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Today’s research on human-robot teaming requires the ability to test artificial
intelligence (AI) algorithms for perception and decision-making in complex real-
world environments. Field experiments, also referred to as experiments “in the
wild,” do not provide the level of detailed ground truth necessary for thorough
performance comparisons and validation. Experiments on pre-recorded real-world
data sets are also significantly limited in their usefulness because they do not allow
researchers to test the effectiveness of active robot perception and control or decision
strategies in the loop. Additionally, researchon large human-robot teams requires tests
and experiments that are too costly even for the industry and may result in
considerable time losses when experiments go awry. The novel Real-Time Human
Autonomous Systems Collaborations (RealTHASC) facility at Cornell University
interfaces real and virtual robots and humans with photorealistic simulated
environments by implementing new concepts for the seamless integration of
wearable sensors, motion capture, physics-based simulations, robot hardware and
virtual reality (VR). The result is an extended reality (XR) testbedbywhich real robots and
humans in the laboratory are able to experience virtual worlds, inclusive of virtual
agents, through real-time visual feedback and interaction. VR body tracking by
DeepMotion is employed in conjunction with the OptiTrack motion capture system
to transfer every human subject and robot in the real physical laboratory space into a
synthetic virtual environment, thereby constructing corresponding human/robot
avatars that not only mimic the behaviors of the real agents but also experience
the virtual world through virtual sensors and transmit the sensor data back to the real
human/robot agent, all in real time. New cross-domain synthetic environments are
created in RealTHASC using Unreal Engine™, bridging the simulation-to-reality gap
and allowing for the inclusionof underwater/ground/aerial autonomous vehicles, each
equipped with a multi-modal sensor suite. The experimental capabilities offered by
RealTHASC are demonstrated through three case studies showcasing mixed real/
virtual human/robot interactions in diverse domains, leveraging and complementing
the benefits of experimentation in simulation and in the real world.
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1 Introduction

Emerging techniques in machine learning (ML), AI, and
computer vision are able to equip the next-generation of
autonomous robots with unprecedented sensing, cognitive, and
decision-making skills (Bassyouni and Elhajj, 2021). These
“smart” robots will inevitably interact with humans as part of
collaborative robot teams in unstructured and dynamic
environments, thus requiring fundamental cross-cutting research
not only in engineering and computer science but also in the
humanities (Fong et al., 2003; Pendleton et al., 2017; Liu et al.,
2021). Real-world tests with human subjects in the loop are
necessary in almost every sector of robotics, including defense,
agriculture, healthcare, and emergency-response systems, to name
a few. Humans that collaborate with AI software and/or
autonomous robot teammates, also known as human-autonomy
teams (HATs), will soon be required to solve complex and safety-
critical tasks (Oh et al., 2017) such as target localization and
mapping (Krajník et al., 2014), fire fighting (Naghsh et al., 2008),
search and rescue (SpurnỲ et al., 2019), security and surveillance
(Hu and Lanzon, 2018), and cooperative transportation (Chen et al.,
2015). To date, controlled simulation and laboratory experiments
have been primarily used by researchers in both industry and
academia in order to develop and test new theories and
algorithms. As a result, when introduced into real-world
applications with humans-in-the-loop, they all too often fail
because of unanticipated difficulties and environments. Deploying
new decision and control algorithms in the field is not only costly but
also poses safety hazards when humans are present and, at best, fails
to provide researchers with the knowledge, control, and post-
processing capabilities required during the development phase.
Recent advancements in data-driven approaches for robotics
applications also require large amounts of training data that may
not always be available from real-world sensors (Choi et al., 2021).

In response to the aforementioned difficulties, various computer
simulation platforms have emerged in the field of robotics and HAT
collaborations (Puig et al., 2018; Deitke et al., 2020; Shen et al., 2021).
These platforms have played a crucial role in the iterative development
of autonomous robots by providing a safe and controlled environment
for testing, training, and refining AI algorithms and behaviors.
Simulation environments have also allowed researchers and
developers to explore a wide range of scenarios, manipulate
variables, and assess the performance of robot control and decision
algorithms in a cost-effective and time-efficient manner. By testing
physical and cognitive functions such as sensing, perception and control,
simulation systems have enabled the evaluation and comparison of
different robot design choices and interaction strategies. Virtual replicas
of real-world robots, also known as digital twins, have in fact become
increasingly popular in both industry and academia for research on
robot control and operation (Garg et al., 2021). Traditional robot
simulators such as Webots (Michel, 2004) and Gazebo (Koenig and
Howard, 2004) rely on physics-based Open Dynamics Engine (ODE)
for replicating robot motion and on 3D rendering engine for
constructing the robot environment (Erez et al., 2015). Although this
architecture has proven extremely useful to date, there remains a
significant simulation-to-reality gap for testing more complex
systems of human-robot teams (Škulj et al., 2021). In order to aid in
the development of robust autonomy algorithms, simulation

environments must address major challenges, including transferring
knowledge from the virtual world to the real world; developing
stochastic and realistic scenes; and developing fully interactive, multi-
AI agent, scalable 3D environments (Reiners et al., 2021). Off-the-shelf
game development software, such as Unity and Unreal Engine™ 4
(UE™) (Epic Games, 2019), has been gaining increasing attention
because of its photorealistic rendering capabilities. New simulation
frameworks such as AirSim (Shah et al., 2018), UnrealCV (Qiu and
Yuille, 2016), and CARLA (Dosovitskiy et al., 2017) have also
demonstrated success in training and verifying computer vision and
perception-based algorithms. Additionally, leveraging VR technologies
alongside such platforms has enabled studies on collaboration between
humans and robots mimicked by digital twins (Mizuchi and Inamura,
2017; Inamura and Mizuchi, 2021; Murnane et al., 2021).

In particular, FlightGoggles, a Unity-based photorealistic sensor
simulator for perception-driven robots, has begun to bridge the
simulation-to-reality gap (Guerra et al., 2019). This previous work
developed a novel hardware-in-the-loop approach by placing a real
vehicle and human in a motion capture facility and augmenting
them with an obstacle-populated virtual environment. This
framework successfully created a photorealistic virtual world in
which both robot and human perception occurred virtually.
Additionally, FlightGoggles successfully implemented multiple
simulated robots to demonstrate their computational capabilities
within a novel system architecture. As autonomous robots and
intelligent machines are becoming an integral part of
collaborative human teams, a significant body of research has
focused on identifying effective means of human-robot
communication, task allocation, and multi-robot coordination
(Gemerek et al., 2019; Ognibene et al., 2022). While
FlightGoggles has proven the capability to incorporate robots and
humans into a desired computing architecture, it does not yet
support complex perception and control human-robot
interactions in mixed real/virtual worlds.

The RealTHASC facility presented in this paper provides a new
extended reality testbed within which researchers may investigate
complex real-time human-robot and multi-robot interactions based
on tailored combinations of exteroceptive and proprioceptive
sensors installed on virtual and real-world agents. Its main
contribution is a novel framework for integrating VR technology,
embedded systems design, and computer graphics tools to enable
safe, real-time, and photorealistic multi-agent interaction for
collaborative decision-making in HATs. Novel software and
hardware integration tools are required to support real-time
perception feedback from virtual avatars to real agents, with
information-driven planning and control in the loop. The ability
to support perception-based control, real-time communication
between real and virtual agents, and HAT interactions and
collaboration in challenging test environments is also
demonstrated. The formulation and nomenclature necessary for
describing the real and virtual workspace, along with their respective
agents, are introduced in Section 2. The architecture of the testbed,
including the simulation environment, human interface,
communication between the agents, and robot perception and
planning, is described in Section 3. To demonstrate the modality
of RealTHASC, three applications encompassing human-robot and
multi-robot interaction are presented and analyzed in Section 4.
Finally, possible future research directions are discussed in Section 5.
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2 Mathematical preliminaries and
notation

The RealTHASC facility consists of a novel HAT testbed comprised
of collaborative agents, operating and interacting in and across physical
and simulated worlds. Let the experimental region located inside the
physical laboratory, defined as the real workspace, be denoted by
W ⊂ R3 and let the simulated environment created in Unreal
Engine™, defined as the virtual workspace, be denoted by U ⊂ R3.
Based on the desired type of HAT-environment interactions, four types
of agents can be introduced into RealTHASC: real agents, virtual agents,
avatars, and real agents with XR. Real human/robot agents operate and
sense solely in W, whereas virtual human/robot agents operate and
sense solely inU .Avatars sense inU and transmit their sensor data back
to their corresponding real agent with XR, based on the avatar’s position
and orientation inU . Importantly, real agents with XR are kinematically
coupled with their avatars. Hence, not only their sensors have the same
field-of-view (FOV) as those of their avatars, but also they can interact
with elements and agents in the virtual workspace through the avatar’s
behavior, react to the perception feedback, and the full body resulting
state is relayed to their avatar in real time. Examples of RealTHASC
agents operating in mixed environments that are comprised of real and
virtual workspaces are shown in Figure 1.

Let R and H denote the index sets of robots and humans
operating inW, where each robot and human is associated with an
index i ∈ R and j ∈ H, respectively. Also, let P and Q denote the
index sets of robots and humans operating in U , where each robot
and human is associated with an index i ∈ P and j ∈ Q, respectively.

Real agents with XR are denoted by the same indices in R and H as
their avatars in P and Q, respectively. The homogenous rigid-body
transformation which maps every point ofW into U is denoted by
T, where its inverse T−1 is assumed to exist and both T and T−1 are
known a priori from the RealTHASC setup. In this paper,
unmanned ground vehicles (UGVs) are used as robot agents to
showcase the capabilities of RealTHASC. The framework,
however, can be easily extended to any other agents including
autonomous underwater vehicles (AUVs) and autonomous aerial
vehicles (AAVs). In demonstrations presented in this paper,
human and robot agents all move on the ground plane, which
is coplanar to the XY plane of the inertial frames FW and FU ,
embedded in W and U respectively. The configuration of robot i ∈
{R ∪ P} is denoted by qi � [xi yi θi]T, and the pose of human j,
comprised of his/her position and heading, is denoted by
sj � [xj yj θj]T. The configuration of all agents operating in
W is estimated using a motion capture system or VR tracking,
whereas the configurations of agents in U are known without error
from the UE™ simulation environment. In the demonstrations
presented in this paper, every robot i ∈ R ∪ P{ } obeys the unicycle
motion model,

_qi �
_xi

_yi
_θi

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ �
vi cos θi
vi sin θi

ωi

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � f qi,ui( ), (1)

where the control vector consists of the robot linear velocity vi and
angular velocity ωi, or ui � [vi ωi]T. All the aforementioned
notation is summarized in Figure 2.

FIGURE 1
Real and virtual agents in the RealTHASC facility, where real agents with XR are digitally coupled with virtual avatars in Unreal Engine™.
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3 System architecture

Within RealTHASC, physical robots and real humans interact
and communicate with simulated agents as well as avatars in
photorealistic virtual environments (Section 3.1). A key
capability of the facility is that both simulated agents and
avatars sense the virtual environments by means of UE™
synthetic sensors, as shown in Figure 3, while possibly
operating in potentially different real workspaces. Integrative
cyber-physical interfaces (Sections 3.2–3.4) are leveraged to
achieve this capability, thus enabling collaborative decision-
making across real and synthetic worlds. This novel integration
allows virtual environments to act as a common medium for safe
yet realistic real-time inter-agent and agent-environment
interactions. These interactions can then be modeled, analyzed,
and leveraged for various applications without any restrictions
imposed by the considerations normally associated with testing
robots in the lab or in the wild, including safety and
reproducibility. RealTHASC uses the 3D graphics development
software, UE™, to create virtual environments. This provides the
flexibility to test algorithms and collect data in a wide variety of

environments such as subways, cities, offices, and oceans under
varying lighting and weather conditions along with a diverse set of
user-defined static and dynamic obstacles. The RealTHASC
framework supports multiple autonomous and user-controlled
agents, enabling complex online multi-agent control and
coordination experiments. Example demonstrations of mixed
policies implemented for the planning and control of both
virtual and real robots are described in Section 3.5.

Figure 4 shows the RealTHASC framework used to achieve real-
time collaboration between real robots and humans via their avatars
in a virtual environment developed in UE™. The blue arrows
indicate how the kinematics of the real-world agents are
communicated to their respective avatars while the orange arrows
show how the perception feedback of these avatars is communicated
to their real-world counterparts. Human operators in W control
their human avatars in U using real-time VR body tracking enabled
by a VR headset and handheld controllers. The robots operating in
W are equipped with reflective markers detected by the motion
capture system installed in this workspace, which streams the real
robot state to their respective robot avatars. Virtual sensors, defined
using sensor application programming interfaces (APIs) as

FIGURE 2
Configurations of a human and robot agent in the real workspace (left) and their corresponding avatars in the virtual workspace (right).

FIGURE 3
Visual perception of industrial city virtual environment in which the avatars of (A) human and (B) robot agents interact in real time.
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discussed in Section 3.3, are used to simulate the robot FOV while
the humans observe the workspace through the VR headset. Since
the human and robot FOVs are defined inside the virtual
environment, they can be constantly monitored in real time to
facilitate shared perception in agents. This enables direct sharing of
visual cues observed by any agent with any other agent, human or
robot, in contrast to existing facilities which only consider sharing
cues inside the robot FOV (Nourbakhsh et al., 2005). Additionally,
humans in the RealTHASC facility can provide audio or visual
commands to real and virtual robots in support of research and
testing on human-robot interactions, as explained in Section 4.1. A

summary of all hardware and software components used to create
the RealTHASC facility is shown in Table 1.

3.1 RealTHASCUE™ simulation environment

In the RealTHASC facility, the UE™ simulation environment
acts as the interface between the real and virtual agents. The UE™
software is chosen because it is currently considered as the most
visually realistic tool for bridging the simulation-to-reality gap in
perception-related tasks. The framework shown in Figure 1

FIGURE 4
The RealTHASC framework enables research on human-autonomy interactions and collaborations by importing both human and robot avatars,
with sensor suites, into complex and photorealistic simulation environments with perfect ground truth.

TABLE 1 Description of the hardware and software components used to build the RealTHASC facility.

Component Application

Hardware

10x OptiTrack Primex 22 Camera Multi-camera network localizes and tracks physical robots using placed markers

2x ROSbot 2.0 UGV for the physical robot experiments

Meta Quest 2 VR platform allows human users to see, hear, and interact with virtual worlds

Dell Alienware Aurora R13 Primary desktop computer acts as the head substation hosting the simulation environment and connections from the laboratory
environment

2x Alienware x15 R2 Gaming Laptop Base control station laptop that receives waypoint (x, y, θ) from the desktop and communicates control command to the ROSbot

Software

Unreal Engine™ 4.24 3D computer graphics game engine hosts the virtual environments alongside virtual human and robot actors

Motive 3.0 Skeletal solver creates rigid bodies for robots using tracked markers

DeepMotion SDK Three-point VR tracker transfers human movement to UE4™ actor

NatNet SDK Transfers localization information from Motive to UE4™ and ROSbot
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leverages UE™ to support real-time rendering and manipulation of
multiple programmable, photorealistic environments. The base
environments used for the experiments presented in Section 4,
namely, the industrial city (Figure 5A) and the undersea
environment (Figure 5B), are obtained from the UE™
Marketplace. These base environments are modified to include
virtual agents and digital avatars, to support their associated
sensing modalities, and to stream data amongst various agents of
the HATs (Section 3.4). The ability to programmatically manipulate
environmental conditions such as fog, time of day, and luminosity,
while difficult in real-world or laboratory physical experiments, is
easily accomplished within RealTHASC. As a result, real humans
and robots can interact with and test a broad range of environmental
conditions known to influence visual perception and active control
tasks.

Digital avatars are created to resemble their real-world counterparts
aesthetically, as required by the chosen experimental test or scenario,
and also functionally by establishing a kinematic and sensing coupling
with their real-world counterparts, as explained in Section 3.2 and
Section 3.3. C++ programmable actors such as virtual robots,
pedestrians, and mobile vehicles can be controlled offline using
predefined trajectories or are equipped with simulated dynamics,
perception, and control algorithms running online to test autonomy
and collaboration algorithms with hardware or software-in-the-loop, as
explained in Section 3.3 and Section 3.5 respectively. Two examples of

such programmed actors with feedback controller-in-the-loop, an AAV
and AUV, are shown in Figure 5. The AAV and AUV actors both sense
their environment by the means of onboard RGBD camera and
SONAR, respectively.

3.2 RealTHASC human interface

RealTHASC allows human operators to perceive and interact
with synthetic environments and autonomous agents therein by
synchronizing body movements with their avatars in real time. For
instance, humans may need to react to robot motions and behaviors
while also providing commands to their robot teammates in the
HAT by means of semantics or hand gestures. Additionally, real
robots and humans are able to interact with virtual humans and
other human avatars in the UE™ world, allowing one to test
collaborative tasks performed by larger HATs that may include
real humans and robots at different geographic locations. Human
avatars are simulated using the Meta Quest 2 hardware with a Steam
VR backend. Using the VR headset, a real human (with XR) is able to
view the rendered frames from the simulation environment and
listen to audio, as sensed by the human avatar. This integration
provides the user with an immersive, interactive first-person
experience of the simulation environment. The headset and
accompanying handheld controllers have trackers which

FIGURE 5
Virtual worlds, inclusive of autonomous robots, sensors, and artificial intelligence algorithms, are developed exclusively for RealTHASC using UE4™.
Examples of these synthetic environments include (A) an industrial citymonitored by an AAV equippedwith onboard RGBD camera and (B) an underwater
environment scanned by an AUV equipped with a side-scan sonar. © 2022 IEEE. Reprinted, with permission, from Shin et al. (2022a).
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communicate their positions over Wi-Fi to the system running
Steam VR connected with UE™.

The DeepMotion SDK (DeepMotion, 2023) is used to transform
this data into joint motions of a predefined skeleton of a human avatar,
using three-point VR body tracking. By this approach, human operators
inside the RealTHASC facility are able to control their virtual avatars
without attaching any extra markers to the body with a mean latency of
10 ms. This facilitates real-time seamless kinematic coupling and
interaction. The appearance of human avatars becomes crucial when
testing algorithms trained on real-world data sets obtained from
application-driven environments (e.g., offices and industrial
workshops) or when using UE™-based worlds and simulations to
produce synthetic datasets. In order to solve the problem of simulation-
to-reality and reality-to-simulation transfer, a user interface is built
using the UE™ Blueprint to easily modify and select between avatars of
interest depending on the chosen domain or HAT application.

3.3 RealTHASC robot sensing

One of themain goals of RealTHASC is to enable research on active
sensor systems used to gather, process, and communicate information
about their operating environments to their encompassing and
surrounding agents (Ferrari and Wettergren, 2021). The broad range
of sensing modalities available on real and virtual robots play a pivotal
role in allowing formany types of HAT collaborations to be synthesized
inside the facility. RealTHASC hosts a unique array of proprioceptive
sensors, measuring the ego state of the robot, and exteroceptive sensors,
measuring the state of the operating environment. Husarion ROSbots,
powered by ARM processors, are used as the UGV robot agents
operating in W. These real robots are equipped to localize using
dead reckoning (Kao, 1991) enabled through rotary encoders and
inertial measurement units (IMUs). These sensors are subject to
drift and may be used to simulate navigation in GPS-denied
scenarios. This facility has also been equipped with the OptiTrack
motion capture systemwhich provides robot localization within 10 mm
accuracy using the reflective markers mounted on the robots. As shown
in Figure 7, this information is streamed to the robot base control
stations in real time, which allows the robots to use either the motion
capture system or dead reckoning for localization. Since the real lab’s
workspace includes multiple robots, obstacles, and humans, the FOV of
the motion capture cameras observing reflective markers can
sometimes be blocked leading to loss of localization. In order to
account for such cases, a localization strategy is designed that
autonomously switches to dead-reckoning localization initialized at
the last known localization of the robot and back to motion capture-
based localization when the cameras see the markers.

Various modalities for perception are developed by integrating
sensor APIs from UnrealCV (Qiu and Yuille, 2016), traditional
computer vision algorithms, and recent advances in sensor
modeling. This integration enables the simulation of three-
channel 8-bit data streams including RGB cameras, online
panoptic segmentation, and surface normal estimation. One-
channel (16-bit) images of ground truth depth are also acquired
in real time using predefined depth cameras and stereo RGB cameras
in UnrealCV. An online processing pipeline is defined to process
RGB data streams from UnrealCV to generate 16-bit (two 8-bit
channels) images of dense optical flow using the Farneback

estimation algorithm and 8-bit (one-channel) grayscale images
using OpenCV (Bradski, 2000). This work also incorporates the
image-based side scan sonar simulation by Shin et al. (2022a) to
simulate underwater sensing in these virtual environments created
in UE™. This simulation incorporates visual approximations for
acoustic effects such as back-scatter and acoustic shadow to provide
a realistic rendering of sonar sensors. Novel modular C++
programmable robot agents are created in UE™ by interfacing
the aforementioned sensors with robot avatars and virtual robots
to enable robot perception in the simulation environment. A
separate Python script has been created to enable these sensors
to be used as static sensors monitoring the environment or to be
programmed to move on predefined trajectories for data collection.
Illustrative examples for the type of sensing modalities available in
the simulation environment are shown in Figure 6. All the real
robots (without avatars) sense the real workspace and are equipped
with RP LIDAR A2 (laser range scanner), Orbecc Astra RGBD
camera, and Time-of-Flight (TOF) sensors. The output of these
sensors mounted on the real and virtual robots is communicated
over ROS to robot planners (Section 3.5) running onboard for active
perception tasks facilitating inter-agent interaction.

3.4 Communication between the real and
virtual workspace

The RealTHASC testbed hosts communication channels for
message passing to facilitate inter-agent communication in and
across the real and virtual workspace. An overview of the message-
passing framework is described in Figure 7. An Alienware Aurora
R13 system acts as the head substation that harbors communications
from the OptiTrack motion capture cameras, hosts the virtual
environment in UE™, and supports the VR tracking and associated
hardware. As a result of the interactions between the agents in the
virtual environment, the head substation generates desired waypoints
for the robots based on the cooperation strategy employed. The
waypoints intended for the robots in W are communicated to their
respective base control stations over a local area network (LAN). The
planning and control framework running on these stations, described in
Section 3.5, converts these waypoints to control commands transmitted
to the real robots over 2.4 GHzWi-Fi networks. These Wi-Fi networks
are set up on distinct custom channels to avoid aliasing from
simultaneously sent control commands.

The base control stations communicate with each other over a LAN
connection using User Datagram Protocols (UDP) to simulate inter-
robot communication in real time with low latency. Since the robots
move in the real workspace, the OptiTrack motion capture cameras
stream data packets comprising the marker data to the head substation
through a bridge at a frequency of 120 Hz. Motive, a proprietary
OptiTrack data processing software, then uses this marker data to
infer the localization of user-specified rigid bodies defined as a collection
of markers. This inferred robot localization is streamed over UDP
channels to real robots through their base control stations for planning
purposes and to the robot avatars in U for kinematically coupling them
with their real-world counterparts. This kinematic coupling between
real robots with XR and their robot avatars is accomplished in real time
using the proprietaryNatNet SDK to stream rigid body localization data
at 120 Hz with a latency of 10 m. The overall system time delay from
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sending a desired waypoint to detect the corresponding effects in the
robot state is approximately 20 m.

3.5 Real-time robot planning and control

The ability to readily test and simulate collaborative planning
and control algorithms for HAT research is demonstrated by
implementing a waypoint-following policy on real and virtual

robots in this testbed. For a robot i ∈ R operating in W (real
robots and real robots with XR), its base control station receives a
waypoint denoted by qpi , i ∈ R inW directly or receives a waypoint in
U and maps it to a desired waypoint inW using the transformation
T−1. Subsequently, the robot executes the waypoint-following policy
to determine appropriate control commands based on the received
waypoint information. For virtual robots, however, the waypoint qpi ,
i ∈ P is directly used by the policy. For brevity, agent indices are
omitted in the remainder of this section. Assuming qp(k) �

FIGURE 6
Examples of simulated sensing modalities and computer vision algorithms in RealTHASC. © 2022 IEEE. Reprinted, with permission, from Shin et al.
(2022a).

FIGURE 7
RealTHASC cyber-physical interfaces and communication pipelines enable seamless integration of real agents and applicable avatars in the virtual
workspace.
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[pp θp]T is the desired waypoint for a robot in W at time-step k,
the desired position and desired orientation is then pp� [xp yp]T
and θp, respectively. The chosen algorithm for waypoint-following
implementation is based on a move-then-turn policy for each robot
in the real and virtual workspace. At state q = [x y θ]T, the robot
first turns to point towards the desired waypoint position pp, moves
towards it, and then rotates to reach the desired orientation θp. This
policy outputs the control command u = [v ω]T comprised of
linear velocity v and angular velocity ω, which has been summarized
in the order of execution as follows

v � 0 ω � kθ tan−1 yp − y

xp − x
( ) − θ( ) (2)

v � kx xp − x( ) + ky yp − y( ) ω � 0 (3)
v � 0 ω � kθ θp − θ( ) (4)

where kx, ky, kθ ∈ R+ are user-defined parameters for which
larger values represent faster response to errors in robot pose.
Simultaneously, the motion capture system continuously tracks
the motion of these robots in W and records their states. As
mentioned in Section 3.4, this localization information q̂i, i ∈ R,
an estimate of qi, is then streamed to the robot i ∈ R, via its base
control station, and to its robot avatar i ∈ P, in UE™. The robot
avatar is then moved to q̂i, i ∈ P, which is calculated using the
transformation T as shown in Figure 4. This control loop used to
couple the real robot with its avatar runs at a frequency of 120 Hz, in
real time. The planner continuously streams waypoints with the
desired run-rate frequency for various robot tasks, explored further
in Section 4, while the control policy outputs the appropriate
command for the most recent waypoint.

4 Experiments

To convey the functionalities and capabilities of the RealTHASC
facility, three experiments are conducted that each highlight different
types of agent interactions across the real and virtual workspace. The
first experiment focuses on human-robot interaction, the second
experiment tests multi-robot teaming in and across real and virtual
workspaces, and the third experiment showcases human-robot
collaboration using synthetic sonar sensor simulation.

4.1 Human-robot perception and control

This experiment is designed to showcase interaction-based
control of virtual robots and robot avatars using gesture
commands from a human teammate. This demonstration takes
place in the industrial city environment, built in UE™, hosting
the following actors: a human avatar, a robot avatar, and a virtual
robot. As shown in Figure 3, all agents perceive the virtual workspace
using simulated RGB cameras. Human avatars communicate with
the robot agents using gestures, as shown in Figure 8, to command
the next waypoint. These gestures are detected by a real-time
human-pose detection algorithm, OpenPose (Wei et al., 2016;
Cao et al., 2017), implemented on each of the robot agents.
Three distinct pose commands are communicated to the robot,
which then moves in three different directions: left, forward, and

right. These predefined commands can also be communicated to the
robots as audio cues by using the Google Audio speech-to-text
interface (Google LLC, 2022) running on the head substation. The
real human with XR may utter any of these three predefined
commands into the internal microphone of the VR headset,
which is then transcribed to text. Based on the pose commands
received as either visual or audio cues, the planner generates desired
waypoints in the commanded direction. These waypoints are then
streamed to the base control station of the real robot with XR
(i.e., the real robot coupled with the robot avatar) over LAN and to
the virtual robot in the environment as described in Section 3.4. The
desired orientation at each set of waypoints manipulates the robots
to face the human avatar in order to perceive the next gesture
command. The waypoint-following policy, described in Section 3.5,
is then used to calculate the control commands on each of the robot
agents to reach their desired waypoint. This experiment is
summarized using the schematic in Figure 9 for a virtual robot ,
 ∈ P, and a real robot with XR ,  ∈ R ∩ P{ }. In this experiment,
the virtual robot and the robot avatar are placed alongside each other
at a fixed distance and orientation needed to perceive the human
avatar in UE™. With each pose command, the robot agents move a
distance of 0.5 m in the commanded direction. A total of ten pose
commands are issued to each agent, and the resulting position
changes are plotted in Figure 10. The results show that both the
virtual robot and the robot avatar are able to correctly identify and
react to all ten predefined gesture commands. Both the virtual robot
and the robot avatar successfully traverse the distance with proper
heading directions as shown in Figure 10. Comparison between the
trajectories of the robot avatar and the virtual robot indicates that
the robot avatar is able to successfully incorporate the dynamics of
its real-world counterpart and hence exhibits errors induced by real-
world physics, such as the effects of friction and slip, unlike the
virtual robot. This experiment demonstrates how the RealTHASC
facility is able to successfully simulate proximate visual interactions
and incorporate real-world dynamics while providing a safe medium
for human-robot collaboration.

4.2 Multi-robot interaction for formation
control

The second experiment is designed to illustrate closed-loop
interaction and control between multiple robot agents listed in
Figure 1: a virtual robot, a real robot with XR sensing in U , and
a real robot sensing in W. The purpose of this experiment is to
demonstrate that the facility is able to bridge the gap of data transfer
between agents existing in simulation and the real world. In this
experiment, the robot team is tasked with a leader-follower-based
formation control objective. A virtual robot and robot avatar are
placed into the industrial city environment created in UE™ while a
real robot and a real robot with XR (i.e., real robot coupled with the
robot avatar) operate in the physical lab workspace. The virtual
robot is designated as the leader robot which independently moves
along a pre-specified path. The real robot with XR determines its
waypoints using the localization information of the virtual robot, as
communicated to its avatar, while the real robot does so, in turn, by
using the localization of the real robot with XR. A formation control
policy is implemented onboard each robot agent to calculate the
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FIGURE 8
First-person perspective from a virtual autonomous UGV inside the industrial city, equipped with a virtual RGB camera and implementing OpenPose
for keypoint detection (top row). The robot avatar is able to recognize and interpret the manual commands provided by a real human inW (bottom row),
namely, (A) left, (B) right, and (C) forward, by virtue of the human avatar created in real time using VR body tracking.

FIGURE 9
Human-robot collaboration is achieved by a human avatar, teleoperated by a real human with XR, commanding heading directions to the virtual
robot  and robot avatar  operating in U , using pose commands generated by the keypoint detection as shown in Figure 8.
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desired waypoints and ensure that the robot team maintains a
desired formation.

The formation control experiment is illustrated in Figure 11,
which features a multi-robot team comprising of a virtual robot , 
∈ P, a real robot with XR ,  ∈ R ∩ P{ }, and a real robot ℓ, ℓ ∈ R.
The virtual robot in the role of a leader moves along an offline,
elliptical trajectory. The state of the leader is streamed by means of a
socket connection to the base control stations of the real robot with
XR in W. This base control station calculates the desired waypoint
based on the state of the leader in real time to maintain an isosceles
triangle formation. Simultaneously, the state of this real robot with
XR is also streamed to the base control station of the real robot using
socket programming through the inter-robot LAN connection,
which calculates the desired waypoint for this robot to maintain
the formation. This allows for decentralized formation control of a
multi-robot team in and across W and U . All robot agents use the
policy defined in Section 3.5 to reach the desired waypoints obtained

online. It is important to note that in this experiment, only the state
of real robot with XR is streamed back to the virtual environment
since it is the only robot with a virtual avatar.

The trajectories of the robot agents are plotted in Figure 12A.
The virtual robot in UE™ follows the elliptical trajectory as
designed, and the successful coupling between the real robot
with XR and its virtual avatar can be observed. The robot team
maintains the desired isosceles triangle formation throughout the
experiment as illustrated in various instances in Figure 12A.
Since the path of the leader and the desired formation have been
predefined, the desired trajectories for all the robots are
determined offline and the error between their positions
during the experiment and these trajectories are recorded.
High positional accuracy is achieved by both the agents as the
largest positional error is within 0.10 m as shown in Figure 12B.
This performance plot also shows that the second follower (real
robot) consistently experiences lower positional accuracy when

FIGURE 10
Trajectory results of the pose estimation experiment for human-robot interaction. A total of 10 pose commands are given to both the virtual robot
and the robot avatar.

FIGURE 11
Leveraging the communication pipeline of RealTHASC, a virtual robot , real robot with XR with its avatar, and a real robot ℓ co-ordinate amongst
themselves to maintain the isosceles triangle formation.
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compared to the first follower (real robot with XR). This is
attributed to the aggregation of errors due to the decentralized
nature of coordination amongst the agents. These results
successfully demonstrate the capability of this testbed to
establish communication between various agents existing in
the real and virtual workspace and, as a result, enable real-
time interaction between real and simulated agents.

4.3 Human-robot collaboration in
underwater multi-target classification

This section aims to showcase a probable extension and direct
application of the RealTHASC framework to intelligent vehicle
systems commonly used in industrial and defense sectors, such as
AUVs. Human operators collaborating with AUVs can help
integrate their expertise, domain knowledge, and situational
awareness, thus making these systems more robust, adaptive, and
efficient. While testing underwater human-robot collaboration in
the development phase can prove to be resource-intensive, testing
underwater perception capability completely in simulation leads to
inaccuracies when the simulation fails to incorporate environmental
factors. Thus, the aim of this experiment is to augment the
capabilities of the RealTHASC facility for testing collaborative
multi-target classification in human-robot teams to overcome
these challenges.

The undersea virtual environment hosted by RealTHASC
consists of various seabed conditions as shown in Shin et al.
(2022a). In this experiment, three different seabed
conditions—namely sand ripples, mud, and rocks—are
implemented. These seabed conditions are acquired from the
UE™ Marketplace and modified using the Sculpt mode in UE™
editor to replicate the environmental conditions of the operation
site. The synthetic sonar images are generated by setting a camera
actor defined in UE™ to face downwards and adding a directional
light from the side to mimic acoustic highlights and shadow
patterns based on the orientation of the vehicle equipped with
imaging sonar. Once the camera actor renders RGB images, the

rendered images are then post-processed to convert RGB values
into intensity values and to add realistic acoustic noises. This
post-processing is conducted using MATLAB, which converts
the input RGB image into a grayscale image and adds either
Gaussian, speckle, or Poisson noise. An example of both an
output RGB image from UE™ and post-processed synthetic
sonar images are presented in Figure 13.

The synthetic images generated from this photorealistic
simulation are then used to train an automatic target
recognition (ATR) algorithm to classify targets in the images.
In this experiment, three types of objects are used: cylinders,
cubes, and spheres. A total of 1850 synthetic images are
generated for the geometric targets: 650 for the cylinder,
600 for the cube, and 600 for the sphere. These images are
generated with each type of object from various aspect angles to
train acoustic highlight-shadow patterns, and a speckle noise
with a variance of 0.1 is used in the post-processing. The ATR
algorithm presented in Zhu et al. (2017), which uses a pre-
trained AlexNet to extract feature vectors followed by a support
vector machine (SVM) that is trained to perform the
classification, is implemented in this experiment. A total of
80 images are used for training to avoid overfitting, and the
remaining synthetic images are used for testing. Specifically,
21 images of a cylinder object, 27 images of a cube object, and
32 images of a sphere object are used for training the ATR
algorithm. As a side note, the transfer learning performance of
this ATR approach has been tested by images generated from a
high-fidelity physics-based sonar simulation (Sammelmann
et al., 1997) and presented in Shin et al. (2022a).

Underwater multi-target classification algorithms require
multiple sonar images taken from different views to achieve a
satisfactory confidence level before each object’s classification is
declared (Chang et al., 2018). This classification confidence level
is updated based on a sensor model represented in a Bayesian
network whenever a new sonar image of each object is obtained.
Leveraging RealTHASC alongside the aforementioned ATR
approach, a human-robot collaboration experiment is
proposed as a probable extension that may be used to test the

FIGURE 12
(A) Trajectory results of the leader-follower formation control experiment. The virtual robot is the leader, the real robot with XR is the first follower,
and the real robot is the second follower. (B) The position error of each robot follower over the duration of the experiment.
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effect of this collaboration on multi-target classification from
sonar images. The confidence level (CL) and probabilistic sensor
model used in the description of this experiment are explained in
further detail in Chang et al. (2018); Shin et al. (2022b). The
experiment is set up such that the AUV equipped with a side-scan
sonar sensor in the virtual environment uses this target
classification approach while constantly communicating with a
remote human operator. The human operator is notified when
the CL is higher than a user-chosen threshold (εCL), which is
designed to be lower than the threshold to declare target
classification. This setting allows the human operator to revise
the sonar images and corresponding output from the ATR
algorithm before the system declares a wrong classification.
Moreover, the human operator does not need to go over every
false alarm. The framework of the proposed experiment is
illustrated in Figure 14. This demonstrates how the

RealTHASC facility can also be used for human-robot
interaction applications in remote environments.

5 Conclusion

This paper presents RealTHASC, a multimodal cyber-
physical XR facility that leverages state-of-the-art robotics,
visualization tools, motion capture, and virtual reality
technology to enable a novel experimental testbed interfacing
physical and virtual worlds. Unreal Engine™ is used to create
photorealistic simulated environments which facilitate
interactions amongst human-autonomy teams (HATs),
comprising of real agents, virtual agents, and agent avatars,
tasked with achieving various objectives. These agent avatars
operating in the virtual environment are teleoperated by the

FIGURE 13
Synthetic sonar images taken from the simulationmodel presented in Shin et al., 2022a taken (A) before and (B) after post-processing with Gaussian
white noise with mean 0 and variance of 0.05. © 2022 IEEE. Reprinted, with permission, from Shin et al. (2022a).

FIGURE 14
Example demonstrating human collaborating with an AUV equipped with automatic target recognition (ATR) algorithms and Bayesian network used
for multi-target classification from images generated by the synthetic sonar simulator. © 2022 IEEE. Reprinted, with permission, from Shin et al. (2022a).
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real agents with XR operating in a physical environment, thus
sharing real-world dynamics, while the avatars grant simulated
perception for planning and decision-making. Communication
pipelines enable seamless interfacing of the real and virtual
workspace in order to enable real-time collaboration amongst
various agents in the HATs. The results of the three experiments
demonstrate the capability of this system’s framework to
effectively host highly flexible environments with interactive
agents spanning a combination of both the real and virtual
worlds. The first experiment focuses on establishing human-
robot perception and effectively demonstrates closed-loop
control of both virtual robots and real robots with coupled
virtual avatars. Using body gestures or voice commands, the
human operators effectively communicate commands with
robot agents and control the trajectory of each agent in real
time. With perception and control successfully established
between the robots and humans in this testbed, the second
experiment demonstrates that the developed facility is able to
establish decentralized communication between varying robot
agents. By implementing a leader-follower and formation control
scenario on robot teams, this experiment effectively conveys the
modality of RealTHASC to host real-time communication
between the simulated and physical worlds and extends its
reach to be used for multi-robot experiments. Finally, the
third experiment shows the highly programmable nature of the
sensors and virtual environments supported by the facility and
their compatibility with the proposed human-AUV collaboration
framework. Apart from such pre-deployment testing of
collaboration algorithms, the RealTHASC facility can also be
used as a closed-loop interaction interface to facilitate
downstream tasks, such as online learning and data collection,
for safety-critical applications including social navigation. Future
work will extend the capabilities of this facility to include new
interfaces for human operators such as haptic feedback devices
and will leverage this facility to study 1) AI-supported teamwork
in collaborative virtual environments, 2) decentralized AI-
supported multi-agent planning and perception, 3) integration
of emerging neuromorphic and insect-scale technologies, and 4)
distributed sensing and control for very-large networks of agents.
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