissible set for its

domain may indeed collapse the degree and required state

dimension of the learned polynomial. Indeed, after the initial

and possibly large polynomial is accurately extracted from the

NN differential equation from the analytic unconstrained

methods presented in this article, a new optimization goal

would be to set up a hierarchy of optimization problems

minimizing simultaneously, degrees and state dimensions,

thus compressing dimension of the parameter space. The

dimension of the parameter space, ns, is given in Eq. 57,

where n is the size of the state s and d is the degree of the

polynomial.

ns d() � n + d
d

() � n + d()!
d!n!

(57)

This section offers common constraints but in application, any

constraint in polynomial formmay be defined and appended to this

larger set of linear equations. A comprehensive state for rigid body

dynamics is translation [x y z] and rotation, [θx θy θz], in all six

degrees of freedom and the associated velocity states, denoted by a

derivative dot above the state. The full state vector is shown in Eq. 58.

s � x y z _x _y _z θx θy θz _θx _θy _θz[] (58)

For a predictive dynamics model, the neural network could

be trained to develop a discrete transition model fd to yield the

next state sk+1 from the current state sk or a continuous model fc
to yield the current state derivative _sk, given in Eqs 59, 60,

respectively.

sk+1 � f d sk() (59)
_sk � f c sk() (60)

Some suggested constraints of interest can be separated into

systems under no external influence, external influence, and

physical constraints. Under no external influence, a system’s

total energy (kinetic energy and potential energy U) is conserved,

given in Eq. 61. Similarly, momentum is conserved in both

translation and angular, given in Eq. 62. If rotational degrees

of freedom are constrained, the θ terms in Eq. 62 are zero, and for

constrained translation, the x, y, z terms are zero.

1
2

_xk _yk _zk[]M _xk

_yk

_zk

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + θxk θyk θzk[]I θxK
θyk
θzK

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠ + U sk()

� 1
2

_xk+1 _yk+1 _zk+1[]M _xk+1
_yk+1
_zk+1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + θx,k+1 θy,k+1 θz,k+1[]I θx,k+1
θy,k+1
θz,k+1]
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠ + U sk+1()

(61)

M
_xk

_yk

_zk

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + I
θx,k
θy,k
θz,k

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � M
_xk+1
_yk+1
_zk+1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + I
θx,k+1
θy,k+1
θz,k+1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (62)

Frontiers in Robotics and AI frontiersin.org10

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

Under external influence, these matrix equalities turn into matrix

inequalities and additional external terms are integrated. Regarding

conservation of energy, if this external influence has a known energy

relationship, the external work term W(s) may be seen in Eq. 63.

Likewise, the momentum conservation equation is modified with

external influences in the form of force and torque, seen in Eq. 64. If

rotational degrees of freedom are constrained, the θ terms in Eq. 64

are zero, and for constrained translation, the x, y, z terms are zero.

1
2

_xk _yk _zk[]M _xk

_yk

_zk

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + θxk θyk θzk[]I θxk
θyk
θzk

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠ + U sk() +W sk()

≥
1
2

_xk+1 _yk+1 _zk+1[]M _xk+1
_yk+1
_zk+1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + θx,k+1 θy,k+1 θz,k+1[]I θx,k+1
θy,k+1
θz,k+1]
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠

+U sk+1() +W sk+1() (63)

M
_xk

_yk

_zk

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + F sk()Δt + I
θx,k
θy,k
θz,k

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + τ sk()Δt

� M
_xk+1
_yk+1
_zk+1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + F sk+1()Δt + I
θx,k+1
θy,k+1
θz,k+1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + τ sk+1()Δt (64)

Outside of physical laws of dynamics, a more general

constraint is a state bound in the form of an inequality. A state

boundary could result from a physical boundary, in which a body

cannot intersect another body. A lower bound and higher bound

are given by Eq. 65, where r is a reference point.
sk+1 ≤ r OR sk+1 ≥ r (65)

These two constraints can be superimposed as long as the

constraints do not conflict with each other. Another set of

bounding conditions results from a state relationship and sign

of state derivative, given in state inequality (Eq. 66).

sk+1 ≤ sk if _sk ≤ 0
OR

sk+1 ≥ sk if _sk ≥ 0
(66)

7 Solving for state prediction
simultaneously with constraints

The proposed NN-Poly method can be used as a system

identificationmethod and/or a state prediction method. The state

prediction solution in matrix form and in polynomial basis space

is given in Eq. 67, where yk is either the state derivative sk or the
propagated state sk+1.

yk � ~J
d

fa
d~s⊗d (67)

As derived previously, ~J
d
f and ad are both matrices populated

only with numerical coefficients that approximate the NN

function. Together, ~J
d
fa

d are an analogous state transition matrix,

where the traditional input state sk is augmented into the previously

defined higher order polynomial basis space ~s⊗d. As previously

shown, constraints may be represented as linear equations in the

same polynomial basis space. To solve for equality constraints

simultaneously with state prediction, the constraint equation

matrix, he, is appended to the polynomial state equation matrix,

shown in Eq. 68, and solved with semi-definite programs (SDPs).

yk
he
[] � ~J

d

fa
d

He

[]~s⊗d (68)

For inequality constraints, numerical programsmay be utilized to

solve the semi-algebraic optimization problem, given in Eq. 69, where

hi are inequality constraint equations. Solving the semi-algebraic

optimization problem is outside scope of this study, but the

authors refer us to prevalent tools, such as the linear programming

and semi-definite programming packages (Lasserre, 2015). These

SDPs are convex but grow arbitrarily large as upon iteration.

Future research includes exploiting the information incorporated in

constraints known about the system to reduce the size of these SDPs,

building upon work of Ahmadi and El Khadir (2020).

yk � ~J
d

fa
d~s⊗d such that hi ≤Hi~s

⊗d (69)

One can implement constrained state prediction in real-time on

an embedded dynamic system in a learning application. In an

algorithmic loop, a neural network may be trained with every

iteratively collected measurement, then the subsequent polynomial

may be generated and the state prediction/control effort constrained

with predefined constraints. Other applications include post-

processing system identification for data-constrained applications,

in which neural network parameters are more effective to

communicate than large data sets, like space or deep-sea applications.

8 NN-Poly state prediction
performance

Our aim in these results is to show the minimal approximation

loss between the NN-Poly and the models that were derived directly

from data: the neural network and polynomial. In the unconstrained

case, the NN-Poly can only be as accurate as the neural network from

which the polynomial is derived from as the polynomial

approximates the neural network. Similarly, the NN-Poly can only

be as accurate as a polynomial found from the original data because

NN-Poly lost information between the original data and the neural

network representation. In the constrained case, the NN-Poly has the

ability to incorporate domain knowledge that the neural network

cannot capture, which offers NN-Poly the ability to better represent

the underlying dynamic system generating the data; for example, a

neural network trained on data generated from a bouncing ball may

predict the ball’s state to intersect with the ground, but constraints

placed on the polynomial model would bound predictions such that

the ball never intersects with the ground, yielding a more accurate

state prediction. The proposed Taylor expansion with the NN

parameters is coded in MATLAB (https://github.com/alexdhjing/

Frontiers in Robotics and AI frontiersin.org11

Zhu et al. 10.3389/frobt.2022.968305

https://github.com/alexdhjing/NNX_matlab
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

NNX_matlab). Metrics to evaluate performance of each method are

efficiency, accuracy, and complexity. This section discusses the

method of comparison, metrics to evaluate performance, and

subsequent results of the state prediction methods.

8.1 Methods

Several dynamic models are used to measure efficiency and

accuracy of each state prediction method, not only in the state

prediction but also in the model representation. Each algorithm is

trainedwith the same pairwise input and output data, generated from

the true dynamic model, to predict a state for a range of dynamic

systems. The input–output data pairs are of form {xk, xk+1}, in which
the input is state vector at time step k and the output is of time k + 1.

A majority of data pairs train the various models and the rest of the

data pairs are set aside to evaluate state error and computation time.

Other metrics evaluate the model coefficients and structure after

training. All metrics are formally defined in the next subsection.

The selected dynamic models were chosen in ascending

complexity, from a two-dimensional feature space with linear

dynamics and non-linear dynamics. The 1DOF underdamped

linear spring mass damper system has a linear transition

matrix from previous state to next state, constituting the

simplest dynamic system to identify, described in Eq. 70.

The 1DOF non-linear spring system has non-linear spring

stiffness and is governed by a differential equation, given in

Eq. 71. A 2DOF spring pendulum demonstrates non-linearity

and coupling of dynamics, given in Eq. 72. In both the 1DOF

non-linear spring and 2DOF spring pendulum cases, the

differential equations of motion propagate the state to

generate data. The system identification methods do not

generate expressions for acceleration but generate a

mapping from previous state to next state, implicitly

integrating the double derivative.

xt+1
vt+1
[] � 0.9995 0.01

−0.0999 0.9985
[] xt

vt
[] (70)

€x � −3μ0
2π x + a()4 (71)

€x
€y
[] �

−5
������
x2 + y2
√

− 1() x������
x2 + y2
√

−5
������
x2 + y2
√

− 1() y������
x2 + y2
√ − 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (72)

8.2 Metrics of evaluation

Metrics for evaluation are computation time, state error (mean

squared error), coefficient error, length of solution, and coefficient

stability, given in Table 2. The state error is of mean squared error

form of the algorithm’s state prediction and the true state for which

smaller error represents a more accurate approximation.

Coefficient error refers to a coefficient vector c of length m,

geared toward polynomial solutions for which smaller error

again signifies a more accurate model. Parameter stability refers

to the learned parameters, relevant for all methods, for which

values closer to 1 represent high stability and values approaching

infinity represent instability. The length of solution refers to the

number of h(x) for which a smaller number of terms represents a

more parsimonious solution.

8.3 Complexity

We will explore the complexity of our proposed method by

deriving and comparing the number of flops for the following

methods: a polynomial directly from data, training a NN and

NN-Poly. Intuitively before even approaching a rigorous

derivation, the NN-Poly method explicitly relates NN

parameters to polynomial coefficients, emulating a “hard-

coded” computation. We added computing time into the

evaluation metrics as calling table elements from memory

would likely be the most computationally intensive task in the

NN-Poly method. Calculating polynomial coefficients directly

from a large data set with the least-squares method will be

computationally intensive due to the matrix inverse operation

that scales cubed with dimension of the data set. A neural

TABLE 2 Metrics for evaluating system identification methods on dynamic systems.

Metrics Measurement Definition/equation

Computing time Efficiency Time cost to run calculation

State error (mean squared
error)

State accuracy MSE � 1
T∑T

t�1(xk − x̂k)2

Coefficient error Expression accuracy MSE of coefficients (if in polynomial form) CE � 1
m∑m

i�1(ci − ĉi)2Marked as N/A if not in polynomial
form

Parameter stability Expression accuracy and
complexity

Largest parameter divided by smallest coefficient PS � max(p)
min(p)

Length of solution Expression accuracy and
complexity

Number of nonlinear terms in solution

Frontiers in Robotics and AI frontiersin.org12

Zhu et al. 10.3389/frobt.2022.968305

https://github.com/alexdhjing/NNX_matlab
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

network’s flops depend on training epochs until convergence,

stochastically related to the initial parameterization of the

neural network. For all flop calculations, we will assume that:

• The input state size m and output state size n are

equivalent m = n

• The state size m is much smaller than the amount of

training points t, m ≪ t

The least-squares method to calculate polynomial

coefficients A with a matrix of inputs X and outputs Y is

given in Eq. 73, where Ap is the set of polynomial coefficients

derived from the least-squares method.

Ap � Y X⊗d()T X⊗d() X⊗d()T()−1 (73)

The number of flops of a polynomial derived directly from

data is on the order given in Eq. 74. Intermediate steps are given

in Eqs 135–138 in Supplementary Appendix Section S10.5.

O Ap() ≈ t
md

d!
+ m3d

d!
(74)

To train neural networks, we must account for forward passes

and backward propagation per epoch overall training data. In

implementation, the neural network does not necessarily train

across all the data but for this derivation of flops will assume so to

simplify the calculation. We will also assume that the network has

only a single layer with k neurons. The total number of flops to

train a neural network is given in Eq. 75.

O NN() ≈ mnkt (75)

To convert this neural network into a polynomial, the polynomial

coefficients for each polynomial degree scales with the number of

neurons in the layer. The highest order polynomial dominates the

number of flops, which approximates the total number of flops in

converting a single-layerNNwith kneurons to a polynomial of degree

d given in Eq. 76. The set of polynomial coefficients derived from the

NN is given byAd
NN. Intermediate steps are shown in Eqs 140–145 in

Supplementary Appendix Section S10.5.

O Ad
NN() ≈ kmd+1 (76)

The combined complexity of training a neural network and

converting those NN parameters to polynomial coefficients is

given in

O NN + Ad
NN() ≈ km2t + kmd+1 (77)

� k m2t +md+1() (78)

The condition for the neural network training to be more

computationally complex than the NN-Poly conversion is given

in Eq. 79.

O NN()>O Ad
NN(), if t>md−1

O Ad
NN()>O NN(), otherwise

⎧⎨⎩ (79)

Given the order of complexity of each method that ultimately

yields a polynomial (least-squares polynomial directly from data

and polynomial from NN parameters), what are the conditions

on state size m, training data size t, and neural network size by

neurons k that make either method more or less complex than

the other? The condition for the NN-Poly method to be less

complex than a polynomial from the raw data is given in Eq. 80.

O Ap()>O NN + Ad
NN(), if mk< t +md

d!

O NN + Ad
NN()>O Ap(), otherwise

⎧⎪⎪⎨⎪⎪⎩ (80)

Intuitively, the NN-Poly method is computationally

advantageous for the following conditions:

TABLE 3 1DOF spring evaluation of performance for all system
identification methods.

Metrics Polynomial NN NN-Poly

Computing time 0.29 s 3.63 s 0.37 s

State error (MSE) ϵ(x) 1.1 × 10–8(x) 1.1 × 10–5(x)

ϵ(x) 1.5 × 10–8(v) 1.5 × 10–5(v)

Coefficient error (CE) 0.006 (x) N/A 0 (x)

0.006 (v) 0 (v)

Parameter stability 99.95 (x) 99.95(x) 99.95(x)

9.95 (v) 9.995(v) 9.995(v)

Number of parameters 6 6 6

Bolded values are the best values across methods for each metric.

TABLE 4 1 DOF flux-pinned system evaluation of performance for all
system identification methods.

Metrics Polynomial NN NN-Poly

Computing time 0.076 s 1.36 s 0.20 s

State error (MSE) 1.9, ×, 10–3(x) 1.3 × 10–4(x) 1.3 × 10–4(x)

9.0, ×, 10–4(v) 1.1 × 10–4(v) 1.1 × 10–4(v)

Parameter stability 5.8 × 104(x) 67.8(x) 94.8 (x)

2.8 × 103(v) 574(v) 579.4 (v)

Number of parameters 30 6 6

Bolded values are the best values across methods for each metric.

TABLE 5 2 DOF spring pendulum system evaluation of performance
for all system identification methods.

Metrics Polynomial NN NN-Poly

Computing time 0.29 s 3.58 s 0.36 s

State error (MSE) 5.0 × 10–4(x) 3.0 × 10–3(x) 3.2 × 10–3(x)

3.5 × 10–3(v) 1.62 × 10–2(v) 1.7 × 10–2(v)

Parameter stability 6.6 × 103(x) 7.6 × 103(x) 8.1 × 103(x)

8.6 × 103(v) 1.3 × 103(v) 1.4 × 103(v)

Number of parameters 120 20 140

Bolded values are the best values across methods for each metric.

Frontiers in Robotics and AI frontiersin.org13

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

• There are many training points

• The neural network is small

• The state size is large

• The state size is sufficiently large and the polynomial

degree is large

Complexity does not fully capture computational load

though, as the NN-Poly method relies heavily on memory

calls. The next section incorporates computing time for this

reason.

8.4 Results

For each dynamic system, Tables 3–5 report the performance

of the strict polynomial, the sole NN and NN-Poly for each

FIGURE 3
(A) Third-order NN-Poly approximation of 1DOF linear system and error as difference of each state. (B)MSE error of position and velocity state
across different orders of approximation for NN-Poly.

FIGURE 4
(A) Third-order NN-Poly approximation of 1DOF non-linear spring system and error as difference of each state. (B) MSE error of position and
velocity state across different orders of approximation for NN-Poly.

Frontiers in Robotics and AI frontiersin.org14

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

dynamic system. Wherever an ϵ is listed in the tables, ϵ denotes
an immensely small value within machine precision. The

computation time for the NN-polynomial expansion does not

include the NN training time, only the time to transform the NN

parameters into polynomial coefficients.

The method that best predicts the 1 DOF linear spring

state is the strict polynomial; although curiously, the NN-

Poly exactly predicts the original system state matrix

coefficients. The performance across all methods is shown

in Table 3. The proposed NN-Poly approximation method

performance in each state’s time series and across increasing

polynomial degrees is shown in Figure 3. As expected,

increasing the order of polynomial approximation yields

less state error, although not much performance is gained

FIGURE 5
(A) Third-order NN-Poly approximation of a 2DOF non-linear coupled spring–pendulum system and error as difference of each state. (B) 2DOF
spring–pendulum individual MSE error of position and velocity state across different orders of NN-Poly approximation.

Frontiers in Robotics and AI frontiersin.org15

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

past the second-order approximation, seen in Figure 3. The

small error bars for each degree signals that the final solution

from each NN random initialization does not vary error

much. The NN-polynomial conversion is comparable in

computation but includes more state error as expected.

This straightforward test case is best solved with the

simplest solver, the direct polynomial solution; even a least

squares solution is sufficient. This system does not need a

complex, expressive system identification method due to the

simplicity of its linear form.

The method that best predicts the 1 DOF non-linear spring

state are NN and NN-Poly, with performance reported in

Table 4. Unlike the linear system approximation, the

proposed NN-Poly approximation varies from the NN

parameter initialization and does not converge to a steady

state error until the fourth order, seen in Figure 4. The sole

NN and NN-Poly approximate the data with the least state

error, generate a minimal representation, and yield the most

stable parameters of all methods. Subsequently, the NN-Poly

retains the same value of state error from NN, demonstrating

the accuracy of transformation from a NN form to polynomial

form, while also offering a form from which to apply domain

knowledge and safety guarantees.

For the 2DOF system, NN and NN-Poly predict state

accurately, seen in Table 5. The third order NN-poly

approximation for each state is shown in Figure 5A. The NN-

Poly MSE error decreases with increasing polynomial degree and

does not converge until after the fourth order, seen in Figure 5B.

The NN and NN-Poly predict the 2DOF system with fewer terms.

Each method has comparable parameter stability and computation

time. This coupled and slightly non-linear dynamic system

straddles the boundary in deciding which model to use.

9 Conclusion

Leveraging recent advances in deep learning, NN-Poly

provides accurate predictions of non-linear, coupled system

dynamics with minimal context. A NN-to-polynomial

mapping avoids the need to download an immense

amount of data and fit a polynomial directly to a large

dataset by exploiting the compactness of the NN. A

polynomial enhances interpretability of the neural

network by making its feature dependence explicit, as

polynomials have a long history of analysis and

mathematical literature, including safety verification and

guarantees. This work’s major contribution is offering a

polynomial form and semi-algebraic constraints, such

polynomial inequality and equality constraints, to capture

the NN model and system context in the final predictive

function solution. These semi-algebraic constraints

represent the application of domain knowledge, such as

conservation of energy in the form of quadratic rates, and

safety constraints, such as linear inequalities that bound

specific state values. The results of this effort show

comparable prediction and computation performance

between a sole NN, sole polynomial, and the proposed

method for linear systems but great improvement in the

proposed method for highly nonlinear systems. Further

future work also includes approximation of more complex

systems, in increasing degrees of freedom, in the degree of

non-linearity, and in the coupling of states.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found as follows: https://github.

com/alexdhjing/NNX_matlab.

Author contributions

FZ was the primary author for the majority of this

manuscript and derived all the theory that produced all

equations. DJ wrote the code that generated the plots in the

results. FL contributed the insight and section on semi-

algebraic constraints. SF reviewed the paper and assisted in

identifying gaps in explanation. FL and SF guided the trajectory

of the research contributions.

Funding

FZ thanks the NASA Space Technology Research Fellowship

Grant NNX15AP55H and the NSF AI Institute in Dynamics

Systems award number 2112085 for supporting this research.

SF’s work was funded by the Office of Naval Research (ONR)

grant N00014-19-1-2266.

Acknowledgments

FZ would like to thank Chelsea Sidrane and Anish Potnis for

their valuable feedback.

Frontiers in Robotics and AI frontiersin.org16

Zhu et al. 10.3389/frobt.2022.968305

https://github.com/alexdhjing/NNX_matlab
https://github.com/alexdhjing/NNX_matlab
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

Conflict of interest

Author DJ was employed by the company Huawei.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors, and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frobt.2022.

968305/full#supplementary-material

References

Ahmadi, A. A., and El Khadir, B. (2020). “Learning dynamical systems with side
information,” in Learning for Dynamics and Control (PMLR), 718.

Ahmadi, A. A., and Parrilo, P. A. (2011). “Converse results on existence of sum of
squares lyapunov functions,” in 2011 50th IEEE conference on decision and control
and European control conference (IEEE), 6516.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P., Spergel, D., and Ho, S.
(2020). Lagrangian neural networks. arXiv preprint arXiv:2003.04630.

Djeumou, F., Neary, C., Goubault, E., Putot, S., and Topcu, U. (2022). “Neural networks
with physics-informed architectures and constraints for dynamical systems modeling,” in
Learning for Dynamics and Control Conference (PMLR), 263–277.

Dutta, S., Chen, X., and Sankaranarayanan, S. (2019). “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,” in Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control. (IEEE).

Ferrari, S., Rudd, K., and Muro, G. (2013). “A constrained backpropagation
(cprop) approach to function approximation and approximate dynamic
rogramming,” in Reinforcement Learning and Approximate Dynamic
Programming for Feedback Contro, 162–181.l.

Ferrari, S., and Stengel, R. F. (2005). Smooth function approximation using neural
networks. IEEE Trans. Neural Netw. 16, 24–38. doi:10.1109/tnn.2004.836233

Granados, A. (2015). Taylor series for multi-variable functions.

Greydanus, S., Dzamba, M., and Yosinski, J. (2019). “Hamiltonian neural
networks,” in Advances in neural information processing systems. Editors
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alche-Buc, E. Fox, and
R. Garnett (Curran Associates, Inc.), 32.

Hildebrand, A. (2009). Multinomial coefficients.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Netw. 2, 359–366. doi:10.1016/0893-
6080(89)90020-8

Huang, C., Fan, J., Li, W., Chen, X., and Zhu, Q. (2019). Reachnn: Reachability
analysis of neural-network controlled systems. ACM Trans. Embed. Comput. Syst.
18, 1–22. doi:10.1145/3358228

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial neural networks for
solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9,
987–1000. doi:10.1109/72.712178

Lasserre, J. B. (2015). An introduction to polynomial and semi-algebraic
optimization, 52. Cambridge: Cambridge University Press.

Lipton, Z. C. (2018). The mythos of model interpretability. Queue 16, 31–57.
doi:10.1145/3236386.3241340

Liu, W., Lai, Z., Bacsa, K., and Chatzi, E. (2022). Physics-guided deep markov
models for learning nonlinear dynamical systems with uncertainty. Mech. Syst.
Signal Process. 178, 109276. doi:10.1016/j.ymssp.2022.109276

Narasimhamurthy, M., Kushner, T., Dutta, S., and Sankaranarayanan, S. (2019).
“Verifying conformance of neural network models,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) (IEEE), 1.

Pinkus, A. (1999). Approximation theory of the mlp model in neural networks.
Acta Numer. 8, 143–195. doi:10.1017/s0962492900002919

Psichogios, D. C., and Ungar, L. H. (1992). A hybrid neural network-first
principles approach to process modeling. AIChE J. 38, 1499–1511. doi:10.1002/
aic.690381003

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.
doi:10.1016/j.jcp.2018.10.045

Rolnick, D., and Tegmark, M. (2017). The power of deeper networks for
expressing natural functions. arXiv preprint arXiv:1705.05502.

Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2017). Data-driven
discovery of partial differential equations. Sci. Adv. 3, e1602614. doi:10.1126/sciadv.
1602614

Sidrane, C., Katz, S., Corso, A., and Kochenderfer, M. J. (2022). Verifying inverse
model neural networks. arXiv preprint arXiv:2202.02429.

Wang, S., Sankaran, S., and Perdikaris, P. (2022). Respecting causality is all you
need for training physics-informed neural networks. arXiv preprint arXiv:
2203.07404.

Frontiers in Robotics and AI frontiersin.org17

Zhu et al. 10.3389/frobt.2022.968305

https://www.frontiersin.org/articles/10.3389/frobt.2022.968305/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2022.968305/full#supplementary-material
https://doi.org/10.1109/tnn.2004.836233
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1145/3358228
https://doi.org/10.1109/72.712178
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1016/j.ymssp.2022.109276
https://doi.org/10.1017/s0962492900002919
https://doi.org/10.1002/aic.690381003
https://doi.org/10.1002/aic.690381003
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1126/sciadv.1602614
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.968305

	NN-Poly: Approximating common neural networks with Taylor polynomials to imbue dynamical system constraints
	1 Introduction
	2 Problem formulation: Taylor expansion of a neural network
	3 Unfolding and compressing tensors into matrices and vectors
	4 Tensor derivatives of a neural network
	4.1 Perceptron layer
	4.2 Convolution layer
	4.3 Recurrent layer

	5 Multiple layer network approximation
	6 Physical constraints in the form of semi-algebraic constraints
	7 Solving for state prediction simultaneously with constraints
	8 NN-Poly state prediction performance
	8.1 Methods
	8.2 Metrics of evaluation
	8.3 Complexity
	8.4 Results

	9 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

