Algebraic and Adaptive Learning in
Neural Control Systems

Silvia Ferrari

A DISSERTATION
PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY THE

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

NOVEMBER 2002

Abstract

A systematic approach is developed for designing adaptive and reconfigurable
nonlinear control systems that are applicable to plants modeled by ordinary differential
equations. The nonlinear controller comprising a network of neural networks is taught
using a two-phase learning procedure realized through novel techniques for initialization,
on-line training, and adaptive critic design. A critical observation is that the gradients of
the functions defined by the neural networks must equal corresponding linear gain
matrices at chosen operating points. On-line training is based on adual heuristic adaptive
critic architecture that improves control for large, coupled motions by accounting for
actual plant dynamics and nonlinear effects. An action network computes the optimal
control law; a critic network predicts the derivative of the cost-to-go with respect to the
state. Both networks are algebraically initialized based on prior knowledge of
satisfactory pointwise linear controllers and continue to adapt on line during full-scale
simulations of the plant.

On-line training takes place sequentially over discrete periods of time and involves
several numerical procedures. A backpropagating algorithm called Resilient
Backpropagation is modified and successfully implemented to meet these objectives,
without excessive computational expense. This adaptive controller is as conservative as
the linear designs and as effective as a global nonlinear controller. The method is
successfully implemented for the full-envelope control of a six-degree-of-freedom
aircraft smulation. The results show that the on-line adaptation brings about improved
performance with respect to the initialization phase during aircraft maneuvers that

involve large-angle and coupled dynamics, and parameter variations.

Acknowledgments

| am especially grateful to my advisor, Professor Robert F. Stengel, for honoring me as
his protégéé during these past five years. He isthe role model | wish to follow in my
future professional and personal life, because of his distinct creativity, wisdom, and
integrity. Thanksto him, my graduate experience has surpassed any of the dreams and
expectations | had as an incoming student. | thank Prof. Philip Holmes and Prof. Jeremy
Kasdin for serving as readers and for providing valuable insight and advice. The
completion of this dissertation would not have been possible without the literature
contributions cited herein. In particular, | wish to thank Dr. Paul Werbos, Prof. Andrew
Barto, Prof. Bernard Widrow, and Prof. Robert Vanderbei for inspiring me through their
work and conversations.

| am indebted to those institutions which contributed financially to my graduate
education: Princeton University provided support through its Wallace Memorial
Honorific Fellowship in Engineering; the Zonta Foundation supported me through the
Zonta Amelia Earhart Fellowship; the American Society of Mechanical Engineers
awarded me a Graduate Teaching Fellowship; the American Astronautical Society
contributed with a Donald K. “Deke” Slayton Memorial Fellowship; and the American
Institute of Aeronautics and Astronautics supported me by means of the Guidance,
Navigation, and Control Graduate Award. The funding for this research was provided by
the Federal Aviation Administration and the National Aeronautics and Space
Administration under FAA Grant No. 95-G-0011. It has been an honor and a privilege to

take part in the FAA/NASA Joint University Program.

| owe a debt of gratitude to many members of the Princeton University community:
Etta Recke, Arla Dittrick, Sharon Matarese, Maureen Hickey, Barbara Myers, Jessica
Buchanan, Anna Marie Peloso, and many other members of our staff helped mein
countless ways, countless times. | wish to thank everyone in the LCA Laboratory, Dr.
Sai Gopisety, Prof. Qian Wang, Nilesh Kulkarni, and Russ Arrell for their help and
companionship. | am especially grateful to my friends Samaya Nissanke and Arron
Melvin, whose paths | have crossed here at Princeton and with whom | share a common
mind and soul. Together, with Giorgia Seghedoni, Fabio Raimondi, Fabio Bonvicini,
Samantha Rossi, Sharon Santos, and Daria Biancardi, they have nurtured my happiness
and peace of mind, all along.

| wish to dedicate this thesis to those who make any of my accomplishments possible:
my family. Kervin Johnson, my other half, took daily care of my health and spirit. He
always has been by my side, sharing every moment and emotion, and making them
evermore meaningful. Carlo Ferrari and Tina Serino, my parents, provided me with all
that in life is precious: love, empathy, liberty, and adventure. My love and appreciation
for them are simply endless.

This dissertation carries the number 3106-T in the records of the Department of
Mechanical and Aerospace Engineering of Princeton University.

Silvia Ferrari

Princeton, New Jersey

August, 2002

Tables of Contents

N 01 = PR STSRRR ii
ACKNOWIBAGIMENES.....c.eeie bbb e nine e iv
TADIES OF CONMTENES. ...t nae e Vi
LISt OF FIQUIES ...ttt et ne e eneenaneen X
IS o) o =TSRSS Xvii
Chapter 1
IIEFOTUCTION.....c ettt ettt et sbe e e e e b e ne e 1
1.1 Background and MOTIVALION...........ooiiiiiieiiie e 2
1.1.1 Approximate Dynamic Programming and Reinforcement Learning................. 3
1.1.2 Neura Networks as Universal Function ApproxXimators............cceeveeeneeeiueenne 8
1.1.3 Adaptive Flight Control SyStemS.........ccoiiieiiiiiiecieeree e 11
1.2 ReSEArCH ODJECLIVES.ceiiiiieieeiee e 12
1.3 TheSIS OrganiZationcccueiiueeiiieiie ettt 14
1.3.1 SUMMAry Of RESUILScoiuiiiiieiiieeee e 16
Chapter 2
Foundations of the Neural Control DESIGN..........coovieiiiiiieiiee e 18
2.1 The Nonlinear Optimal Control Problem..............cooieiiiiieieeeeeeeeeeee 19
2.2 The Linear QuadratiC REQUIBLONcooeiiiieiieeieeeiee e 22
2.3 Classical/Neural Synthesis of Nonlinear Control Systems...........cccooceeiieiieennenne 26
2.4 Dual Heuristic Programming Adaptive CritiCScceruiereeiiiesiee e 29

Vi

2.5 Chapter SUMIMBIYooiiiiiieeiie ettt b e ssn e sae e neesneenaneens 32

Chapter 3

Advancements in Neural Network Learning Theory: Algebraic Training and Modified

Resilient Backpropagation TECNNIQUESoouiiiiieiieeiee et 33
3.1 AIGEDIaIC TraiNING.......coiieiiieeeee e 34
3.1.1 Exact Gradient-based SOIULIONcooiriiiiiie e 38
3.1.2 Exact Input/Output-based SOIULION...........coviiiiiiieeeee e 44
3.1.3 Approximate Input/Output-based SOIULIONcccooveiiiinieieeeeee, 48
3.1.4 Approximate General SOIULIONc.eeiiieiiiiiie e 52
3.2 Modified Resilient Backpropagationcoceeiiieiieeiienieesie e 56
3.3 Algebraically Constrained Supervised Training.........cccoceereeereeeiieenieeeneesieesneens 60
3.4 Chapter SUMIMEIYeeeiiieeiieiiee ettt ettt e sbe e b e e sseeenneeeneennneens 66
Chapter 4

Initial Specification of the Neural Network Control System by an Algebraic Training

Y o] 0 (0o TP URTOPRP 67
4.1 LINEA DESIGN ...ttt ettt ettt b et nne e neas 70
4.1.1 Proportional-Integral CONtrolcoceiiiiiiienieeee e 72
4.1.21deal MOGEL........ooieiee e 74
4.1.2.1 Longitudinal Aircraft MOcoooiiiiiiiieeee e 76
4.1.2.2 Aircraft Lateral-directional Modelcocooiiiiiiiiiiieee 79

4.1.3 Implicit Model FOIOWING........ccoiiiiiiiiieeeee e 82

vii

4.2 Proportional-Integral Neural Network Controlcocoeevieneinieiieeseeneeee 91

4.3 Feedback and Command-Integral Neural NetwOrks............cccoeeeiieiniineenieeen, 93
4.4 Forward Neural NEIWOIKcooiiiiiieiieieeee e 102
4.5 Critic Neural NEIWOTK.........cc.ooiiieiieie e 115
4.6 Chapter SUMIMEIYccuveeieieieeetee sttt ettt beesss e e sae e e beesiseenneeeneennes 119
Chapter 5
Adaptation of the Neural Network Control System..........ccoceveieeiiieneiiiee e 121
5.1 Dual Heuristic Adaptive CritiC DESIgNceeiiiriieiiieeee e 122
5.1.1 Action and Critic Network Initialization............c.cccovveriienieiiieniecrec e 125
5.1.2 Action and Critic Network On-line Adaptation.............ccevveereeiieeneeeiieene 136
5.1.3 Neura Network On-line Training Algorithm............ccociiiiiiniiiicee 141
5.2 Adaptive Flight Control RESUILS...........coiiiiiiiiiieeeeeeeee e 147
5.2.1 FUll-ENVEIOPE MANEUVEN'S ... 149
5.2.2 Control System FallUre..........couooiiiiiieiee e 159
5.2.3 Parameter VarialiONS..........ceeiuieiiieiieiie et 166
5.3 Algebraically Constrained Adaptive Critic Architecture...........cccovceeeviiennieenns 169

5.4 A Word on Computational Complexity: Execution Time of Algebraic and

Adaptive-Learning AlQOrthmSoooii i 180
5.5 Chapter SUMIMEIYoiiiiiiiieiie et sne e ne e 183
Chapter 6
CONCIUSIONS.......ceee ettt ettt et sae e e b e e bt e s sneenneeenneeneneens 185

viii

6.1 SUMIMEIY ...ttt e et e e snne e e ene e nanes 185

6.2 CONCIUSIONSeeiiiiitie ettt b e naneeneas 187

6.3 RECOMMENABLIONS.......coiuiiiiiieiie ettt neas 189
APPENdiX A: NOMENCIBIUIE........coiiieiiieiie et 193
ApPPendix B: AIGOrtNMS.........coiiiiieii e e 200
APPENAIX C: PrOOTS ..ottt 207
Appendix D: Description Of TrHm Dal@ SELS........cooveiieiieeeeeie e 210
Appendix E: Flight Control Software ArchiteCtureccevveeiiiiiieie e 216
AppendixX F: AIrcraft MOGEc.ooiiiiiieiie e 222
REFEIEINCES......ceeee et 225

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

List of Figures

The principle of optimality applied to atwo-stage process................... 3
Discrete or backward dynamic programming approach.c......... 4
Approximate or forward dynamic programming approach................... 5
Dual heuristic programming adaptive critic control design. 26

Sample scalar-output network with g inputs and s nodes in the
NIAAEN TAYES . . 35

Output surface of atwo-node sigmoidal neural network
corresponding to the algebraic solution matching the training data
provided in the legend for tWo POINES.coevvieeerieeiiiee e 44

Actual surface being approximated and corresponding training
samples, represented by the asterisks.......coocvveevee e 46

Final function approximation obtained with a neural network
algebraically trained using output weight equations..............ccceceevneens 47

Superposition of m s;-nodes neural networks into one equivalent s-
nodes neural network with same input, x, and the same output, u. 50

Actual surface being approximated and corresponding training
samples, superimposed as asterisksonthe graph.cccceevceeevieeennee 55

Neural network approximation obtained from output weight
(<0187 (o] TR 55

Final neural network approximation obtained from the output and
gradient equations combined.ccoooieeriii i 56

Two sg-node neural networks are combined into one s-node neural
network with the same output u and input a, and both inputs x; and
X2; the dark lines represent the new connections being introduced. 62

Abstract representation of the full operating region OR and the

relevant operating subsets: the set OP of design operating points
(designated by crosses), its convex hull or interpolating region IR,

and the set ER of extrapolation POINES...........ccvvueenrerieenieesie e 68

Business jet aircraft steady-level flight envelope (IR) and set OP of
design operating points used for the neural network pre-training

PRBSE. ...t 70
Example of linear proportional-integral feedback control system.
(A'sareomitted for SIMPLCITY.)....cccueeiiiiieiiee e 73
Characteristic roots of the longitudinal ideal model, F, , () and
of the lateral-directional ideal model, Fp, J, (0). coovviniiiii 81

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.
Figure 25.

Characteristic roots of the longitudinal model (x), open-loop
system (¢), and closed-loop system (+), obtained with two
examples of weighting matrices sets.

Qn =diag[0.010.010.010.01], R, =0,and Q. =diag[11]

(8, and Q,, =diag[10°10°200.01], R, = diag[1 1], and

Q= GAG0.1 0.1] (B).evvrererrrrsnerrrssesrrsssnernsssseneesssesessssssensssees

Characteristic roots comparison at the design point (Vo, Ho) =
(120 m/s, 3 000 m), achieved with the actual weighting matrices

used in al longitudinal Pl designs.ccccoveeiiiiiiienie e

Longitudinal state (&) and control (b) response to a 3-nVs velocity
and 4-deg path angle step command input, at the design point
(Vo, Ho) = (120 m/s, 3000 m). The actual design (solid line) is
compared to adesign with Q,,, = diag[0.01 0.01 0.01 0.01],

Ro, =0,and Q; =diag[1 1] (dashed line), and to a design with

Q,, =diag[10™107200.01], R, =diag[1 1], and

Q;, = diag[0.10.1] (dashed-dOtted [iNE).ccerrrseerrrrrreerrrnee

Characteristic roots of the lateral model (x), open-loop system (0),
and closed-loop system (+), obtained with two examples of
weighting matrices sets: Q,, , = diag[0.01 0.01 0.01 0.01],

ROLD =0, and QéLD =diag[1 1] [82] (a), and
Qm, =diag[1101 107, Ry, =0 and Q. =diag[0.10.1]

(5) TSSO

Characteristic roots comparison at the design point (Vo, Ho) =
(120 m/s, 3 000 m), achieved with the actual weighting matrices

used in all lateral Pl deSIgNS.coovieiieiiieieeeeee e

Lateral state (a) and control (b) response to a 5-deg bank angle and
3-deg sideslip step command input, at the design point (Vo, Ho) =
(120 m/s, 3000 m). The actual design (solid line) is compared to
designs with weighting matrices

Qm =diag[0.010.010.010.01], Ry , =0, and

Q. , =diag[1 1] (dashed ling), and Q,, = = diag[1101107],

R, =0,and Q. . = diag[0.10.1] (dashed and dotted line).

Nonlinear proportional-integral neural network control system.

Final architecture for the pre-trained network NN B, - A similar
architecture is used for al scalar feedback neural networks (biases

d and b are not shown for SIMplICity).cccoceeriiiieniee e

Xi

.87

.87

.89

.89

..90
.91

.. 96

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.
Figure 32.
Figure 33.

Figure 34.

Figure 35.

Figure 36

Figure 37

Final architecture for the pre-trained network NNILl . A similar
architecture is used for all scalar command-integral networks

(biases are not shown for SIMPIICIEY).oocveeiiieiieeee e 98
Relevant aircraft state and control response to 2-deg path angle
step command, at the design point (Vo, Ho) = (200 nv/s, 11 Km). 99

Relevant aircraft state and control response to 5-deg bank angle
and 3-deg sideslip step command, at the design point (Vo, Ho) =

(200 MYS, 12 KIM). oot

Relevant aircraft state and control response to 97-m/s-velocity and
3-deg-path angle step command, at the interpolation point (Vo, Ho)

(95 MVS, 2 KIM). it

Relevant aircraft state and control response to 6-deg-roll angle step

command, at the interpolation point (Vo, Ho) = (140 m/s, 6 Km)........
Steady-climbing coordinated turn, taken from [87]..........cccoceeveeenen.
Body and inertial axes systems, adapted from [88].ccccceeeeernnne

Search of reduced {V, H} envelope associated with one
combination of values (y; 1, p) (dashed line), starting from the
steady-level envelope (solid line). The search processis

schematized for three sample altitudes. ...

{V, H, } envelope for (1, B) = (20°, 5°) (a), and {V, H, 1}

envelope for (J;) = (0°% —5% (8)eeeveueeeeeeeeeeeeeeeeeeee e,

Forward neural network architecture, with a generic number of

0100 1S U ESORPRRN
. Trim control surfaces modeled by the forward neural network,

plotted over a{ V., Hc}-input space by holding the remaining

inputs fixed at ()&, e, B) = (3% 14°% 4°%) v

. Actua trim control surfaces plotted over a{ V., Hc} -input space by
holding the remaining inputs fixed at ()¢, t&, &) = (3°, 14°, 49)..........

Figure 38. Trim control surfaces modeled by the forward neural network,

plotted over a {V, L&} -input space by holding the remaining inputs

fixed a (He, 1y) = (5 KM, 4%, 3%). oooooeevveeeeeeeeesseeeeeeeseseseeerseeeene

Figure 39. Actual trim control surfaces plotted over a{ V., (&} -input space by

holding the remaining inputs fixed at (Hc,)¢, B) = (5 Km, 4°, 3°)......

Figure 40. Final architecture for the pre-trained network NNCLl . A similar

architecture is used for al scalar critic networks (input biases are

omitted for SIMPLICITY).....ocoviiiiiiie e

Xii

..100

..100

..104

.. 107

.. 108

114

Figure 41.

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.
Figure 47.
Figure 48.
Figure 49.

Figure 50.

Figure 51.

Figure 52.

Figure 53.

Figure 54.

Event sequence performed during the time interval At = ty,1 — ty, by
the DHP adaptive critic architecture (the solid lines represent the
eventsthat aretaking Place).cooeeriieriiiiee e 123

Sample vector-output network with q inputs, s hidden nodes, and r
OUEPULS. ...ttt e ettt e e ettt e e e e e e s e e e e e e e e e s e nnnnnneeeeeeeeeannnnes 126

Two neural networks (with s; and s, nodes, respectively) are

combined into one s-node network with the same input x and a
combination of their outputsu; and u,. The bold lines represent

the new connections being introduced. ..., 127

Two neural networks (with ; and s, nodes) are combined into one

s-node network with a combination of inputs, x; and X», and

outputs, u; and u,. The bold lines represent the new connections

PEING INtrOAUCED. ... 129

Two neural networks (with s; and s, nodes) are summed to
produce one s-node network with inputs x; and x, and with output
(u1 + uy). Thebold lines represent the new connections being

11400 [UTo <o SRS 129
Architecture of the feedback neural network NNg (input and output

biases are not shown, for SIMPIICILY).oooveiiiiiiiieeeeeeeee 130
Architecture of the command-integral neural network NN; (biases

NOE SNOWN). .ttt ettt 132
Architecture of the critic neural network NN¢ (input and output

biases are not shown, for SIMPLICILY).oooveiiiiiiiieeeee e 134

Architecture of the action neural network NN (input and output
biases are not shown, for SIMPLICILY).oooeeiiiiiiiieeeeeeeeee 136

Action critic neural network controller. The dashed lines represent
the flow of information for the adaptation, during the time interval

(tk+1 - tk) .. 137
Dual heuristic programming action network adaptation, during At

= tk+1 - tk. .. 139
Dual heuristic programming critic network adaptation, during At =

tk+1 - tk. ... 140

Conceptual illustration of on-line training by aresilient
backpropagation algorithm that updates the weights through a
number of epochs (i), during At = tie1 = theeereeeereereeeeeeeeeeeee e 142

Performance comparison between the MATLAB® resilient
backpropagation algorithm and its modified version, for the action
network training at tx = 0.2 SEC. ...oueviiieiieeee e 143

Xiii

Figure 55.

Figure 56.

Figure 57.

Figure 58.

Figure 59.

Figure 60.

Figure 61.

Figure 62.

Figure 63.

Figure 64.

Figure 65.

Comparison of the action network’ s weights trained with the

MATLAB® resilient backpropagation algorithm and with its

modified version. Theinitial weightsw® are selected at t, = 0.2

sec and trained for 150 epochs, producing the final weights. 145

Comparison between the on-line trained adaptive critic neural

network controller and the initialized neural network controller

subject to 5-deg climb angle and 30-deg roll angle step command,

a (Mo, Ho) = (95 1MVS, 2 KM .o 150

Comparison between the on-line trained adaptive critic neural

network control history and the initialized neural network control

history subject to 5-deg climb angle and 30-deg roll angle step

command (Fig. 56), a (Mo, Ho) = (95 m/s, 2 KMm).coevviveiiiieeeiieeee 152

Mean-sgquared network error for the action (a) and the critic (b)
versus the number of on-line training epochs, for the coupled
maneuver in Fig. 56-57, a tk = 0 SEC.....ccvceeiiiie e 153

Mean-sgquared network error for the action (a) and the critic (b)
versus the number of on-line training epochs, for the coupled
maneuver in Fig. 56-57, a tk = 0.4 SEC.......ovviiee i 153

Comparison between the on-line trained adaptive critic neural

network controller and the initialized neural network controller

subject to —70-deg roll angle step command, at (Vo, Ho) = (160

VS, 7 KIM). e 155

Exponential weighting on the throttle (a) and on the stabilator (b)
controls, producing the bounds represented by the dashed bars.

The weighting function in (b) also is used for the aileron and

(070 (0 1= oo 0] <R 157

Comparison between the adaptive critic neural network control
history and the initialized neural network control history subject to
—70-deg roll angle step command, at (Vo, Ho) = (160 m/s, 7 Km). 158

Comparison of the trgjectories obtained with the on-line trained

adaptive critic neural network controller and with the initialized

neural network controller subject to a—70-deg roll angle step

command, at (Mo, Ho) = (160 NVS, 7 KM). ...oouiiiiiiiiiieieeeeeee e 158

Uncoupled neural network controller response in the presence of

failed control inputs, with

ye = [90 (mVs) -6 (deg) 50 (deg) O (deg)]” and (Vo, Ho) = (100 s,

I (1 1) SRR 160

Uncoupled neural network control history in the presence of failed
control inputs, with y. = [90 (m/s) —6 (deg) 50 (deg) O (deg)] " and
(Vo, Ho) = (100 m/s, 3 Km) .. 160

Xiv

Figure 66.
Figure 67.
Figure 68.
Figure 69.

Figure 70.

Figure 71.

Figure 72.

Figure 73.

Figure B.1.
Figure B.2.
Figure B.3.
Figure B.4.
Figure B.5.
Figure D.1.

Figure D.2.

Comparison between the adaptive and the initialized neural

controllers in the presence of multiple control failures (Fig. 67). 162
Adaptive and initialized neural control histories with 50 %-

available thrust and the rudder stuck at =15 deg.ccceevveeieeniieennenns 163
Adaptive controller response to a maneuver experienced for the

first and second time, in the presence of multiple control failures........ 165

Adaptive control history for a maneuver experienced for the first
and second time, in the presence of multiple control failures.. 165

Initialized controller response for the perfectly-modeled aircraft

and in the presence of parameter variations, with

ye = [200 (m/s) -2 (deg) 5 (deg) 3 (deg)] " and at the design point

(Vo, Ho) = (200 VS, 11 KIM).coovoeeeceeeeeeeee e 167

Initialized control history for the perfectly-modeled aircraft and in

the presence of parameter variations, with

ye = [200 (m/s) -2 (deg) 5 (deg) 3 (deg)] " and at the design point

(Vo, Ho) = (200 VS, 11 KIM). oo 167

Comparison between the adaptive neural network controller and
the initialized neural network controller in the presence of
parameter variations, with

yc = [200 (m/s) -2 (deg) 5 (deg) 3 (deg)] " and (Vo, Ho) = (200 s,

Control history of the adaptive neural network controller and of the
initialized neural network controller in the presence of parameter
variations, with y. = [200 (m/s) -2 (deg) 5 (deg) 3 (deg)]” and (Vo,

Ho) = (200 MVS, 11 KIM)...eeiiiiiieiiiee e e e e s e sneee e 168
Sample code for the exact gradient-based algebraic training

=1L To] 1 o0 PR 201
Sample code for the exact input/output-based algebraic training

=1L To] 1 o PR 202
Sample code for the approximate general solution training

=1L To 1 o R 203
Part (a) of a sample program based on the modified-resilient-
backpropagation (RPROP) on-line training algorithm.c........... 205
Part (b) of a sample program based on the modified-resilient-
backpropagation (RPROP) on-line training algorithm.c........... 206
Cell array structure “ENV” used to store the aircraft

multidimensional flight envelope, OR={V, H, yi 1, B} .eevvvvvrveren. 212

Cell array structure “ENVPAR” used to storethe aircraft trim
map, U, i.e., thetrim control settings, “TrimPar”, corresponding
to the multidimensional flight envelope, OR={V,H, y i, B} 213

XV

Figure E.1. Input/output structure of the user-defined functions used in the
dual-heuristic-programming adaptive-critic software
IMPIEMENEALION. ... 218
Figure E.2. Sequence of eventstaking place during the time interval
At = ty4q — t, in the dual-heuristic-programming adaptive-critic
software architecture. The arrows indicate communication
between functions, whose inputs and outputs are described in Fig.

. L 221
Figure F.1. Definition of path angle, angle of attack, and sideslip, adapted
FTOM [B8]... e 224

XVi

List of Tables

Tablel. Performance comparison of algebraic training with two
optimization-based algorithm, for the approximation of a scalar
function by a 45-node neural NEtWOrK.cccooiiiriinniiieeeee, 47

Table2. Longitudinal and lateral military specifications for a Class |
airplane in aterminal flight phase (Category C), requiring Level 1

flying qQUAIITIES [B3]. ... 75
Table3. Tempora behavior of the optimality condition at sample time

intervals, for the coupled maneuver in Fig. 56-57.ccccovieniiennens 153
Table D.1. Sampled values of bank angle, 4, and the sideslip, £, used to

compute the aircraft trim map, Uc......coooeeerieeeiiieeeee e 211

XVii

Chapter 1

Introduction

Recent advances in a variety of technologies and applications call for improved
performance and reliability, while exacerbating the complexity and uncertainty of
systems and their surroundings. In many instances, the operation of systems and devices
can be modified and, possibly, optimized by the intervention of a control system, that is,
an additional mechanism comprised of several components, such as sensors, computers,
and actuators, that act upon an available input. The dynamic characteristics and physical
properties of the system to be controlled (the plant) can be exploited to design automatic
control systems. Some of the main difficulties to be overcome by the designer are the
nonlinear plant dynamics and the uncertainties caused by differences between actual and
assumed dynamic models. A fixed control design whose performance remains
satisfactory in the presence of uncertainty is said to be robust. A controller whose
parameters vary on line during operation is considered to be adaptive and can be
expected to accommodate for a higher degree of uncertainty than a fixed control
structure. If it is capable of adapting to system failures that are reflected by the state of
the plant, then the controller also is reconfigurable.

The objective of thisthesisisto develop a novel approach for the design of adaptive
control systems that are both robust and reconfigurable, and that apply to plants modeled
by nonlinear ordinary differential equations. The potential brought about by using post-
modern computational paradigms, such as neural networks and fuzzy logic, in

conjunction with conventional control techniques has been recognized in the past by

1

several authors[1-4]. In some cases[5-7], aglobal controller was obtained by training a
neural network to approximate the linear gains provided by linear multivariable control.
In other applications [8-10], a conventional control system architecture was augmented
by aneural or fuzzy computational structure that provided for on-line adaptation. In this
thesis, classical and neural control systems are synthesized to combine the most effective
elements of old and new design concepts with the promise of producing better control
systems. The novel approach to nonlinear control design retains the characteristics of
stability and robustness of classical, linear control laws, while capitalizing on the broader
capabilities of a so-called adaptive critic neural network. First, the neural control
system’s architecture and parameters are determined from the initial specification of the
control law by solving algebraic linear systems of equations during a so-called pre-
training phase. Secondly, the neural parameters are modified during an on-line training
phase to account for uncertainties that were not captured in the linearizations, such as

nonlinear effects, control failures, and parameter variations.

1.1 Background and M otivation

The foundations of the nonlinear system design lie in the field of dynamic
programming [11], which is perhaps the most general approach for solving optimal
control problems. Its globally-convergent properties can be exploited in conjunction with
an approximating, parametric structure to solve for a near-optimal solution on line,
accounting for information about the state of the system as it arises. Neura networks are
the parametric structure of choice, because of their ability to approximate unknown
nonlinear mappings over high-dimensional compact spaces, and because of their potential

for on-line learning. A-priori knowledge of the system to be controlled is incorporated in

2

the neural controller in the form of gain-scheduled linear designs. Gain scheduling is a
conventional approach to global control design that correlates the gains of a linear
multivariable control structure with a set of dynamically significant variables in the
system. It is widely used in the aerospace industry because it affords a straightforward
and effective procedure for applying linear control theory to the nonlinear aircraft

dynamics.
1.1.1 Approximate Dynamic Programming and Reinforcement Learning

Dynamic programming (DP) methods use the principle of optimality [11] to find a
strategy of action that optimizes a desired performance metric or cost subject to nonlinear
dynamical constraints. The cost, J, to be optimized typically is defined as a function that
measures performance with respect to quantities that are to be either minimized or
maximized by a given process. The principle of optimality statesthat given the initial
path a-b, and the optimal cost Ju. associated with going from ato ¢ through b, then the
cost Jc also is optimal for the path that goesfrom bto c. Figure 1 illustratesthis
principle for a two-stage process, with (+)" denoting optimality. Backward or discrete
dynamic programming discretizes the state space and makes a direct comparison of the
cost associated with all feasible trgjectories, guaranteeing a solution of the global optimal
control problem [12]. The space of admissible solutions is reduced by examining a multi-

stage decision process as a sequence of one-stage processes.

Jab -

a b \]bc * C

Figure 1. The principle of optimality applied to atwo-stage process.

As an example, the discrete dynamic programming approach is applied to the process
shown in Fig. 2. The last stage's optimal paths are computed for all possible intermediate
state values ¢, d, and e, thereby producing the optimal costs Js , Ju , and Jg ,
respectively. Then, by the principle of optimality, these paths also must be optimal for
the last stage of the optimal trajectories that go from b to f through the respective state
values, e9., e = Joe + Jr , and so on. Comparing the optimal costs over the last stage
reveals which is the optimal (smallest or largest) among these costs, but does not
necessarily reveal which cost is associated with the globally-optimal path from b to f.
Instead, if the last-stage’s costs, J , Jif , and Je , are stored, then the total costs Ju , Jut »
and Jys can be computed and compared to find the globally-optimal path from bto f.

For a process with more than two stages, b is only one of many possible state values.
Hence, the same computation needs to be carried out for all other possible values at this
second-to-last stage (such as g, in Fig. 2), in order to determine all possible optimal paths

for the last two stages (e.g., Jy , Jy , and so on).

Figure 2. Discrete or backward dynamic programming approach.

Although the backward DP approach reduces the space of admissible solutions, it

remains computationally too expensive for higher dimensional systems, with alarge

4

number of stages. The required multiple generation and expansion of the state and the
storage of all optimal costs lead to a number of computations that grows exponentially
with the number of state variables, commonly referred to asthe “curse of dimensionality”
or “expanding grid” [12]. Approximate dynamic programming (ADP) and temporal
difference methods use incremental optimization combined with a parametric structureto
reduce the computational complexity associated with evaluating the cost [13-15]. Unlike
discrete DP, ADP agorithms progress forward in time, and approximate both the optimal
policy and the cost in real time by considering only the present value of the state.
Suppose aisthe initial state of the process shown in Fig. 3, then the cost for the first
stage, Ja, can be accurately computed based on present information. The optimal cost
over all future stages or cost-to-go, Jy , is predicted, or estimated (¢) in the presence of
uncertainty, by a function approximator or parametric structure. A parametric structure
consists of any functional relationship whose adjustable parameters allow it to
approximate different mappings. At the next stage, b-c, this procedure is repeated, only
now the policy and cost approximations have had a chance to improve based on the
information gathered during the first stage. Therefore the next path, fromc tof, is closer

to the optimal trajectory.

Figure 3. Approximate or forward dynamic programming approach.

Adaptive critic designs (ACD) reproduce the most general solution of ADP by
deriving recurrence relations for the optimal policy, the cost, and, possibly, their
derivatives. The god isto overcome the curse of dimensionality, while ensuring
convergence to a near-optimal solution over time [4, 16]. Although they can be viewed
as“complex” or “intimidating” [17], adaptive critics offer a unified approach to dealing
with the controller’ s nonlinearity, robustness, and reconfiguration for a system whose
dynamics can be modeled by a general ordinary differential equation. Perhaps the most
critical aspects of ACD are found in the implementation. The simplest form of adaptive
critic design, Heuristic Dynamic Programming (HDP), uses a parametric structure called
an action network to approximate the control policy and another parametric structure
called a critic network to approximate the future cost or cost-to-go. In practice, since the
parameters of this architecture adapt only by means of the scalar cost, HDP has been
shown to converge very slowly [18].

An alternative approach referred to as Dual Heuristic Programming (DHP) has been
proposed [18, 19]. Here, the critic network approximates the derivatives of the future
cost with respect to the state, thereby correlating the adjustable parameters in the
architecture to alarger number of dependent variables. Although the advantages of DHP
over HDP have been discussed extensively in the literature from a theoretical point of
view, few successful implementations have been reported. Due to the use of derivative
information, the recurrence relations that can be obtained for DHP are more involved and
require an accurate model of the system to be controlled. The critic network

approximates a nonlinear mapping characterized by a much larger-dimensional output

space. Therefore, practical aspects such as function approximation are more challenging
in DHP than they are in HDP.

Many other methodologies have been proposed over the yearsto aleviate some of the
difficulties mentioned above, producing more advanced designs. Globalized Dual
Heuristic Programming (GDHP), for example, has been developed with the purpose of
combining the advantages of both HDP and DHP architectures [14, 20, 21]. Inthis case,
the critic network approximates both the cost-to-go and its derivatives. Action-dependent
(AD) versions of all these approaches are obtained by designing a critic network that has
direct knowledge of the control policy (produced by the action network) through its
inputs, as opposed to only having knowledge of its derivatives through its adaptation (as
in the action-independent ACD designs). The motivation behind this[22] and other [23]
methodologies is to achieve faster learning by the parametric structures and faster
convergence of the overall scheme.

Aside from having common roots in ADP, these methods are related through the idea
of “linking backpropagation with reinforcement learning via the critic network” [24].
The near-optimal trajectory is found and learned without having explicit knowledge of
the near-optimal control action, as normally would be required by supervised learning.
Reinforcement learning is based on the principle that knowledge of the ideal cost-to-go
suffices to modify the course of action accordingly, inreal time. In other wordsthe
control system is expected to learn from its own mistakes, or by anticipating them
through an indirect measure of performance, that is, the cost-to-go function. Thisis
reminiscent of the task faced by an animal in a Pavlovian or classical conditioning

experiment [3]. The “payoff” that is delivered to the animal as aresult of its actions is

referred to as primary reinforcement. Anticipation of events that would eventually
provide primary reinforcement is referred to as secondary reinforcement and constitutes a

framework similar to that of adaptive critic designs.
1.1.2 Neural Networks as Universal Function Approximators

Function approximation is a principal element of ADP methods. The recurrence
relations that satisfy existing convergence proofs [4, 16] imply global convergence of the
approximating schemes at every stage or time interval. The behavior of the adaptive
controller is closely related to the effectiveness of the function approximator of choice, as
it determines future performance. The adaptive critic approach also requires the
approximating tool to be flexible. 1n most practical problems, some a-priori knowledge
of the system is available from analytical studies, modeling, or experiments. Regardless
of how this information is obtained, it always can be gathered into one or more sets of
data and exploited to initialize the system. Additional information becomes available
over time, during the adaptation, and also needs to be incorporated in the control system.
Hence, the function approximators must be able to learn both in batch and incremental
mode and to deal with the multidimensional, nonlinear action and critic functionals.

Neural networks are the only class of universal function approximators that possess all
of these properties. Other parametric structures, such as splines and wavelets, have
become standard tools in regression and signal analysis involving input spaces that are up
to three dimensional [25-28]. However, much of univariate approximation theory does
not generalize well to multi-dimensional input and output spaces [29]. For example, the
majority of spline-based solutions for multivariate approximation problems involve

tensor product spaces that are highly dependent on the coordinate system of choice [30-

32]. Artificial neural networks can easily deal with multivariate inputs and outputs
because of their inherent parallel architecture. Furthermore, given a sufficient number of
nonlinear units, they can approximate any continuous nonlinear function on a compact
space with an arbitrary error [33-35], and match any input/output or gradient data set
exactly [36, 37]. Because of their unique capabilities, neural networks likely are the best
candidate for ACD implementations. The mathematical investigation of their
approximation properties should be considered as an integral part of ACD.

An artificial neural architecture consists of one or more layers of nodes or transfer
functions. Each node is characterized by one scalar-input scalar-output function that can
be either linear or nonlinear and can take virtually any shape. Sigmoidal neural networks
are characterized by one or more layers of sigmoidal transfer functions with a fixed shape
dictated by an exponential or hyperbolic-tangent relationship. They are characterized by
global support, and are appropriate for modeling functionals that are expected to be
nonlinear but smooth. Another popular class of neural networks implements radial-basis
transfer functions whose shape (i.e., width and center) is customized, by varying the
parameters of each basis function. These networks have many desirable properties, such
as fast learning, but they do not generalize local information as well as sigmoidal
networks[8]. Therefore, they perform best when large data sets are available [38]. This
thesis deals exclusively with the class of single-hidden-layer sigmoidal neural networks.
Although, in some cases, multiple-nonlinear-layer architectures require alesser number
of adjustable parameters to approximate the same function, it is not known if these results

are generally applicable.

Thetypical search criterion, used in virtually all supervised learning algorithms,
consists of minimizing some measure of the error between the desired output (and/or
derivative) and the network’s actual performance. In particular, many backpropagation-
based techniques have been devised for this purpose [39]. Although the problem of
minimizing some form of sigmoidal-network error with respect to its adjustable
parameters appears computationally tractable, it is characterized by many local minima
whose number grows with the dimensions of the surface being approximated. Thisin
turns leads to problems such as overfitting, where the training algorithm convergesto a
solution that minimizes the network error, but does not produce proper generalization
properties. In order to smooth the interpolating surface, the number of hidden nodes
typically is decreased until a satisfactory tradeoff between close matching of the training
set and good generalization propertiesis found. Another difficulty associated with this
approach is that optimization-based training algorithms that are robust and fast
converging, such as that dueto Levenberg and Marquardt [40, 41], aretoo
computationally expensive for large, non-sparse problems (e.g., with large data sets, and
many adjustable parameters).

The philosophy advocated in the following chapters does not rely solely on a
parsimonious use of the adjustable parameters. Infact, a clear implication of all
parametric structuresis that the class of functions they can approximate increases with
the number of parameters. Rather, it revealsthat alowing for a certain degree of
redundancy in the approximating structures may be fruitful for on-line applications,
where the class of functions to be approximated should be minimally restricted a priori.

The limitations that arise with large architectures are associated with the training

10

algorithms rather that with the neural networks themselves. Therefore, one aim of this

thesisis to investigate alternative neural network training techniques.
1.1.3 Adaptive Flight Control Systems

The control design approach developed in thisthesisis applied to the adaptive control
of aircraft. This section provides an overview of other existing control designs that have
been proposed over the years to address uncertainties and nonlinearities in the aircraft
dynamics. Gain scheduling is by far the most commonly used design in actual
applications, such as digital ‘fly-by-wire’ control systems. It consists of designing locally
optimal linear control laws for a selected number of nominal flight conditions or
equilibria. 1n between the chosen equilibria, the linear controllers are interpolated
through auxiliary variables that capture the most relevant system dynamics, also referred
to as scheduling variables, in order to produce a global design [42-44]. A disadvantage
of gain-scheduled controllersisthat their performance may deteriorate when extreme
maneuvers and flight conditions that were not accounted for by the linear designs arise.
Also based on the principle of scheduling system linearizations are the extended
linearization [45, 46] and the nonlinear tracking approaches [47]. Both methods are
computationally intensive for multivariate aircraft models and prolonged time horizons,
and remain based on linearized dynamics.

In an effort to better account for nonlinearities, the broad class of techniques
commonly known as feedback linearization has been extensively investigated for
advanced flight control systems [48-50]. With this approach, accurate knowledge of the
aircraft nonlinear dynamics is required in order to represent it as an equivalent linear

system by means of a coordinate transformation. Robust nonlinear schemes that exploit

11

nonlinear dynamic inversion for feedback linearization also have been developed [52-56]
to address uncertainties, such as unmodeled dynamics, as well as parametric and
nonlinear uncertainties.

Adaptive control systems that account for system dynamics as they take place aim at
improving performance while retaining a certain degree of robustness to unmodeled
dynamics and uncertainties. Siding mode controllers[57], for example, switch control
laws to track a desired trgjectory, combining both high precision and robustness. In many
recent designs, function-approximation tools are used in combination with one of the
conventional approaches mentioned above. For example, an adaptive controller can be
obtained by using B-splines to approximate aerodynamic data for use in a nonlinear
inverse dynamic architecture [58]. Another successful approach consists of using neural
networks for scheduling real-time switching controllers [59, 60]. Neural networks also
have been used extensively in conjunction with feedback linearization, to compensate for
unknown or unmodeled nonlinear dynamics, as well as control failures[61-63]. In
principle, adaptive critics allow for a more general approach to formulating the control

law and to incorporating prior control knowledge.

1.2 Research Objectives

The primary goal of this dissertation isto develop a control system that is as
conservative as the classical designs and as effective as a global nonlinear controller.
The nonlinear control system must retain the same characteristics of stability and
robustness of an equivalent gain-scheduled controller. Furthermore, it must adapt on line
to provide near-optimal performance for all operating conditions, as well as for possible

control failures and parameter variations, without that they are necessarily accounted for

12

apriori. The controller can be assumed to operate in continuous time and to be based on
full-state feedback, with perfect measurements. Although the proposed design is
expected to offer dynamic compensation in the presence of constant and slowly-varying
disturbances, unmodeled inputs and stochastic effects are not investigated in this thesis.
An accurate model of the plant is obtainable from a full-scale simulation of the aircraft
that is built from mathematical models, full-scale wind tunnel data, and actual physical
and performance characteristics of an idealized twin-jet business aircraft [64]. However,
the model is not perfect; for example, it does not predict the control system failures and
the parameter variations simulated in this thesis.

An important objective is the development of a novel procedure for incorporating the
classical designs, i.e., gain-scheduled linear controllers, in an existing adaptive critic
architecture. Here, these linear designs are obtained for a subset of operating conditions
under assumptions of decoupled longitudinal and lateral-directional dynamics, small
perturbations, and small time-varying dynamic effects. The adaptation is expected to
improve performance with respect to the gain-scheduled designs for maneuvers and
conditions that do not meet the above assumptions, the first time that they are
encountered. Therefore, the simulation, which plays the role of the actual aircraft, is
allowed to explore the entire operational domain. Another objective of this dissertation is
to develop training techniques that allow adaptive controllersto retain prior global
information, while improving upon them locally. This often is recognized as a major
conundrum in adaptive control and constitutes a challenge to be overcome by the learning

algorithm.

13

The most general approach for incorporating prior domain-specific knowledge
consists of initializing the neural parameters. This allows the designer to take into
consideration the known dynamics, without restricting the overall approach to their
particular structure. This thesis aims not only at investigating new and effective ways to
initialize the neural parameters, but also at devising methodologies to preserve a-priori
knowledge during adaptation. Finally, since the class of functions that can be
approximated by the action and the critic strictly depends on the number of nonlinear
units in these neural networks, a systematic procedure for determining their size also is
developed. Special consideration is dedicated to reducing the computational complexity

of the numerical solution.

1.3 Thesis Organization

The main body of the thesisis organized in four chapters. Chapter 2 lays the
foundations of the nonlinear adaptive control design. The proposed philosophy is
formalized by reviewing the Linear Quadratic Regulator (LQR) and by linking this
classical design to the adaptive critic architecture of choice, i.e., Dual Heuristic
Programming Adaptive Critics. This chapter provides a theoretical framework and
background, and suggests a general solution procedure that can be applied to awide
range of nonlinear optimal control problems. The classical LQR solution is combined
with the neural network-based design in a novel ideareferred to as Classical/Neural
Synthesis of Nonlinear Control Systems. Chapter 3 supplies a general introduction to the
new learning techniques that were specifically developed with the control design

objectivesin mind. A sample architecture of a single-layer scalar-output sigmoidal

14

network is introduced in Section 3.1, and used in the remainder of the chapter to illustrate
the algebraic training and modified resilient backpropagation algorithms.

Chapters 4 and 5 describe the control design procedure in a sequential fashion. Each
chapter begins with the most general formulation of the design objectives, and
progressively focuses on the specific application treated in this thesis, i.e., Proportional-
Integral Neural Network Control of Aircraft. Chapter 4 explains the pre-training phase,
where awell-established linear-design procedure, referred to as proportional-integral
control with implicit model following, is used to produce a set of linear controllers. The
novel algebraic training approach is used to incorporate the linear controllersin the
nonlinear neural networks by initializing their parameters, simultaneously determining
their architecture. The neural networks are pre-trained and tested in Sections 4.3-4.5,
based on the control knowledge obtained in Section 4.1. Section 4.2 describes the neural
network control structure motivated by the linear design and by the adaptive critic
architecture.

Chapter 5 shows how the neural controller that was pre-trained in Chapter 4 is adapted
online. Section 5.1 deals with newly proposed adaptive critic implementation details and
algorithms that may prove useful for other ACD applications, aswell. Section 5.2
presents the adaptive control results, and compares its performance to that of the pre-
trained control structure obtained in Chapter 4. The end of Chapter 5 (Sections 5.3-5.4)
is dedicated to preliminary results regarding the stability of the on-line training algorithm
(presented in Section 5.1.3) and the computation time required by the proposed numerical
schemes. Both sections are meant to consolidate the results of Section 5.2, aswell asto

provide a stepping-stone for future work. Finally, the Appendices contain the

15

nomenclature (Appendix A) and the key algorithms coded in MATLAB (Appendix B),
the proofs (Appendix C), the data sets (Appendix D), and the software architectures

(Appendix E) that were omitted from the main body of the thesis for sake of continuity.
1.3.1 Summary of Results

The adaptive controller improves performance with respect to the classical designs
during large angle and extreme maneuvers, when nonlinear and coupling dynamic effects
become significant. Inthe case of alarge-bank-angle maneuver, it even is capable of
preventing loss of stability of the closed-loop system. The control design is applicable to
the general form of the governing ordinary differential equation, as the adaptation
accounts for those dynamics that were ignored or neglected by the conventional design.
The approach also exploits the reconfigurable nature of neural networks, and is able to
deal with unanticipated failures of the controls. The adaptation is sufficiently fast to
learn from unforeseen conditions soon after they arise, relative to the time scale of the
aircraft dynamics.

The results also show that convergence always is achieved by the adaptive critic
architecture, provided that the neural network inputs are bounded. The two-phase
approach to design and the novel training techniques together achieve the learning
objectives described in Section 1.2. It is demonstrated through both smulations and
analytical results that the adaptive neural networksimprove their performance locally on
line, while preserving prior knowledge over the unexplored state space. They also are
capable of building upon performance that was assimilated or “learned” on line, allowing
the control system to enhance its capabilities as it revisits the same maneuvers again and

again, over time.

16

A systematic approach for designing adaptive control systems is developed and
demonstrated on a reasonable-sized problem. The adaptive critic methodology allows for
extensions that can address many aspects of the control design, such as robustness,
reconfiguration, system identification, and inequality constraints. The supervised and
reinforcement learning techniques developed are fairly general in nature and, thus, can be
used in many other neural network and adaptive critic applications. In particular, the
algebraic training technique shows great potential for investigating neural approximation
properties and for guaranteeing performance baselines both before and during on-line

training.

17

Chapter 2

Foundations of the Neural Control Design

The problem of determining a functional that optimizes a desired metric over timeis
one of comprehensive relevance, as it lies at the basis of many control and identification
schemes. Optimal control laws and satisfactory stability and robustness results can be
derived for linear systems, in particular when these systems also aretime invariant. Asa
consequence, awide range of linear control and identification designs have been
developed and are commonly implemented in the industry. In actuality, all plants are
characterized by nonlinear dynamics and are subject to change due to both internal and
external effects. Furthermore, advances in a variety of technologies and applications
demand better performance, while exacerbating the complexity and uncertainty of
systems and their surroundings.

There is considerable precedent for applying gain-scheduled linear controllersto
nonlinear systems, especially those that can be locally approximated as linear-parameter-
varying systems. Gain-scheduled designs adapt to changing operating conditions, but
their performance typically deteriorates when rapid changes occur and when highly
nonlinear or unforeseen regimes are encountered. Artificial neural networks potentially
can compensate for these shortcomings, because of their ability to approximate unknown
nonlinear mappings with high-dimensional input spaces and their promise for real-time
learning. Extensive numerical studies[5, 33, 65] have shown that they are capable of
dealing with those difficulties typically associated with complex control applications,

such as nonlinearity and uncertainty. However, practical applications also call for a

18

better understanding of the theoretical principlesinvolved [65]. In particular, thereisno
simple way to apply the insights afforded by classical control methods to the
specification and preliminary design of neural network controllers.

In this chapter, a novel approach for designing adaptive control systems is introduced.
The method, referred to as classical/neural synthesis of control systems, takes advantage
of prior knowledge and experience gained from scheduled linear controllers, while
capitalizing on the broader capabilities of adaptive, nonlinear control theory and
computational neural networks. The nonlinear control system, comprising a network of
networks, is motivated by a corresponding linear structure and specified using a two-
phase learning procedure. A key, novel observation isthat the gradients of the functions
defined by the neural networks must equal corresponding linear gain matrices at chosen
operating points. On-line learning is based on a DHP adaptive-critic approach [18] that
improves control response by accounting for differences between actual and assumed
dynamic models and for nonlinear effects not captured in the linearizations. Control
theory provides a unifying framework for both design phases. Theinitial specification of
the control law is based on the linear quadratic regulator; the DHP approach is based on

approximate dynamic programming.
2.1 The Nonlinear Optimal Control Problem

Aninitial assumption isthat a nonlinear differential equation that models the plant

dynamics is available in the form

s =f[x(t),p,, (t),u(t)] 1

19

where x isthen x 1 plant state, pm isal x 1 vector of plant and observation parameters,
and u isthe m x 1 control vector. The equation may represent a “lumped-parameter”
system, or it may be the approximation to an unsteady partial differential equation. Plant

motions, controls, and disturbances typically are sensed in the es x 1 output vector, ys:

Ys(t)=hx(t).pm(t).ult))
Here, it isassumed that perfect output measurements are available and that the output
views all elements of the state, i.e., ys(t) = x(t). The design objective isto specify a
control law of the general form

u(t) = cy s (t)pm).y, ()] (3)
that has two properties: it achieves mission goals, as expressed by the e. x 1 command
input, y, and it furnishes adequate stability and transient response, assuring that
excursions fromy, caused by disturbance or measurement error are acceptably small and
do not require excessive control use.

The command input, yc, can be viewed as some desirable combination of state and
control elements, and its dimension, &, is less than or equal to the number of independent
controls, m:

Velt)=helxc(t) uct) @
Equation 4 could be the result of external trajectory planning -- for example, a prescribed
path -- or it may be due to aloosely defined, subjective process such as the expression of
a human operator’s intent through command inputs. Hence, the control law can be

formulated as

u(t) = dx(t).p o (t). v (t)] (5)

20

in terms of afunctional, c[+], that may contain functions of its arguments such as
integrals and derivatives. For smplicity, the vector of parameters, pm, isassumed to be
known without error.

When the control law depends on parameters or command inputs explicitly [66], an
augmented state can be defined to include these additional elements, as will be shown in
Section 4.1.1. Therefore, the control can be viewed as afunction solely of the state,
without loss of generality. Furthermore, eq. 5 always can be written as the sum of
nominal and perturbed effects:

u(t) = colxo t)] + Aclx(t)] = uo(t) + Au(t) (6)
The anticipated nominal value of the state is Xo, S0 the actual value can be written by
adding the respective perturbation, Ax:

X(t) =xo(t) + Ax(t) @)
The control law can be expressed conveniently in these terms,

u(t) = colxo t)]+ Aclxo). Ax(t)] ®

where, for sufficiently small state perturbations, the perturbed effect is linear in Ax:
_ _oc _
Au(t) = Acf+] = a—[x0 (t)lax = —-cax 9
X

C contains the m gradients, or gains, of the control law evaluated & Xo(t), as explained in
Section 2.2, and the minus sign is introduced for convention.
The design objectives are expressed by a scalar integral function of the state and

control and by a scalar terminal cost,

J= (p[x(tf)] + IL[X(T),U(T)]dT (10)

21

The cost function, J, isto be minimized with respect to the control, u, subject to the
dynamic constraint imposed by the model of the plant, eq. 1. In the nonlinear control
system explored here, the minimizing control law is modeled by a neural network that is
referred to as an action network. At any moment in time, to < t < t;, an optimal cost-to-go

or value function, V' (t), corresponding to eg. 10 can be defined,
t
vk ()= i o<)~ [Lix @) ule)pe (11)
tf

where ()" denotes the optimal solution. A critic network evaluates the action network
performance by approximating the derivative of the corresponding cost-to-go with

respect to the state:

W)= a\gxx(t)(t) (12)

AN [X (1)], or simply A"(t), provides an indirect measure of performance that is used to

formulate an optimality criterion explicitly with respect to u, aswill be explained in

Section 2.4.
2.2 TheLinear Quadratic Regulator

The goal of the first learning phase is to incorporate gain-scheduled designs into
nonlinear neural networks. Gain scheduling is a design procedure that enjoys widespread
usage in avariety of industrial applications. While it requires considerable ad-hoc
practice, it also exploits linear control theory. Both the theory and heuristics of gain-
scheduled designs will be incorporated into the neural network controllers, by means of

the approach referred to as Classical/Neural Control Synthesis of Nonlinear Control

22

Systems (Section 2.3). This section reviews the LQR theory that isrelevant to gain-
scheduled controllers and, in particular, to the designs to be implemented in Section 4.1.
The basic assumption in gain scheduling is that the nonlinear systemineg. 1 hasa

parametrized family of equilibrium points,

0=1[x,(a),pm (@) uo ()] (13)
where, a is ascheduling vector of dynamically significant variables in the system. The
set of equilibria, also referred to as operating points (or conditions), is denoted by OP and
indexed by k=1, 2, ..., p. Linearized models of the plant can be obtained from the
nonlinear dynamic equation (eg. 1) by holding a fixed, assuming small perturbations
about corresponding equilibria, and ignoring time-varying effects:

Ax(t) = FAX(t) + GAu(t), Ax(to) given (14)

The optimization goals are expressed as a quadratic function of the state and control,
ty
J= % | [AxT (r)Qax(r) +2ax™ (r)MAu(z) + AuT (r)RAu(r)]d r (15)
0

When the plant is subject to continuing disturbance inputs and t; becomes infinite in the

limit, the value of J may still be bounded by defining an average co<t,

J, = lim J (16)

tr oot
that has the same optimality conditionsas J. Ast; approaches infinity, it is reasonable to
let the terminal cost, ¢[x(t7)], equal zero [66].

When the system dynamic is linear (eq. 14) and the cost function is quadratic (eq. 15),
an optimal closed-form solution can be obtained for the control perturbation Au. One

approach to this Linear Quadratic (LQ) problem derives from the Calculus of Variations

23

[12]. Inthe general case, the Hamiltonian can be defined by adjoining the dynamic
constraint (eg. 1) to the Lagrangian, L[], by the adjoint vector A:

H[x(t). u(t). 2 (e)] = LIx(t) u(t)]+ 27 () [x(t).p m (t).ut)] (17)
Differentiating eq. 11 with respect to t, the following is found to hold on the optimal

traectory:

% X* (t)] =- L[X* (t).ur (t)] -

Ve (e (o) ()
-- Tir)]H{x* (t),u(t) oV [x (t)]}

(18)

(t " Ox*
The optimal adjoint vector, A", is equal to the derivative of the optimal value function
with respect to the state, dV '/9x’, which is approximated by the critic network (eg. 12) in
the nonlinear control system. This partial differential equation is known as the Hamilton-
Jacobi-Bellman (HJB) equation and is a sufficient condition for optimality that is used
here to derive the LQ control law.
It can be shown [12] that the following constitutes an optimal value function, for the

LQ problem of minimizing eg. 15 subject to the linear dynamic constraint in eq. 14:
* * 1 *T *
v ax @)]:EAX (tPl)AX (1) (19)

P(t) is a positive definite symmetric matrix which, for alinear time-invariant (LTI)
system (eqg. 14), is guaranteed to approach a steady-state value, P, in the limit t; — oo [6].
The HIB equation is expressed in terms of the perturbations Ax and Au. Itsright sideis
found by differentiating the corresponding Hamiltonian with respect to Au and setting it
equal to zero to solve for Au”. The remaining terms are found by differentiating eqg. 19

with respect to Ax” and t. Then, the HJB equation simplifies to,

24

AT (M +au" ()R +Ax" (PG =0 (20)
producing the LQ optimal control law:

A (t) = -REGTP+MT |ax () = ~cax’ (1) (1)
Substituting in eg. 18 and canceling AX” from both sides leads to the Riccati equation,

P(t)=-(F-GR™MT)p(t)-P(t)F-GR™MT) o) = 0)
1 f) —

+P(t)GR'G"P(t)-Q +MRMT

LTI control laws that satisfy desired engineering criteria [66-70] are designed for the

family of linear systems{F, G} «=1, ..., p, in Order to provide a corresponding set of locally

optimal gains and Riccati matrices{C, P} =1, ..,p. Typically, the Riccati equation (eq.

22) corresponding to the K" linear system is solved for the steady-state value, P*, by
setting its right-hand side equal to zero; then, P* isused in eq. 21 to solve for C*. The

family {C, P} «=1, ..., p isObtained by repeating the design at all equilibriain OP, i.e., for

al linear systemsindexed by . In gain scheduling, aglobal controller for the nonlinear
system (eg. 1) is obtained by interpolating the local designsto intermediate operating
regions through the scheduling vector a. For this reason, in past applications, the number
of interpolating variables has been kept small. The novel approach introduced in the next
section, incorporates the family of linear gains{C, P} «x=1,....p, Or Smply {C, P}, into
nonlinear neural networksthat automatically interpolate the designs for any dimension of
a. Thisaffords an improvement with respect to earlier gain-scheduled controllers. More

importantly, it provides an excellent initialization point for the on-line learning phase,

whose foundations are presented in Section 2.4.

25

2.3 Classical/Neural Synthesis of Nonlinear Control Systems

The nonlinear control system is comprised of a critic network and an action network
that approximates the global control based on the nonlinear plant and its model, as shown
in Fig. 4. A key, novel observation is that the gradients of these networks must equal
corresponding locally optimal gains obtained from the LQ solutions (Section 2.2). The
linear controllers establish appropriate performance targetsthat, later, are used to define
the nonlinear system architecture and initial parameters.

State

Prediction
Plart — »| Critic <

Model
Action | Critic
Update |Update
Actual
Control Actual State

Action
— ¥ Plant

1

Figure 4. Dual heuristic programming adaptive critic control design.

An artificial neural network consists of a nonlinear mapping, denoted by NN, that
performs a nonlinear transformation of a g-dimensional input, p, into an r-dimensional
output, z:

z=NN(p) (23)
The network architecture and parameters characterize the nature of this transformation
and can be determined based on input, output, and derivative information pertaining to

the function to be approximated. The common denominator among all neural

26

architectures is the highly parallel and distributed computations they perform. As
anticipated in Section 2.1, the action network approximates the optimal control law (eqg.
8). The critic network evaluates the action network performance by approximating the

derivative of the optimal value function with respect to the state (eg. 12):

uft)= NN [p(0] =24 0)
)= bl =20) @

The input to both networks includes the dynamically significant auxiliary inputs, a, as
they may or may not be contained explicitly by x, i.e., p(t) = [x(t)" a(t)"]".
The objective of the first learning phase, or pre-training, is to incorporate the set of

locally optimal gains{C, P} «=1, ... p, typically used for gain scheduling, into the

nonlinear networks. The first step towards accomplishing this objective consists of
identifying appropriate performance requirements to be satisfied by the network
parameters. For every point in OP, the gradient of the action network can be found by

differentiating eq. 6 and eq. 9 with respect to x and Ax, respectively:

aut) _anu)
(

Do a0mae 0% O)]ae 020, alioa,

SN—r

(25)

u
o) ap OX

Hence, at the ¥ operating point, the action network gradient must equal the " LQ gain,

= -C~ (26)

where C* isknown from eq. 21, and the subscript indicates at which operating conditions

the derivative is being evaluated.

In infinite-horizon problems, the structure of the value function is independent of time;

therefore, asingle time-invariant critic network can be used to approximate A(t) (eqg. 12).

27

The LQ optimal value function, eq. 19, can be differentiated twice with respect to the

state to seek the derivative of the critic output with respect to the input X,

N
oz (t)) _0%V |Ax 2(t)| 27)
oK) bt ol O e, OO L, e,

revealing that, at the £ operating condition, the critic network gradient equalsthe £ LQ
Riccati matrix:

0z (t)

o) @)

K

P*isknown at al conditions considered in the linear design and, thus, is used to pre-train
the critic network.

Because the gains C* and P* can be designed for afamily of equilibria OP, the
gradient, dz[p(t)]/ox(t), of the action and critic networks is known at all points x J OP.

In addition, the following condition applies to the networks' input/output relationship:
Z[X(t)1 a(t)]|x(t)=xg(t), alt)=a, Z[X(t)1 a(t)]| =0 (29)

The requirements in eg. 26, 28, and 29 state that the network control system must be
characterized by the same local performance as the LQ controllers at all conditionsin
OP. The neural parametersthat satisfy these performance targets will be obtained using
the novel algebraic initialization technique described in Section 3.1.1. Chapter 4 will
demonstrate the pre-training procedure for arepresentative control structure, the
proportional-integral controller. Thanksto their generalization abilities, the neural
networks interpolate the sampled data learned over OP to cover the intermediate regions

not considered by the linear designs. This new pre-training approach constitutes an

28

excellent starting point for the on-line learning phase, while providing the stability,

performance, and robustness characteristics of the linear designs for small perturbations.

2.4 Dual Heuristic Programming Adaptive Critics

During the on-line learning phase, the pre-trained action and critic networks are
updated over time to more closely approximate the globally optimal control law, with the
critic evaluating the action network performance. The adaptation improves control
response for those conditions that were missed or unaccounted for by the linear gain-
scheduled designs, such as large, coupled motions, full-envelope maneuvers, and
unforeseen conditions. The adaptation (outlined in Fig. 4) takes place while the plant is
operating over the entire range of state and command-input elements, {Xx(yc), Y}, or some
suitably dense set in the space denoted by OR. The actual plant state, x, and the
command input, y., are fed to the controller on-line and are unknown prior to operation.
The on-line logic is implemented in discrete time through an incremental optimization
scheme, dual heuristic programming [18-20], which is based on the recurrence relation of
dynamic programming reviewed in this section.

During each time interval At = ti+1 — ti, the action and critic networks are adapted to
more closely approximate the optimal control law and value function derivatives,
respectively. The recurrence relation provides for adaptation criteria that, over time,
guarantee convergence to the optimal solution. Because the on-line adaptation utilizes
the actual state of the plant (eg. 1), the control system performance is improved with
respect to the initialized neural network controller. Prior knowledge, incorporated during
the pre-training phase, is retained during on-line learning thanks to the incremental

training algorithms that will be introduced in Section 3.2 and 3.3.
29

The dual heuristic programming adaptation criteria are derived from the recurrence
relation by discretizing the infinite-horizon optimal control problem. With restriction to
piecewise-constant inputs and constant time intervals, the discrete or sampled-data model
equivalent of eq. 1 can be expressed as:

X(tisn) = F oo [X{tic). Pt) ulti)] X(to) given (30)
The same metric optimized during the initialization phase, eg. 15, is optimized in the on-
line phase, affording a systematic approach to the control design. The corresponding cost

function can be written as the sum of incremental costs accrued during the time intervals:
N-1
Jon = 2 Lo [x(t) ult)], NAt - e (31)
k=0

The cost of operation from the K™-instant, t,, to the final time, ty, i.e., Jn, corresponds to
the value function V(tx) or cost-to-go at tx and can be written as,

Vit) = Lo [x(t) ult]+ V (b Xt) uton) - ulty) (32)
since, from eq. 30, al future values of the state, X(tk+2), ..., X(tn), depend on X(tk+1) and on
the future control history, u(ty), ..., u(tn-1). Similarly, X(tk+1) depends on x(tx) and u(ty).
Therefore, the optimal cost for the (N — K)-stage policy is found by minimizing the

following functional with respect to the control history,

V*lx*(tk)JE ()min(){le*(tk),u(tk),...,u(t,\,_l)]} (33)

ulty), - ulty—g
By the Principle of Optimality [11], if apolicy is optimal over (N — k) stages,
whatever the initial (k") state and decision are, the remaining decisions also must
constitute an optimal policy with regard to the state resulting from the first decision, i.e.,

X (te1):

30

Vv’ lX* (t)J = UE{B{L D lX* (ti). ult)J +V° lX* (tk+1)J} (34)

This equation constitutes the recurrence relation of dynamic programming.

This recurrence relation can be used backwards in time, starting from the final time
tn, to obtain an approximate solution to the exact optimal control history [12]. This
approach is computationally intensive and not suitable for on-line solution [11]. In
approximate dynamic programming methods, Howard' s form of the recurrence relation
[16] is used to approximate the minimum value function on-line,

VIx{ti)] = L oo [x(ti) ult)]+ Vx{ticn)] (35)
where V[x(tk+1)] IS necessarily a predicted value. The control u(ty) is defined as the
function of x(tx) that minimizes the right-hand side of eg. 35 for any x(t). Howard shows
[16] that when the function V[x(t«)] is calculated from eq. 35 based on the current
control, and the control is adjusted to minimize this approximation to the optimal value
function, the method iteratively converges to an optimal strategy. The sameistrueinthe
presence of random disturbances as long as expected values of the cost-to-go are
considered in eg. 35. For simplicity, the asterisks are omitted, and convergence to
optimality isimplied in the remainder of the thesis.

At time ty, the control strategy for which the value function (eg. 35) is stationary

satisfies the following optimality condition:

~—"

o V[x(t,)] _OLy [x(te). ult)] M) OX(tyes

wh) ol) 0 o

Equation 35 is differentiated with respect to the state to obtain a recurrence relation for

the DHP critic, which approximates the functional A(t) in eg. 12:

31

OV[x{t)] _ oL o [x{ti) u(t)] , 9L oo [x(t)ulti)] oulx(t)] ,
ox(t,) ox(t,) ou(t) ox(t,)
0x(ta) 0x(tyea) Oulx(ty)]
M 5] MR 5

Once the prediction of the state, X(tx+1), is known from the model of the plant (eg. 30), the

Mt

(37)

critic can be used to compute A(tx+1) in eg. 36. Using the critic to approximate the value
function derivatives instead of the value function alone improves speed by giving an
indication of how individual control elements influence the overall cost. Equations 36
and 37 can be viewed as criteria for the action and critic on-line adaptation. Together
they lead the action network to converge to the optimal control functional. The
numerical schemes and the overall implementation that ensure the consecutive realization

of these requirements over time are discussed in the remaining chapters.

2.5 Chapter Summary

A two-phase approach is proposed for approximating the nonlinear optimal control
law of an infinite-horizon problem on line, subject to the actual dynamics of the plant.
During the first phase, the initial specification of the control law is determined from
classical linear control theory, and isrealized in the form of a nonlinear neural controller.
The nonlinear controller is motivated by a corresponding linear structure, and is defined
by the architecture and parameters of a network of neural networks. A key, novel
observation is that the gradient of these networks must equal corresponding gain matrices
at selected operating points. During the second phase, the neural parameters are updated
on-line, through a dual heuristic programming adaptive critic architecture. The
recurrence relation of dynamic programming can be used to derive adaptation criteria that

guarantee convergence to the optimal solution, over time.
32

Chapter 3

Advancementsin Neural Network Learning Theory: Algebraic Training and

M odified Resilient Backpropagation Techniques

Computational neural networks are massively parallel computational paradigms
inspired by biological neural formations. They are used in avariety of applications
because they can learn by example and provide excellent universal function
approximation for multivariate input/output spaces. Particularly, they afford a general
approach for modeling, identification, and control of nonlinear systems that shows grest
promise, as neural networks can potentially adjust to complex situations on line thanks to
their generalizing and adaptive capabilities.

Considerable effort has gone into the mathematical investigation of neural networks
approximation properties [33-35, 39, 71]. Whereas these results appear attractive, they
provide little insight into practical, key questions such as, “What architecture should be
used”, and “How many nodes are required in each layer”? This chapter describes a novel
algebraic training approach that provides a general framework for answering these
guestions as well as learning theory advancements that improve upon a number of
approximation characteristics. This method is used to derive training algorithms that can
achieve either exact or approximate matching of noise-free data with considerable
computational savings and better interpolation properties than classical, backpropagation-

based algorithms. Some of the results developed here were announced in [36, 37].

33

3.1 Algebraic Training

Thetypical search criterion, used in virtually all supervised learning algorithms,
consists of minimizing some measure of the error between the desired input/output
(and/or derivative) information and the actua network’s performance. The approach
taken here consists of formulating training as a root-finding problem whose solution
achieves exact fitting of the training set. Although related in principle, the problems of
minimization and multidimensional root finding are substantially different in practice.
The problem of minimizing some form of neural network error appears computationally
more tractable, but it may not solve the problem of exact fitting. On the other hand,
solving the corresponding nonlinear equations appears virtualy impossible for any
decent-sized network. So what is the reason behind attempting to solve a harder version
of the same problem? As it happens, these nonlinear equations can easily be transformed
into linear equations, bringing about much simplified training methods and affording
deep insight into neural approximators.

A set of nonlinear equations to be solved for the neural network adjustable parameters
is obtained by imposing the requirements derived from the training set on the neural
network input/output and gradient equations. The goal is to approximate a smooth scalar
function of q inputs, denoted by h: 09 - [, using asimply connected sigmoidal
network of the type shown in Fig. 5. The approach also can be extended to include
vector-output functions, as will be demonstrated in later chapters. Typically, the function
is not known analytically, but a set of input/output samples{y*, u} =1,

generated such that u* = h(y"), for all values of k. Using derivative information during

training can improve upon the network’ s generalization properties[72]. Therefore, when

the partial derivatives of the function h(e) are known with respect to e of its inputs,

T

ou e<q (39)

yk a—ye

oy,

yk

Figure 5. Sample scalar-output network with g inputs and s nodes in the hidden layer.

The output of the network is computed as the nonlinear transformation of the

weighted sum of the input, p, and abias d, plus an output bias, b:

z=v'o6[Wp+d]+b (39)
o[*] is composed of sigmoidal functions, such as a(n) = (" — 1)/(€" + 1), evaluated a all
input-to-node variables, n;, withi =1, ..., s,

on]=[o(n,) - oln,) (40)
where:

n=Wp+d (41)
W and v contain the input and output weights, respectively. Together with d and b they

congtitute the adjustable parameters of the network. The order of differentiability of eg.

35

39 isthe same as that of the activation function, o(+). Given that sigmoid functions are
infinitely differentiable, the derivative of the network output with respect to its inputs is:

0z &0z onp _ & -
T = 1= Vio" |’]i Wi' ,] = 1, veny q (42)
apj i=1 an| apj i=1 () :

d'(+) denotesthe derivative of the sigmoidal function with respect to its scalar input. w;
denotes the element in the i™-row and the j"-column of the matrix W, and it represents
the connection weight between the j"™-input and the i"node of the network.

The computational neural network achieves exact fitting of the input/output training
set, {y*, U}=1, ... p, when given the input y* it produces u* as the output, for all k:

2y*)= u" (43)
Thisis equivalent to stating that the neural adjustable parameters must satisfy the
following nonlinear equations,

u“ =vie[Wy* +d]+b, k=1,...,p (44)
that are referred to as output weight equations. When all the known output elements from
the training set are grouped in a vector,

u=[ut - ue]" (45)
€g. 44 can be written using matrix notation:

u=Sv+b (46)
b isas-dimensional vector composed of the scalar output bias, b. Sisamatrix of

sigmoidal functions evaluated at input-to-node values, n¥, each representing the

magnitude of the input-to-node variable n; to the i™ node, for the training pair k:

36

aénllg aéni g . aénig
2 2 2
S= O'I:ll o\n, O'I:IS 47)

The nonlinearity of these equations arises purely from the implicit dependence of the
nonlinear function’s argument on the input weights, W, and bias, d.

The known gradients, c*, correspond to the partial derivatives of the neural network’s
output with its inputs evaluated at the training pair k. Exact matching of the gradient
training set, {y*, ¢}x=1 .. n, IS achieved when the neural network gradient corresponding

to the input y* equals c¥, for all k:
— =¢,j=1..¢€ (48)

Therefore, the neural network adjustable parameters must satisfy the following gradient
weight equations,

K =w(, 1= {vae|]}, k=1,...p (49)
where the symbol “ [0 " denotes element-wise vector multiplication, and W (e, 1+€)

represents the first e columns of the input-weight matrix. Input-to-node weight equations

are obtained from the arguments of the nonlinear functionsin eq. 46 and 49:
n“ =Wy*+d, k=1,...,p (50)
o'[+] isavector-valued function whose elements consist of the function ¢ (¢) evaluated

component-wise at each element of its vector argument:

o[n]=[o'(n) ... o'(n,)]" (51)

Equation 49 can be written as,

37

ok = [Brw(e, 1+)] , (52)
with the matrix,

B¥ =[v,a’'(nf) v,o'(nf) ... vio'(n¥)] (53)
explicitly containing only sigmoidal functions and output weights.

The full training set {y*, u¥, }x=1, ..., is matched exactly when the output and the

gradient weight equations are solved simultaneously for the neural network’s adjustable
parameters. If the derivative information, c, is not available, the output equations are
solved and eqg. 52 is ignored, conversely if the output information, u¥, is not available eq.
46 isignored. Algebraic training is based on the key observation that if all input-to-node
values, n¥, are known, then the nonlinear transcendental weight equations, eq. 46 and 52,
become algebraic and linear. Based on this assumption, Sis a known matrix and egq. 46
can be solved for v; then, all of the B* matrices also are known and eq. 52 can be solved

for W(e, 1+e). The following sections show four techniques based on this approach

whose effectiveness is demonstrated throughout the remaining chapters.
3.1.1 Exact Gradient-based Solution

A case that is particularly relevant for control applications isthat in which some of
the neural network gradients are known. The neural network inputs can be divided into e
inputs for which the gradients are known, x, and into (g — €) inputs for which the

gradients are not known, a. Each training input y* can be partitioned into

kT

y* =[x ‘ a<"17. Theinput-weight matrix also is partitioned into weights
corresponding to X, Wy, and weights corresponding to a, W, as follows:

w=[w, | W,] (54)

38

In this case, the gradients, ¢, areknownwhen X =0, i.e,, y* =[0 | a*"]", and U =0, for

weight equations always exhibit an exact solution.
The output weight equations, eg. 44, take the form,
0=v'e[W,y“+d]+b, k=1,...,p (55)
and are independent of the W, input weights, because x* equals zero in all p training
triads. The gradient weight equations, eg. 49, depend on the W, input weights only
implicitly,
¢ =w, {vOe|wy +d}, k=1,p (56)
where eg. 50 simplifiesto:
n“=w.a"+d, k=1, ...,p (57)
Therefore, if all sigmoidal arguments (or input-to-node values) in eg. 57 are known, the
system in eg. 55 becomes linear,
b=-Sv (58)
and can be solved for the output weightsv. b and S are defined asin eg. 47. When the
number of nodes is chosen equal to the number of training pairs, s = p, the matrix Sis
square; provided it aso is non-singular, eg. 55 admits a unique solution for v.
Once the output weights are known, v can be treated as a constant, and eg. 56 also can
be treated as linear:
g =Xw, (59)
In this system of equations, the unknowns consist of the input weights associated with the

state deviations that, for convenience, have been reorganized in the vector wy,

39

wy = Vec(W,). “Vec” indicates Vec Operation, which consists of columnwise

reorganization of matrix elements into avector [73]. The vector ¢ isobtained from the

known gradients in the training set,

gs[clT ‘...‘CPT]T (60)
X denotes an ep x es sparse matrix composed of p block-diagonal sub-matrices of

dimensions e x es;

B0 0 O

1
(? B .0 0 e—rows

0 0 0B!

X
n

; (61)
B 0 00

0 BP0 O
: L : e—rows

0O 0 0B°®

Every block B, defined in eq. 53, is known when v and all input-to-node values, n, are
known. Furthermore, when s=p, X isasguare matrix, and the system in eq. 59 can be
solved uniquely for wy, provided X also is non-singular.

Finally, the third set of linear equations is obtained from the assumption that the

input-to-node values are known. For convenience, all n* values are reorganized into the

following array:
nz[an ‘...‘in]T (62)

With s = p, n becomes a known p*-dimensional column vector. The p? linear equations

in eg. 57 can be written as:

n=Aw, (63)

Aisapsx (q - e+ 1)s matrix that is computed from all a“input vectors in the training
set. Each of these vectors contains (g — €) elements and the superscript indicates at which

training pair each element has been evaluated:

1 1
al, a(q_e)lS I
ait, | | @l |1
A = .) ; (64)
p
a’l, a(q_e)lS I

The only parametersthat are left unknown in eqg. 63 are the input weights associated with
the scheduling variable, W, and the input bias, d. These are conveniently contained in
the vector wj, that corresponds to the following rearrangement: w, = Vec[W, | d].

The third linear system, eq. 63, isthe first to be solved, since the input-to-node values
are needed in order to obtain eg. 58 and eg. 59 from the nonlinear weight equations. In
principle, one could assign arbitrary values to the elements of n and then invert A to
obtain w,. However, this system usually is overdetermined and only a least-squares
estimate of w, can be obtained through the left-pseudoinverse of A, A™ [74]. If the
redundant information contained in eq. 63 is consistent, A™ produces the exact value of
W, Otherwise, the left-pseudoinverse solution provides the estimate that minimizes the
mean-squared error of w,. A second alternative consists of choosing w, and solving for
n. This is equivalent to setting up consistent equations, such that an exact solution
always can be obtained for w,. It can be shown that the input-to-node values determine
the nature of S and X, for repetitive values in n will render their determinants zero. The
following algorithm determines an effective distribution for the elements in n so that the

weight equations can be solved for the neural parameters in one step.

41

The solution order of the above linear equationsis key. Using all the training set data
and choosing a number of nodes, s, equal to the number of training pairs, p, A and ¢ are
determined from eg. 64 and 60, respectively. Next, the vector) is determined such that
the matrix S is well-conditioned, i.e., with condition number less than £ 2, where isthe
smallest positive number such that £+ 1 > 1 on the computing machine. A strategy that
produces a well-conditioned S, with probability one, consists of generating n according

to the following rule,

'k . . ¢
0= re, _|f _| k (65)
0, if i=k

where r{¥ is chosen from a normal distribution with mean zero and variance one obtained
using a random number generator with asingle seed. Wheni =k, nis assigned a zero
value so that each sigmoid is centered at one of the training pairs. Thisis equivalent to
distributing the sigmoids across the input space as accomplished by the Nguyen-Widrow
initialization algorithm [75].
Equation 63 is solved for w,, using the left pseudoinverse A™:

W, =A"q (66)
W, isthe best approximation to the solution, as this overdetermined systemis not likely
to have a solution. When this value for w; is substituted back in eg. 63, only an estimate
to the chosen values (eg. 65) is obtained for n:

1= AW (67)
However, nothing prevents us from using this value for n. Although overdetermined, this

system has a unique solution because the equations are now consistent.

42

7 is computed on the basis of eg. 40; therefore, the sigmoids are very nearly
centered. While it is desirable for each sigmoid to be centered for a given input, y*, the
same sigmoid should be close to saturation for any other known input in order to prevent
ill-conditioning of S. Considering that the sigmoids come close to being saturated for an
input whose absolute value is greater than 5, it is found desirable for the input-to-node
values in n to have variance of about 10. A factor f can be obtained for this purpose from
the absolute value of the largest element in n; then the final values for n and w, can be
obtained by multiplying both sides of eq. 67 by f:

="M

68
w, = fw (68)

Subsequently, the matrix S can be computed from), and the system in eg. 58 can be
solved for v. With the knowledge of v and n, the matrix X can be formed as stated in eg.
61, and the system eg. 59 can be solved for w;. ThematricesSand X in eq. 58 and 59
are consistently well-conditioned, rendering the solution of these linear systems by matrix
inversion straight-forward as well as highly accurate. Thus, both output and gradient
weight equations, originally in the form of eq. 55 and 56, are solved exactly for the
network’s parameters in a non-iterative fashion.

A simple two-node neural network makes the point. Thetraining set for a scalar
function with inputs x and a contains two training pairs, { [0 | a]", 0, =12 andis
shown in the legend of Fig. 6. The number of nodes in the network approximating this
function is chosen equal to the number of training pairs. For the known inputs, the
network output must equal zero and the gradient of the output surface must match the

corresponding values of ¢ (Fig. 6). The method computes the weights of the network

43

producing the minimal-order smooth interpolating surface shown in Fig. 6, and solves
problems such as network sizing and data over-fitting at their origin. The same approach

is used to initialize the neural network control system in Chapter 4.

Figure 6. Output surface of atwo-node sigmoidal neural network corresponding to the
algebraic solution matching the training data provided in the legend for two points.

3.1.2 Exact Input/Output-based Solution

In neural network applications, it often is the case that the only knowledge available
about the function to be approximated consists of sampled input/output information. In

this case, the training set takes the form {y*, U} x=1, ..., and the output weight equations

alone (eg. 44) areto be solved for the neural parameters. Under the assumption of known
input-to-node values, Sisagain ap x sknown matrix. The output system of weight
equations, eg. 46, can be written as,

u=5Sv (69)
letting the output bias, b, equal zero without loss of generality, and isto be solved for v.
This linear system admits a unique solution if and only if rank(Sju) = rank(S) = s, where

rank(e) represents the rank of the matrix [e.g., see 74], and it admitsan [s — rank(S)]-

parameter family of solutions if and only if rank(SJu) = rank(S) <s.

44

When the number of nodes, s, is chosen equal to the number of training pairs, p, Sis
square. If it dso is non-singular and the training data is consistent (e.g., different outputs
do not correspond to the same input), eq. 69 isa full-rank linear system for which a
unique solution always exists. The input parameters affect the solution of the output
initialization equations only through the input-to-node values and determine the nature of
S. Another strategy that produces a well-conditioned S consists of generating the input
weights according to the following rule,

w. = fr. (70)

i i
where rj; is chosen from the same distribution asri¥, in eq. 65. Here, the scalar f is
arbitrary and of order O(10); it can be slightly varied based on how closely spaced the
training pairsare. The input bias, d, is computed to center each sigmoid at one of the
training pairs, {y*, u}, from eq. 50, setting n* = 0 wheni = k:

d = ~diaglYwT) (71)
Here, the “diag” operator extracts the diagonal of its argument (a square matrix) and
reshapes it into a column vector. If the argument is a vector, then “diag” placesit onthe
diagonal of a zero square matrix of appropriate dimensions. Y isamatrix composed of

all the input vectorsin the training set:

Y=yt -eye] (72)
The input elements, y¥, from the training set are normalized, and d is computed based
on the input weights according to eq. 71. Thus, the scaling factor f scales the distribution
of the input-to-node values, establishing their order of magnitude. While p sigmoids are
centered, the remaining sigmoids come close to being saturated for inputs whose absolute

value is greater than 5. A variance of order O(10) allows a good fraction of the sigmoids

45

to be highly saturated, contributing to a smooth approximating function and producing a
non-singular S. The approach isimplemented to train a sigmoidal neural network that
approximates a nonlinear function having two inputs and one output, based on 45
input/output samples. Figure 7 shows the actual function being approximated; the
intersections of the solid lines on the surface delineate the input space grid being plotted
(the software interpolates between these points). The training samples, symbolized by

asterisks, are superimposed on the surface.

Figure 7. Actual surface being approximated and corresponding training samples,
represented by the asterisks.

The neural network is chosen to have 45 nodes and its parameters are determined in
one step using the algebraic procedure described above. The neural output surface is
plotted over afine-grid input space in Fig. 8, to demonstrate the network’ s interpolation
abilities. Thetraining time is remarkable (a MATLAB code trained a 45-node network in
less than 0.16 sec on a 650 MHz computer). For comparison, the 45-node neural network
istrained to approximate the datain Fig. 7 using both the MATLAB 5.3 Levenberg-
Marquardt and Resilient Backpropagation functions. Table 1 shows that the performance
of the algebraic algorithm is superior to that of the two conventional algorithmsin all

respects.

46

Figure 8. Final function approximation obtained with a neural network algebraically
trained using output weight equations.

: _ Time _ Linesof code _ Final
Algorithm: (Scaled): Flops: (MATLABY): Epochs: error:
Algebraic 1 2x10° 8 1 0
L evenberg- 50 5 x 107 150 6 10
M arquardt
Resilient 150 1% 107 100 150 | 0.006
Backprop.

Table 1. Performance comparison of algebraic training with two optimization-based
algorithm, for the approximation of a scalar function by a 45-node neural network.

The results also show that the algebraic approach manages data over-fitting even
when the network size is large, because it addresses the input-to-node values, and hence
the level of saturation of the sigmoids, directly. Thisis found to be particularly
challenging when many nodes are used to approximate arelatively flat surface, such as
oneinFig. 7. But, choosing the number of nodes equal to the number of training pairs
guarantees the existence of a solution that matches the training set exactly. In some
cases, it is possible to achieve exact matching using s < p, provided the rank condition is
satisfied. For instance, suppose sis chosen equal to p and the rank(S) is found to be less

thans. Then, the number of solutions for a given set of input-to-node values can be made

a7

unique simply by reducing the number of nodes in the network, eliminating the linearly-

dependent columns of S, until s = rank(S).
3.1.3 Approximate | nput/Output-based Solution

The algebraic approach outlined in previous sections also can be used to seek
approximate solutions of the weight equations, and to obtain a parsimonious network
when the number of training pairs, p, islarge. Section 3.1.2 showed how exact matching

of an input/output training set, {y*, U}x=1. ..., can be achieved by choosing a number of

nodes, s, that equals p. An exact solution also could be obtained using less nodes than
there aretraining pairs, i.e., s< p, provided the rank condition rank(Sju) = rank(S) = sis
satisfied. When the linear system in eg. 69 is not square (s # p), an inverse relationship
between u and v can be defined using the generalized inverse or pseudoinverse matrix,

denoted by S [74]. Typically, eqg. 69 will be overdetermined, with more equations than
there are unknowns, therefore its solution will be given by,

v=(s's)*sTu=s"u (73)
where S™ constitutes the left pseudoinverse. If the equations all are consistent, eq. 73
provides the exact value for v. If they are not consistent, rank(SJu) # rank(S), and the
system in eg. 69 has no solution. Inthe latter case, eq. 73 provides the estimate that
minimizes the mean-square error in the estimate of v and can be used to obtain an
approximate solution for the output weight equations.

Whenever a neural network is trained by a conventional algorithm (such as

backpropagation [76]) that does not achieve exact matching, the corresponding output
weight equations fall into the approximate case above. This is because, given atraining

set, corresponding weight equations can be written for any network, whose parameters

48

constitute either an exact or an approximate solution of these equations. Letting U
denote the best approximation to u obtained from the final neural parameters, the
following holds:

a=Sv (74)
Regardless of how the actual network output weight vector v has been determined, it will
satisfy eg. 74, along with the actual value of S. Incidentally, eg. 74 minimizes the error
(u—0), which isthe same error minimized by conventional optimization-based training
algorithms[76]. This observation completes the big picture by showing how the
algebraic approach deals with the case of s < p, typically found in the neural network
literature. More importantly, it can be exploited to develop approximate techniques of
solution that are computationally more efficient than the conventional iterative methods,
such as the one outlined below and implemented in Section 4.4.

Based on the ideas above, an algebraic technique that combines many networks into
one isdeveloped. Suppose a neural network is needed to approximate a large training set
(i.e., p~ O(10°) using a parsimonious number of nodes, s. Conventional methods, such
as Levenberg-Marquardt and Resilient Backpropagation [41, 77], can successfully train
networks with s < p, minimizing the error (u —), but they quickly run out of memory if
alarge set isused at once in what isreferred to as batch training. If thetraining set is
divided into smaller subsets, training becomes particularly challenging as the neural
network is likely to forget previously learned subsets while it is being trained with new
ones. Furthermore, these difficulties are exacerbated by the problem of finding the
appropriate number of nodes. On the other hand, when a small subset is used, batch

training can be very effective. Many of the conventional algorithms converge rapidly and

49

the network generalization abilities can be optimized by finding the “best” number of
nodes through atrial and error procedure.

The technique described here combines networksthat individually map the scalar
functionh: 0% - [over portions of its input space into one network that models h over

its entire input space. The full training set {yk, u"}kzl, n, covering the full range of the

hinput space, is divided into msubsets: {y*, u*} o Y, Uhicpn L py o oo

{y*, U} ep ss1 . pr» Where pn = p. Each subset is used to train asigmoidal neural

network of the type shown in Fig. 5 whose parameters areindexed by g, whereg=1, ...,

m. That is, each s,-node network, or subnetwork, models the g™ subset
{Y", U epy s, .. pg » USING the weights W, dg, and vg, and s; < pg. As suggested by

the schematic in Fig. 9, the m networks are superimposed to form a s-node network that

models the full training set using the weightsW, d, andv, ands=s, + ... + Sy

Figure 9. Superposition of m s;-nodes neural networks into one equivalent s-nodes
neural network with same input, x, and the same output, u.

50

The output weight equations of each subnetwork fall into the approximate case

described above. Therefore, the g™ neural network approximates the vector

ug= [uPe™™ .. u™]" by the estimate,

(75)
where vq is the actual output weight vector and rank(Sy|t) = rank(Sy) = . Theinput

weights of the m networks are preserved in the full input weight matrix,

WETRE (76)

d=| : (77)

11 1
n n n:
2 2 2
n n n
N = 1 ‘2 .S (78)
P AP p
N n; Ng

[Nl Nlm]
N=| @ ™. (79)

From eqg. 50, it can be shown that the off-diagonal terms, such as N1y, and Ny, are
columnwise linearly dependent on the elementsin Ny, N, ..., and Nm, so r(N) =r(Ny) +

. ¥ 1(Np) =1 + ... + Sy =s. Also, it isfound that in virtually all cases examined

51

rank(S) = rank(N). Although arigorous proof cannot be provided because of the
nonlinearity of the sigmoidal function, typically it follows that rank(S) = s.
Finally, the output weight equations are solved for the output weight vector that

approximates the full training set:
v=stlal ..ar (80)
Because S was constructed to be of rank s, the rank of (S|[0] ... G[]) issor, a mogt,

s+ 1, bringing about a zero or small error during the superposition. Moreimportantly,
because the error does not increase with m, several subnetworks can be algebraically

superimposed to model one large training set using a parsimonious number of nodes. In

practice, the vector [(] ... (] ineq. 80 can be substituted by the vector [u] ... u'],
1 m 1

that is directly obtained from the training set and, effectively, contains the output values
to be approximated. The method will be demonstrated in Section 4.4, where a neural
network is trained based on a large training set simply by superimposing several vector-
output subnetworks. Even in this case, the development is identical to the above because
the same S matrix appearsin al neural outputs weight equations. Generally speaking,
the key to developing algebraic training techniques isto construct an S, through N, that
will display the desired characteristics. In the case of approximate input/output-based
solutions, S must be of rank s whereas s, the number of nodes, should be as small as

possible to produce a parsimonious neural approximator.

3.1.4 Approximate General Solution

is achieved by solving the output and gradient weight equations, eq. 46 and 52,

52

simultaneously for the neural parameters W, d, and v. Without loss of generality, b can
be set equal to zero so that eq. 46 simplifiesto eg. 69. It is possible to solve both
equations exactly when the dimension of the inputs for which the gradient is unspecified,
(q-e), equasp or in the special case described in Section 3.1.1. In general, it is found
that a suitable way to incorporate the gradient equations in the training process is to use
eg. 52 to obtain a more stringent criterion of formation for the input weights. The
approach of Section 3.1.2 has proven that there exist many p-node networks capable of
fitting input/output information exactly. Using derivative information during training
helps to choose the solution that has the best generalization properties among these
networks.

A first estimate of the output weights, v, and input-to-node values, n¥, to be used in
eg. 52 can be obtained from the solution of eq. 69 based on the randomized W, as
outlined in Section 3.1.2. This solution already fits the input/output training data. The
input weights and the remaining parameters can be refined to more closely match the
known gradients using a p-step node-by-node update algorithm. The underlying concept

isthat the input bias, d;, and the input-to-node values associated with the i node,
n =t (81)
can be computed solely from the input weights associated with it:
w, =[wy - w [(82)
At each step, the i™ sigmoid is centered at the k™ training pair through the input bias

d, i.e, n*=0, when i =k. The K" gradient equations are solved for the input weights

associated with the i node, i.e., from eq. 52;

53

Z| Vlo'l(nlk)wll

vio [b, =k - : d=1,.... (1), (i+1).....,pand | #i (83)
ZI Vi J’(nlk)qu

The remaining variables are obtained from the initial estimate of the weights. Thei™
input bias is computed individually,

di = _ykWi (84)
and p of the input-to-node values are updated:

n, =d; +Yw, (85)
Y isamatrix composed of all the input vectorsin the training set, as defined in eq. 72.
At the end of each step, eg. 69 is solved for anew value of v, based on the latest input-to-
node values.

The gradient equations are solved within a user-specified tolerance. At each iteration,
the error entersthrough v and through the input weights to be adjusted in later steps, wj;
with| = (i+1),..., p. The basic assumption is that the i" node input weights mainly
contribute to the K" partial derivatives, w;, because the i™ sigmoid is centered and v can
be kept bounded for awell-conditioned S. As other sigmoids approach saturation their
slopes approach zero, decreasing the error associated with wi;. 1f the gradient with
respect to some inputs is unknown, the corresponding input weights can be treated
similarly to the input bias. Inthelimit of p “free” inputs, all initialization equations can
be solved exactly for the network’ s parameters.

Similarly to Section 3.1.2, the approach is demonstrated by training a sigmoidal

neural network to approximate a nonlinear function having two inputs and one output,

based on 45 input/output and gradient samples. Figure 10 shows the function being

approximated along with the training samples used (symbolized by asterisks).

Figure 10.Actual surface being approximated and corresponding training samples,
superimposed as asterisks on the graph.

The neural network is chosen to have 45 nodes, and gradient tolerances are 0.05
(oh/dy;) and 0.5 (0h/dy;). The set of parameters initially obtained from the output

equations produces a lumpy surface (Fig. 11), and the gradient tolerances are not

satisfied.

Figure 11. Neural network approximation obtained from output weight equations.

Therefore, the weights are further refined using the p-step gradient algorithm, finally
producing the output surface in Fig. 12. This approximating function could be improved
by running the p-step algorithm again with smaller gradient tolerances. |If gradient

information were not available, the function could be improved by increasing the number

55

of training palirs, p, or by comparing the interpolation properties of different solutionsto

pick the best one.

Figure 12.Final neural network approximation obtained from the output and gradient
equations combined.

3.2 Modified Resilient Backpropagation

The algebraic techniques are designed for off-line neural network training, where an
entire set of datais available at once and can be used in abatch mode. They are most
useful when a-priori knowledge is first incorporated into neural networks; thus, they also
arereferred to asinitialization techniques. Inon-line training, new information is
obtained over time, and the neural parameters are incrementally updated without waiting
for all of the datato be available at once. Thiskind of incremental training improves
upon the network approximation properties using solely new training data, in order to
lower computational cost and complexity. Therefore, while the weights are continuously
modified, previously learned information must be preserved by the neural network.

Another important distinction to be made between batch training and incremental
training isthat while the former can be performed globally, the latter isintrinsically local.
Global optimization techniques search the entire parameter space and, as a consequence,

they only are meaningful if they utilize information about the entire function’s input

56

space. Instead, local optimization algorithms search only the neighborhood surrounding
the current parameter value and make good use of partial input/output information. In
order to be successful, they must begin searching within the vicinity of the optimizing
solution. When on-line training remains local, it also is likely to preserve knowledge by
not altering previously learned information.

In supervised learning, the approximating network performance is judged by
comparing the actual network output, z, to adesired output or target, up, for the
corresponding input, yp. The training algorithm adjusts the network parameters in order
to produce a network output that is closer to that target. Algebraic training also isaform
of supervised learning, because it is based on p-input/output and, possibly, gradient
targetsto be met. Because in incremental supervised learning there is only one
input/output training pair available, the training set takes the form {yp, up} and indexing
of the pairsis not needed. For the architecture shown in Fig. 5, the training objective can

be formulated as the minimization of a performance function,
_1 2

E(w) = lup —2(w) (86)
with respect to avector of ordered weights indexed by ¢:

w={veclw)” d” veclv)" b] =fw} s @

Given an initial set of neural parameters, W%, at each epoch, i, the value of each

weight, w.", is modified by a small increment, Aw,", based on corresponding derivative
information, dE(w)/ow, such that:

Wi = + Ang) (8)

57

The issues commonly associated with optimization-based training techniques include the
computational burden involved in computing and storing derivative information, and the
scaling effects associated with dissimilar parameter sizes. Normally, the search for the
optimal value of a parameter ceases when the corresponding derivative approaches zero.
In the case of sigmoidal neural networks, saturated processing functions also exhibit
small gradients, independently of how close to their optimal values the parametersreally
are. Highly dissimilar parameter sizes may worsen these effects by causing the
derivatives to have very different orders of magnitude, blurring the role of the individual
parameters in the optimization process.

The resilient backpropagation (RPROP) training algorithm [77] eliminates the harmful
effects caused by the magnitudes of the partial derivatives and displays excellent
computation and memory requirements. It is, therefore, particularly suited for on-line
training, where efficiency and reliability are of special concern. In RPROP training, only
the temporal behavior of the sign of the gradients is used to determine the direction and
size of the weight increments. The magnitude of the derivative dE(w)/0w; has no effect
on the w, weight update. The individual size of each increment, denoted by A, is

adjusted at each epoch according to the following rule,

7oA, it 9E(w) "™ aE(w)" -
ow, ow,
, , (i-1) M
A!(I): O_Af(l_l)1 if aE(W) aE(W) < 0 (89)
ow, 0w,
NG i 9E(w)"™ oE(w)" 0
c ow, ow,

where0< 77 <1< n". Theincrement size is increased by the factor /7° when the

algorithm is converging to a minimum and the derivative is not changing sign, whileit is

58

decreased by the factor /77 when the algorithm is jumping over alocal minimum and the

derivative is changing sign. This process accelerates convergence in shallow regions and

slows the search down when local minima are missed.

Once all A, are adjusted, each weight is modified in the direction of gradient descent,

, (i) (i-2) (i)
AE(')sgn aE(w) i aE(w) aE(w) > 0
() _ aWE aWE aW!
T oE(w) " oE(w)" 40
Aw,), if <0
ow, ow,

where sgn[¢] represents the signum function. When the error derivative changes sign
indicating that a minimum was missed, the weight w"*? is brought back to its previous
value w,{ ™ by abacktracking epoch [77]. Inthis case, the increment size does not need
adjustment in the next epoch; therefore dE(w)‘™/dw; is set equal to zero until eq. 89 has
found the appropriate A,.

When the RPROP algorithm is used for on-line training, the initial increment value
A9 isacrucial ingredient. Setting all initial increments equal to the same constant value
(e.g., 0.1) for weights of dissimilar sizes[77] is equivalent to disregarding prior network
weights. Instead, initial increments are chosen commensurate with a fraction, f,, of the
corresponding prior weights and perturbed by f, to account for zero weights:

A = £ w, |+ 1, (91)
Backtracking also is an algorithmic feature that is key to on-line training. It allowsthe
search to remain local even when, due to the progress made by eg. 89, the increment size

becomes large enough to bring the search to further minima. The effectiveness of the

59

modified RPROP algorithm will be demonstrated in Section 5.1.3, where the same neural

network is trained on line with and without the proposed modifications.

3.3 Algebraically Constrained Supervised Training

The local nature of on-line training implies that its effectiveness is largely dependent
upon the initial values of the parameters. In most neural network applications, some
knowledge about the function being approximated is available prior to their
implementation. On the other hand, assimilating information on line, while the neural
network is being implemented and the system is operating, translates into updating and
improving upon the network performance virtually in real time. To exploit both aspects
of learning, algebraic training is used to incorporate a-priori system knowledge into a
neural network, and RPROP training is used to continue adapting the same network on
line. The algebraic training procedure, in this case, isreferred to as initialization and
provides an excellent starting point for the on-line training routine.

Initializing the neural network off line improves reliability and convergence during
the on-line phase, but, in order to maintain the characteristics acquired during
initialization, on-line learning must improve upon performance without unlearning prior
knowledge. Redundancy in the network parameters contributes to these objectives, as
some parameters may be used for preserving information and others for improving
performance. The RPROP-algorithm modifications of Section 3.2 also are useful in this
regard, but they do not guarantee continued matching of the initialization requirements,
eg. 43 and 48. Incorporating the weight equations in the on-line adaptation brings about
aconstrained supervised training algorithm that minimizes E (eg. 86), subject to the

initialization requirements.

60

In the following paragraphs, the algebraically constrained training technique is
explained for asimple scalar case. In Section 5.3, the same approach will be explained
for the on-line training of an adaptive critic control system. In thissimple example, a
scalar-output neural network is initialized through the gradient-based approach of Section

3.1.1 and, subsequently, adapted on line. Suppose the training set for the function to be

modeled, u = h(y), is gradient based, {y*, 0, %=1 . withy<= [x¥" [a"]T

=[O0 ‘ a"T]T . When the x* training inputs are partitioned as in,

X3
y =| x5 (92)

ak

the known gradients, ¢, can be written as,

]
10)4
ck = aul v (93)

0Xx
2 yk

where du/dx; and du/0dx, are defined as column vectors. a contains all inputs for which
no derivative information is available.

The training set can be partitioned into two independent sets with equivalent

sand {[x&' |27, 0, wdxe et .. p

information: { [x*" ‘a"T]T , 0, OU/OX[V=1

where x1* = x,* = 0 for O k. Because these training sets also display the gradient-based
form described in Section 3.1.1, they can be used independently to initialize two p-nodes
scalar networks of the type shown in Fig. 5. The corresponding weight equations are

solved exactly using the gradient-based algebraic procedure. The parameters W, , W, ,

61

dy, v1, and b, are obtained for the first network, and the parameters W,_, W, da, V2,

Xo ?
and b, are obtained for the second network. This notation is consistent with the one used

in Section 3.1.1, with the addition of the subscript that indicates a parameter’ s network.

Figure 13. Two s3-node neural networks are combined into one s-node neural network
with the same output u and input a, and both inputs x; and x»; the dark lines represent the
new connections being introduced.

A single scalar-output network that models all of the original data, is obtained by
combining these two networks, as suggested by Fig. 13. According to the procedurein
Section 3.1.1, each initialized network contains p nodes; therefore the final network
contains 2p nodes. Itsinput weight matrix, W, aso is composed of weights associated
with the input x and of weights associated with the input a, i.e., W = [Wy | W4]. Inorder
to preserve the exact matching of the training set, the new connection weights (shown in

Fig. 13) areinitially set equal to zero:

W, = Wy O o4
X 0 WX2 ()

Since a isan input to both p-node networks, there are no zero weightsin W :

62

— Wal
Wa _{W j| (95)

a
The input bias and the output weight vector are obtained in a similar fashion:
d=[d] d}]" andv=[v] v;]". Theoutput bias is computed from the initialized
biases, b = b; + by, to satisfy the output requirement z(y*) = 0. It is easily shown that
these parameters satisfy the weight equations of the 2p-node network exactly.

The 2p-node network obtained thus far approximates the function u = h(y) based on

implemented in a scenario where further information about the function becomes
available over time, it can be periodically adapted on line to improve performance. When
the neural network istrained on line in a supervised fashion, it learns target input/output
data, {yp, Up}, as described in Section 3.2.

The weights that were initially set equal to zero now provide for the desired
redundancy and can be used to optimize the performance, E, in eg. 86. The remaining
parameters are used to satisfy the on-line constraints imposed by the weight equations, in

eg. 43 and 48. To emphasize this, Wy is partitioned into four matrices,

W, W
W, :{ 11 12} (96)
Wi Wo,

where W;; contains the input weights connecting the x;-portion of the network input p to
the nodes indexed by [(i — 1)p + 1] through ip.

The weights W1, and W23 are used specifically to minimize E. Given the on-line
training set { yp, Up}, a each epoch, i, the on-line performance (eg. 86) is minimized with

respect to the vector,

63

W= [VeC(le)T VeC(Wzl)T]T = {Wz}le, 2 ... 97)

by adding an increment Aw,") to each weight value w,” in w, according to eq. 88-89.
While initially w® = 0, at any other epoch w®) # 0, as determined by the RPROP
algorithm. With new values for the parameters W1, and W1, the full weight equations,
eg. 55, 56, and 57 (with s = 2p), are no longer satisfied by the initialized values of W13,
W, Wy, d, v, and b. Therefore, these parameters also must be determined at every
epoch, as described below.

The full weight equations represent the algebraic constraints that are imposed on the
minimization of E, in order to preserve knowledge of the off-line training set. They must
be satisfied at each epoch, i, without becoming a computational burden. The important
result is that new parameter values that satisfy the algebraic constraint when w® # 0 can
be computed at each epoch, without solving eg. 55-57 in the manner used for
initialization. If W, and d are kept constant throughout the on-line update, i.e.,

W." =W and d” = d for all i, then the input-to-node values, n¥, also remain
constant as shown by eq. 57. In particular, it follows that S” = S©, where S© is equal to
the p x 2p initialization matrix,

S=[s! 7] (98)
composed of the p-node network sigmoidal matrices S* and S%. Since S is unchanged, the
initialized values of the output weights and bias continue to satisfy the output equations
(eq. 55), hence v = v and b = b©.

The gradient weight equations (eq. 56) change at every epoch, because W, # W, 0.

For the 2p-node network, eq. 56 can be reformulated as two equations,

¢t =X, Vec(Wy,) + X, Vec(W,,) ()
6% =X, Vec(W,,) + X, Veg(W,,)

where ¢ = [(Owoxi|)" ... @uoxi[)]". The X, and X, matrices are defined similarly to X
ineq. 61. Except that for X3, B = [vig(n") ... vod'(ny)] and e equals the dimension of
X1; for Xo, B¥ = [Vps10 (Nps1¥) ... Vapd (N and e equals the dimension of x,. At each

epoch, W1, and W21 are known from w, so eg. 99 can be solved for the W11 and Wy:

VeC(Wll) = (Xl)_l[gl - X, Veg(Wy)]

2, (100)
VeC(sz) (Xz) [¢° — X, Vec(Wy,)]

Both v and all input-node-values, n¥, remain constant during the on-line update. Thus,
the X1 and X, matrices also remain unchanged and their inverse can be computed a priori.
In fact, al four matrices K 11 = (X1) ¢!, K12 = (X1) X2, K22 = (X2) ', and K 21 = (X2) X1
can be determined off-line and stored for on-line usage. In summary, at each epoch the
network parameters are updated according to the following rule,
th +1) — W§i) + AWS) N W2(i1+1) 1 W1(i2+1)

WD =w® gD =g®

v = ® 1 b+ = M (101)
Vec(wffl)) =K, -Kgp Vec(W2<i1+1))

VeC(W2(i2+l)) =K -Ky VeC(Wl(i2+l))

where w; is defined in eq. 97 and Aw is given by eq. 89 and 90. The values W1, ©,
W1, W21 @, W@ W@ d© vO and b al correspond to the initialization weights
described in the previous paragraphs. The algorithm locally searches for the optimal set
of weights and, simultaneously, satisfies the algebraic constraints expressed by eq. 55-57.

Convergence is achieved when 0E(w)/ow; — O for O £.

65

Similar results are achieved when redundant output weights are present, as for the case
in which vector-output neural networks are obtained by joining initialized scalar
networks. The procedureis very similar to the one described above for the 2p-node
scalar-output neural network. The main difference is that part of the output weights also
are modified by the RPROP rule. Therefore, the output weight equations must be
satisfied adjusting the remaining output weights. The computation involved can still be
kept to a minimum by means similar to the above. The vector-output extension of the

algebraically constrained learning technique is demonstrated in Section 5.3.

3.4 Chapter Summary

Neural networks are massively parallel computational paradigms that are used for
function approximation or identification in a variety of applications. They are considered
to be more powerful than other universal function approximators, because they are
intrinsically capable of dealing with nonlinearities and multi-dimensional input and
output spaces. A novel algebraic training approach is developed that consists of
formulating the training set as requirements to be imposed on the network equations. It
can produce exact or approximate solutions, depending on the number of nodes in the
nonlinear layer. In particular, it is found that an exact input/output or gradient-based
solution always can be obtained by using as many nodes as there are training pairs. Also,
the resilient backpropagation approach is modified to obtain an algorithm that has faster
convergence and better preserves the initial parameters. When this backpropagation-
based algorithm is combined with the algebraic training approach, a scheme that allows

for incremental learning and guarantees preservation of a-priori information is obtained.

66

Chapter 4

Initial Specification of the Neural Network Control System by an Algebraic

Training Approach

In this chapter, the neural network controller structure and initial parameters are
specified in what is referred to asthe pre-training phase. In this stage of the design, the
system architecture and appropriate performance baselines are identified based on
classical/modern feedback, inner/outer loop, proportional-integral-derivative control
formulations. Appropriate system requirements are estimated by considering the
performance of an equivalent linear controller at a set of operating points OP, and are
imposed on the neural network control structure. The neural networks' size and
parameters that meet these requirements are determined solely by solving linear systems
of equations, using the algebraic training techniques introduced in Section 3.1, in what is
also referred to asinitialization.

The results show that the pre-training phase alone defines a global neural network
controller that is capable of performing at least as well as an equivalent gain-scheduled
controller. In fact, the algebraic training techniques aim not only at meeting the desired
performance targets at the chosen design set OP, but also a warranting satisfactory
approximation properties over the entire input space corresponding to the convex hull
[78] of OP, i.e., theinterpolating region IR, illustrated in Fig. 14. The on-line training
phase, that will be described in Chapter 5, improves control response for large-angle
amplitude and coupled motions, fast transitions between equilibria, and unforeseen

conditions, throughout the operating region OR. The full operating region OR includes
67

IR, aswell as a set ER of extrapolating conditions excluded by IR, ER n IR =, such

that ER O IR = OR (Fig. 14).

x: OP OR

ER

Figure 14. Abstract representation of the full operating region OR and the relevant
operating subsets: the set OP of design operating points (designated by crosses), its
convex hull or interpolating region IR, and the set ER of extrapolation points.

The two-phase learning approach is demonstrated by designing a neural network
controller for abusiness jet aircraft model. The nonlinear control system alwaysis
motivated by a multivariable linear control structure; the Proportional-Integral (PI)
controller is chosen for illustration. The corresponding nonlinear controller is obtained
by replacing the linear gains of a Pl controller with nonlinear neural networks: aforward
neural network, afeedback neural network, and a command-integral neural network
replace the respective gains. I1n addition to these control networks, a critic network is
introduced in order to evaluate their performance, as anticipated in Section 2.1.

A full six-degree-of-freedom simulation of the business jet aircraft is available in the
form of a nonlinear differential equation:
% =1 [x(t).pyy (t).u(t)] (1)
It is based on mathematical models, full-scale wind tunnel data, and actual physical and

performance characteristics of an early twin-jet configuration [64]. The control design

68

takesinto account the full state vector, x = [V yq 8r Bp 4", comprising airspeed

V (nVs), path angle y(rad), pitch rate q (rad), pitch angle @ (rad), yaw rater (rad/s),
sideslip angle S (rad), roll rate p (rad/s), and bank angle (rad). The altitude and
velocity also are specified through the scheduling vector a=[V H]'. The independent
controls being generated are throttle JT (%), stabilator &5 (rad), aileron JA (rad), and
rudder AR (rad); i.e, u =[dT B A JR]". A description of the simulated equations of
motion will be provided in Section 4.4 and in Appendix F.

During the on-line phase, the simulation is allowed to explore the entire operational
domain, OR, defined as the envelope for which there exist control settings u. capable of
trimming the aircraft at corresponding values of state and command input (Xc, Y¢). The
command input, ye = [Ve) 1 5", contains the state elements that, given the altitude
H.¢ (m), uniquely specify alongitudinal-lateral-directional steady maneuver (e.g., a
coordinated turn), postulating @, = 8. = 0 with gasthe Euler roll angle. For simplicity,
the commanded altitude, H, is approximated by the aircraft altitude, H. Trim control
Settings, ue, that realize the commanded maneuver can be defined solely in terms of yc:

0=f[X;,pm ey,)] (102)
In fact, the commanded state, X, and corresponding flight conditions, pm, also are defined
exclusively by y., astheir elements either correspond to elementsinyc (i.e., Ve,), te,)
or can be computed fromyg (i.e., qc, &, re, Pc) such that they do not oppose the

commanded maneuver, as shown in Section 4.4.

69

4.1 Linear Design

Linear controllers that satisfy established engineering criteria[67-66] are designed for
afamily of linearized models obtained at the set OP of equilibria, providing for the
desired performance targets to be matched by the neural network controller. The
nonlinear aircraft model is approximated as a linear-parameter-varying system over the

two-dimensional flight envelope, shown in Fig. 15, assuming steady-level flight, i.e.,

W=to=[=0.

16000

1000, X : Design Point
12000
10000 -

8000

Altitude, m

6000 (-

4000 -

2000 -

60 80 100 120 140 160 180 200 220 240 260

Velocity, nv/s

Figure 15.Business jet aircraft steady-level flight envelope (IR) and set OP of design
operating points used for the neural network pre-training phase.

The flight envelope is designed by considering the stall speed, the thrust/power required
and available, compressibility effects, and the maximum allowable dynamic pressure to
prevent structural damage [64]. The set OP consists of thirty-four design points chosen
from the boundaries and the interior of the flight envelope, corresponding to the region

IR, and both sets are shown in Fig. 15. Asintroduced in Section 2.2, eg. 1 can be

70

linearized about each equilibrium or operating point in OP by holding the scheduling
vector, ap = [Vo Ho] ", fixed.
Given the dynamic system of eg. 1, afirst-degree expansion can be written:

x(t) = %, (t) + Ax(t)
=fo[Xo(t). P m(t) ug ()] + AF [xo (t), P (t). uo (t), AX(t). Au(t)]

= olop]+ X ax(t)+ 2 auf) o
=f,[]+ Fax(t) + GAu(t)
The perturbation model is:
B%(t) = Flxo (t). o (t),uo ()]Ax(t) + G[xo t). P (t) uo (B)]AU(E) (104)

This model isalmost alinear, parameter-varying (LPV) plant, “almost” because the
system matrices depend on Xo(t), as well as the remaining variables. In most applications,
effects of parameter variations are ignored because time-varying effects are small.

Therefore, {F, G} «=1, ... 31 Can betreated asa set of LTI plant models of the type in eq.

14. The Jacobian matrices, F and G, are evaluated numerically at al thirty-four pointsin
OP, using aMATLAB built-in function, numjac, that is based on the algorithm proposed
in[79]. The nonlinear control systemis pre-trained by deriving performance targets from
the linear control laws corresponding to this set of LTI models and by incorporating these
targets into the neural networks.

The perturbation models obtained for the aircraft state and control can be written as
longitudinal, (¢)., and lateral-directional, (*).p, reduced, fourth-order independent

models,

Ax (t)=F ox, (t)+ G Au, (t)

) (105)
DX p (t =FupXp (t) +G pAup (t)

71

by neglecting the cross-coupling terms in the Jacobian matrices that typically are of
comparatively small magnitude [64]. The longitudinal state and control vectors are

XL =[V yq Q" and u. = [T &', respectively; and, the lateral-directional state and
control arexp = [r Bp 4" and up = [0A &R]", respectively (as indicated by the
respective subscripts). Asaresult, the family of longitudinal LTI models,

{Fi, GL} «=1, ..., 34, can be considered separately from the family of lateral-directional LTI

models, {FLp, Gip} «=1, ..., 3a. Longitudinal and lateral-directional linear control gains are

computed and their performance evaluated independently for each of the two families, as
described in the following sections. In Sections 4.3 and 4.5. these gains are used to

initialize decoupled longitudinal and lateral-directional feedback, command-integral, and

critic networks.
4.1.1 Proportional-Integral Control

The Proportional-Integral (Pl) controller isthe multivariable linear control structure
chosen to motivate the nonlinear neural network control system. A Pl controller, shown
in Fig. 16, modifies the stability and transient response of the system through the
feedback gain matrix, Cg, and it provides Type-1 response [80] to command inputs
through the proportional gain matrix, Cg, and the command-integral gain matrix C,. Hy
and Hy are Jacobian matrices obtained from a first-degree expansion of eq. 2, resulting
into the following linearized output equation:

Ay (t)=H Ax(t)+ H Au(t) (106)
The objectives of the control system can be expressed in terms of the quadratic cost

function,

72

: (107)
= lim = [(1)Q.x, () +2x,” (7)™ ,(r)+ 07 ()R (2 oz

which is minimized with respect to U . X, represents an augmented state that includes
both the deviation, X , from the commanded state,
X =(x—x,)= (X, =%,)=x-x, (108)

and the time integral of the output error, &, i.e., x, =[X' &T]".

+
ys(t) ~
_— u‘
+y V() t+
>_' CI Hu Hx
ye(t) c. + u(t) Linear X(B
g Plant
Cs

Figure 16.Example of linear proportional-integral feedback control system. (A'sare
omitted for smplicity.)

Similarly, the output error and the minimizing control are defined as deviations from
the set point commanded by y., i.e,, ¥ =ys—Ycsand U = u — u.. When the minimization

of a quadratic cost function (eg. 107) is subject to a linear dynamic constraint, such as eq.

14, the LQ law eq. 21 provides for the optimal control in terms of the newly defined

deviations:

0(t) = -Cxo(t) =-[Cs Cy Ixa(t) =-CoX(t)-Cy5(t) (109)

73

The forward gain matrix, Cg, can be obtained from the feedback gain matrix and set point
meatrices defined below [81]:
Cr =B,, +CgzB,, (110)
For the linearized system (eg. 14 and 106), the set point is defined by letting the state-

rate perturbation, Ax, equal zero:

o),
= (112)
AyC HX HU AUC

The longitudinal-set-point state and control perturbations can be obtained from the

command-input perturbation, Ay = y. — Yo, through the following relation [81]:

ol PV S o] IV v
Au, H, H, Ay, By By || Ay, B LAy,

The PI gains and corresponding Riccati matrix, P,, are obtained by solving a matrix
Riccati equation [81] formulated in terms of the augmented state, x,, and the control
deviation, u. The weighting matrices Qa, M4, and R,, are designed using implicit model
follonming (IMF), to induce the closed-loop system to follow the response of a model that
satisfies established design criteria[82]. For simplicity, the ideal model, the augmented
weighting matrices, and the corresponding gain matrices are obtained separately for the
longitudinal and the lateral-directional models, as shown in Sections4.1.2 and 4.1.3. The
remainder of Chapter 4 deals with the initial specification of the Pl neural network

controller and its initialization.
4.1.2 |deal Model

In implicit model following, the LQ law is used to induce the actual plant to follow the

behavior of an ideal model specified by alinear system of the same order asthe

74

linearized plant. The model displays desired performance characteristics that can be
replicated using reasonable control usage, provided they are sufficiently close to those of
the actual plant. Inthe case of an aircraft, the ideal performance is defined by stability
and control characteristics, and handling qualitiesthat allow the vehicle to performits
intended mission safely and in a manner that the pilot finds satisfactory. The extensive
experimental studies conducted in this field have lead to findings that have been
quantified into approved military specifications for different aircraft types and flight
phases [83]. Table 2 summarizes the specifications pertaining to alight aircraft in a
terminal flight phase (such as takeoff, approach, and landing) that requires accurate
flight-path control and flying qualities that are adequate to accomplish the mission at
hand. These criteriaare taken into account in designing the ideal model to be followed
by the business jet aircraft.

Table 2. Longitudinal and lateral military specifications for aClass | airplanein a
terminal flight phase (Category C), requiring Level 1 flying qualities [83].

Longitudinal flying qualities Lateral flying qualities
Phugoid mode Roll mode
{p>0.04 Tion < 1.0
Short-period mode Dutch roll mode
{por=0.08
0.35< < 1.30 ¢or D, 2 0.15red/s
Wy, 2 0.4 rd/s

The process of defining the ideal system is not an exact one; it can, however, be a

decisive step in the linear control system design. As suggested by the flying qualities
75

specifications, it is convenient to consider the longitudinal and lateral-directional

dynamics separately. Subsequently (Section 4.1.3), the longitudinal ideal model, F, ,
and the lateral-directional ideal model, F, ', can be used to design the linear control

gains for the reduced systems {F, G.} « and { F.p, G.p} «, respectively. Both models are
obtained based on aircraft linearized equations of motion and must meet the established
flying qualities. Normally, the aircraft equations of motion are expressed in terms of
stability derivatives which are a function of the aircraft’s geometric and aerodynamic
characteristics. Inthe case of the ideal model, the stability derivatives are chosen by
considering the tradeoff between meeting desired specifications and abiding by the
business jet characteristics.
4.1.2.1 Longitudinal Aircraft Model

The aircraft longitudinal dynamics are characterized by two basic modes of motion:
the lightly-damped Phugoid mode and the highly-damped short period mode. The
linearized longitudinal equations of motion of an airplane with fixed controls can be
derived with respect to an inertial frame of reference and then expressed with respect to

the state perturbation Ax = [AV AyAq Ad]" in asimplified state space form:

TD, -gcosy, : TDq 1D,
WV (9/Vo)siny, T LIV Ly IV 13
L =] |\/|V i O S - |V| q R |V| a ()

—Ly 1V, —(g/V,)siny, (1— Ly /Vo) = Ly IV,
The coefficients of the state space model, referred to as stability derivatives, are defined
according to an established convention. Ly represents the normalized derivative of the
lift force with respect to velocity, TDy represents the difference between the thrust and

the drag derivatives with respect to velocity, (Ty — Dy), and so on [84]. gisthe
76

gravitational acceleration, « isthe angle of attack, ¢ and V, are the nominal path angle
and velocity, respectively. The above isthe most convenient form for investigating

flying qualities based on the Jacobian matrices, because F,_ isinthe most nearly block

diagonal form and, hence, can be partitioned into Phugoid parameters and short-period
parameters by neglecting off-block-diagonal terms [84].
Asaresult, the Phugoid and short period natural frequencies and damping ratios can

be approximated by these conventional formulas,

why =[Oy Vo] (114)
o =-TDy /20, (115)
Wyy = [M- Ly V) - ML, 1V |2 (116)
(o = (Lo Vo —M)/ 200, (117)

where ap isthe mode' s natural frequency. The approximations represent a more accurate
depiction of the fourth-order model’s (eq. 113) characteristics if the ideal model is
assumed to be in level flight, i.e., 6 = 0, and the remaining cross-coupling terms
approach zero. The following estimates can be obtained from the thirty-four linearized
systems computed for the aircraft simulation over OP (Section4.1) : Ly/Vo =0, TDq =0,
My = 0, and Lv/Vo = 2 10 (m™). As a consequence, the approximationsin eq. 114-117
hold even when TD, and L ,/V, are not zero.

The flying qualities specifications in Table 2 impose limitations on what can be
considered acceptable Phugoid and short period damping ratios, ¢ and {sp; however,
they are not stringent enough to determine the values of the remaining stability

derivativesin eg. 113. From experience, it is known that good values for {p and {sp are

77

0.1 and 0.45, respectively. Based on these values and on eq. 114, @, isfound to equal

0.0802 rad/s; thus, eq. 115 can be solved for the value of TDy that produces {p = 0.1, i.e,,
~0.016 (s*). For the short period mode, the approximations leave more room for
inference. A possible approach consists of letting the following stability derivatives
equal to the median values of their respective distributions (obtained from {F., G} «):
Mg =-5, LJ/Vp =-5, and TD, =-8. In particular, TD, affects neither the short period
natural frequency nor the damping ratio; therefore, it can be chosen solely based on the
aircraft’s linearized models. The value of Mg varies considerably across the flight
envelope; therefore, its ideal value is computed based on the short period specifications.
Equation 116 is substituted into eq. 117 and, after afew iterations, it is found that
Mg = 1.7 produces a damping rétio, {s, close to 0.45.

The ideal stability derivatives determined above are used with eq. 113 to form the

longitudinal ideal model. However, F,, must be formulated in terms of the same state

vector asthe system to be controlled: Ax,. In purdy longitudinal motion (level flight) the
following relationship holds for the aircraft path angle, pitch angle, and angle of attack:
y=0-a (118)

Therefore, the following matrix defines the desired transformation, Ax, =T, Ax, |,

(119)

XL

RORLO
OoOr oo
ROOO

QOO

and the stick-fixed equations of motion can be formulated with respect to the original

state:

ax, = (T Fu T e (120)

78

Finally, the ideal longitudinal model used in the IMF design is,

-0016 -18066 O -8

_|2mo™* -05 0 05
fm =170 5 -17 -5 (121)
0 0 1 0

and itsroots are plotted in Fig. 17a. Although the coefficients of the equations of
motions depend on Vo, for smplicity this ideal model is held fixed throughout the flight
envelope and is used to design the PI gains for al thirty-four linearized systems.
4.1.2.2 Aircraft Lateral-directional Model

Three characteristic motions can be identified in the lateral dynamics of the aircraft;
they are the slowly convergent or divergent spiral mode, the highly convergent rolling
mode, and the lightly damped, low-frequency Dutch roll mode. Table 2 summarizes the
limitations imposed on the lateral modes’ characteristics. Furthermore, from experience,
it isknown that desirable values of Dutch roll natural frequency, w,_ , and damping
ratio, {pr, are 3.6 rad/s and 0.6, respectively. The specifications for the spiral stability
involve the minimum time to double the bank angle amplitude following an initial
disturbance in bank angle, £, of up to 20 deg, and can be verified following the model

design. The linearized stick-fixed lateral equations of motion are used to construct F

mp *
They are expressed directly in terms of Ax, p, using the state-space matrix,
N, Ny, | N, 0 |
s
—_ 1_ ' -~
Flo =| WYY o %o o oo 022
L, L, L, 0
0 0o | 1 0 |

in aformthat aready is suitable for investigating lateral-directional flying qualities. The

coefficients of the Jacobian matrix also are defined according to convention [84].

79

If the lateral dynamics are approximated by further reduced first and second-order
models, natural frequency and damping ratio approximations can be obtained for the
relevant modes of motion from the roots of the corresponding characteristic equations.

The undamped Dutch roll parameters are given by the following expressions:

Y
Do =\/—ﬁNr—Y—fNﬁ+Nﬁ (123)
VO VO
1 (Yg
=- L +N 124
ZDR anDR [Vo rj ()

The rolling mode can be approximated by a single-degree-of-freedom motion (or first-
order ordinary differential equation), such that the roll time constant, 74, iSobtained in

terms of the roll damping L:

1
Tronl = _L_ (125)
p

From the characteristic equation of the system in eg. 122, it is easily shown that the above
approximations also hold for the full, fourth-order lateral system, provided L., Ny, and
0/Vo approach zero. This can be considered as a reasonable assumption, because the

same coefficients also are small for the matrices in the set { Fip} «.

Since the desired value of w,__ isknown, eq. 124 can be used to determine the
desired value of the sum (Y4Vo + N;), i.e., —4.32 rad/s. A second condition can be
derived from eg. 123: Y,/ usually is small or equal to zero, thus (N Y4 Vo + Npg) =
12.96 (rad/s)?. Ng varies considerably across the flight envelope and is purposely chosen
larger than that of the actual linearized systems, i.e., Ng= 8 s?, to provide greater

directional stability. Subsequently, the values of Y4/Vo and N; that satisfy both the natural

80

frequency and the damping ratio conditions are uniquely determined as N; = -2.4 s* and
Yi/Vo=-18 s*. The high absolute value of the yaw rate damping, N;, improves the
aircraft response; also, asistrue for most airplanes, the following holds for the chosen
coefficients: |Ni| > |[Y4Vo|. Thisset of stability derivatives not only satisfies the Dutch

roll specifications, but also produces a model that has a more stable directional motion,

without differing considerably from the actual systems.

< :
X Dutch roll
— 7 7 Short period] ’r
Dhi 1+ 4 % 1t |
> Phugoid 0; Roll Spiral
g 0 x_ 5 0 X 4
g . -
E £
2L X] —_ 2
8 1 0.8 0.6 0.4 0.2 0 %5 x—é 1.5 -1 0.5 0
Real Part Real Part
(a) (b)

Figure 17. Characteristic roots of the longitudinal ideal model, F, , (&) and of the lateral-
directional ideal model, F,, _, (b).

The remaining coefficients are chosen equal to the best valuesin { F.p} , thet is, the
dihedral effect is chosen as small as possible, i.e., Lg= -2 s?, since with N; it provides for

sufficient spiral stability. L, ischosen equal to —2 s™ to provide for the largest roll

damping. Thus, the lateral-directional ideal model consists of the following matrix,

-24 8 0 O
| -1 -18 0 0

Foo =l 0 2% -5 0o (126)
O 0 1 0

81

whose roots are shown in Fig. 17b. The next section demonstrates how these models are
used to establish the control system’ s objectives through the weighting matrices Qa, Ma,
and R,, ineq. 107. The described procedure constitutes an efficient approach to
designing these weighting matrices that involves both engineering practice and intuition.
Other established methods and criteria also are acceptable and can be directly substituted

to the next design step, without influencing the remainder of the design process.
4.1.3 Implicit Model Following

In order for the actual system to follow the behavior of the ideal model, defined in

terms of the Jacobian matrix Fy, its state rate must approach that of the model:
Ax,, () = F A, (t) (127)
The cost function to be minimized can be formulated in terms of the state rate of both

systems,

3= lim 2 j {[Ax (O] Q.[ax(r) - Axm(r)]}dr (128)

and is equivalent to eg. 15, provided the following weighting matrices are used:

Q=(F-F,) Qu(F-F,) (129)
M=(F-F,)'Q,G (130)
R=G'Q,G+R, (131)

F and G refer to the state space matrices of the system to be controlled. R is a constant
matrix that represents the separate cost of control, and Qn, is aweighting matrix for the
state-rate errors. Perfect model following can be accomplished only when the following

condition is satisfied,

82

™ -1, JF-F.)=0 (132)
asshown in [85]. This criterion formalizes the pragmatism followed in Section 4.1.2 for
the ideal model design. From eg. 132, it is easily seen that the closer Fr,isto F, the less
control usage is needed to follow the model closely.

Since the longitudinal and lateral-directional dynamics can be decoupled, eq. 129-131

are used to compute longitudinal weighting matrices,

QL= (FL - FmL)TQmL (FL - FmL) (133)
M :(FL_FmL)TQmLGL (134)
Ry :G[QmLGL +Ro, (139)

and lateral weighting matrices,

Q LD = (FLD - FmLD)T QmLD (FLD - FmLD) (136)
_ ()T

M =\Fp - I:mLD QmLDG LD (137)

Rip :G[DQmLDGLD +Ro,, (138)

based on the respective models, F,, and F designed in Section 4.1.2. When the

Mp’

perfect model following criteria (eg. 132) cannot be satisfied exactly, as is the case here,
the weighting matrices Q, , Ro , Qn, » ad Ry arechosen by the designer to
achieve the best possible response, as described below.

In order to achieve Pl compensation, an augmented state that includes the output error
integral, &, isconsidered in the cost function (eq. 107) to be minimized. Reference [82]

shows that the Pl augmented weighting matrices can be defined in terms of the implicit

model following matrices, eq.129-131, as

83

0 Q.

M
1] o

Q.= {Q 0 } (139)

and Ra = R. The weighting on the output error integral is represented by Qg. It follows
that the longitudinal augmented matrices, Q,, , M, , and R, areformulated interms
of Qu, Qg , My, and Ry, and that the lateral augmented matrices can be similarly
defined. &_and & p are the time integrals of the longitudinal and lateral output errors,
y =V 71" and ¥, =[77 B]", respectively.

The Pl gains for every system in the longitudinal design set {F, G} « are computed

by solving a Riccati equation (eq. 22), using the MATLAB built-in function Igr (part of

the Control Systems Toolbox). The longitudinal Pl gainsC, and P, are computed
based on the weighting matrices, Q, , M, , and R, , and on the corresponding
longitudinal state space model defined by Fi, G, H, ,and H, . According to the

longitudinal output definition, the output matrices are,

:{1000} (141)
0100

XL
and H, =0. Thelongitudinal feedback and command-integral gain matrices, Cg and
C, . aredetermined from C, , asindicated by eq. 109. Subsequently, eq. 110 can be
used to compute the longitudinal forward gain matrix Cg .

The above procedure implies that the outcome of the linear design is completely

specified by the set of matrices Q, , Ry , and Q. . Typically, these are diagonal

84

matrices whose elements are chosen by considering the role and the magnitude of the
variables they weigh. The control laws corresponding to different sets of matrices are

tested by simulating the following closed-loop system,

{A)‘(L(t)} {(FL -G, Cq,) —GLclL}{AXL(t)]{(GLCBL ~F B,

%L(t) H H gL(t) _HXLBH

by e
XL up
obtained by applying the PI control law (eg. 109) to the longitudinal linearized system for

which the gains have been designed. Because the same matrices Q,, , Ry , and Q;

are used for all pointsin OP, the designs they produce are tested throughout the envelope

in Fig. 15. The flight condition (Vo, Ho) = (120 m/s, 3 000 m) is considered for

illustration. The roots of eq. 142 are compared to those of the ideal model, F, , and to

those of the open loop system, F, to consider the effectiveness of the implicit model
following design. The step-input aircraft response also is used to evaluate the
performance of the resulting controller.

Figure 18 shows the root comparison for two possible designs obtained with different
weighting matrices; “diag[*]” denotesthe placement of a vector on the diagonal of a zero
meatrix. The closed-loop system possesses two additional characteristic roots that
correspond to the integral compensation. In the first example (Fig. 18.a), the short-period
roots are amost unaffected by the closed-loop design, while the phugoid roots are
worsen, asthey are further from the ideal roots than the open-loop system’sroots. The
second design (Fig. 18.b), improves the short-period roots by pushing them closer to
those of the ideal model, and leaves the phugoid roots almost unaffected. However, both
examples require excessive control usage, as shown in Fig. 20. After carefully

comparing the characteristic roots and the step-command-input response of the closed-

85

loop system (eg. 142) obtained with several choices of the weighting matrices (including

the examples shown in Fig.s 18 and 20) the following weighting matrices were chosen:

Q,, =diag[0.510 51] (143)
Ro, =diag[0.5 5] (144)
Q., =diag[110°] (145)

The roots of the corresponding closed-loop system are shown in Fig. 19.

3| Q Short period 3 <> Short period
% 2L + X — 2 + X
D>" 1t " Phugoid E 1 + Phugoid
E 0 an $ - 48—
8) At S oal
£ 8 +
£ 2 + X ET + X
Lo] Lo
Real Part Real Part
(a) (b)

Figure 18.Characteristic roots of the longitudinal model (x), open-loop system (¢), and
closed-loop system (+), obtained with two examples of weighting matrices sets:
Qn =diag[0.010.010.010.01], R, =0,and Q. =diag[11](a), and

Q. =diag[10°10°200.01], R, =diag[11], and Q,, = diag[0.10.1] (b).

The rate a which the command-input error is suppressed also playsarole. The
chosen set of matrices accomplishes the best compromise between matching the ideal
model behavior and achieving feasible dynamic compensation. Figure 20 shows the
controlled system’ s response to a common step command input. These results show that
while the first example achieves relatively close matching of the short period root (Fig.

18a), it requires unreasonable control usage (Fig. 20b). The second example also requires

86

an excessive amount of throttle (Fig. 20b) and only matches the phugoid root closely
(Fig. 18b). The chosen set of matrices (eg. 143-145) produce both arelatively close

matching of the ideal roots and a reasonable command-input response.

4 T T T T T T T
3t 0 Short period
"%‘ 27+ X
oo, Phugoid |
P +
g + ¢
-1k 1 pmmmm e ——
g Al | 1% Model
= 7+ X §: Open-loop System |
° O |1+ : Closed-loop System !
“ -116 -l.‘4 -l.‘2 -i -O.‘B -016 -O.‘4 -012 0 0.2:' _____________________ !
Real Part

Figure 19. Characteristic roots comparison at the design point (Vo, Ho) = (120 m/s,
3 000 m), achieved with the actual weighting matrices used in all longitudinal Pl designs.

124 3
l‘,’T;‘\ \
1230 Ji N2 e mnne P — |I
] M
n " 8) 2k
= ol !
E L] ho} ‘\
- H - 1L
> e s
e —=
120 0 LSt
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
8
6l
2 .
©
- 2r
J
0
2

Figure 20.Longitudinal state (a) and control (b) response to a 3-nVs velocity and 4-deg
path angle step command input, at the design point (Vo, Ho) = (120 m/s, 3000 m). The
actual design (solid line) is compared to adesign with Q,, = diag[0.01 0.01 0.01 0.01],

Ro, =0,and Q, = diag[1 1] (dashed line), and to adesign with Q,,
= diag[107° 10° 200.01], R, =diag[1 1], and Q= diiag[0.1 0.1] (dashed-dotted line).

87

The lateral Pl gains are determined through the same methodology used for the

longitudinal gains, except they are based on the weighting matrices Q, _, M and

ap'’

Ra, andonthe systems{F.p, Gp}« The lateral-directional output matrices are,

_ {0 00 1} (146)

XD

0100
and H, = =0. Therefore, oncethe model F,, = has been specified, asin Section 4.1.2,
the lateral linear controllers depend exclusively on the choiceof Q, ., Ro . and Q; -

The lateral equivalent of eq. 142 is used to compare designs obtained with different

weighting matrices. Figures 21 and 22 show that, at a given operating point, the

matrices,
Qpm, = diag[10 110 1] (147)
Rop = 0 (148)
QéLD = diag[10 0.1] (149)

offers adequate matching of the model roots and good output-error damping. The linear
gains based on the chosen set of weighting matrices (eg. 147-149) provide for appropriate
command-input response with reasonable control usage, as shown in Fig. 23. The results
shown in Fig. 21 and 22 for arepresentative point (Vo, Ho) = (120 m/s, 3 000 m), are

typical throughout OP (Fig. 15).

88

X +‘_|_ ‘ X
2| Dutch rall] 2l Dutch roll
5 O .
S~ Rl sprd | | @ | Roll L pira |
>
E 0-|——)(—e—|——$—- g 0 * O + {&
g -1 1 §) At
= . A | E, O
; x T+ Lox +
Real Part Real Part
(a) (b)

Figure 21. Characteristic roots of the lateral model (x), open-loop system (¢), and closed-
loop system (+), obtained with two examples of weighting matrices sets:

Qp, =0iag[0.010.010.010.01], Ry, =0, and Q. _ =diag[1 1] [82] (a), and
Qu, =diag[1101107, Ry =0, and Q. =diag[0.10.1] (b).

X T :
2l + Dutch roll
& o
E Roll Spiral|
> ol ir
E 0 _1(/\ + $
= \Y4
= + |
= "% - Mod ;
I O |1 ¢ Open-loop System
+ | + : Closed-loop System !
. ¢ ‘ ‘ ‘ T !
Real Part

Figure 22. Characteristic roots comparison at the design point (Vo, Ho) = (120 m/s,
3 000 m), achieved with the actual weighting matrices used in all lateral Pl designs.

89

30

20

-~

10

OA, deg

=)
’
Ay
N

H, deg

[s

[
N
w
I
o
o
~
@
©
S

o
=
N
w
I
o
o
~
@
©
S
o

30

. ‘ ‘ ‘ ‘ ‘ ‘ — ‘ ‘ ‘
§ 3k "I "__ § 20}
Q@ R
s | (LI
ol
% 1 2 s 4 5 & 7 8 9 10 o 1 2 8 - 7 8 9 10
i Time, s

Figure 23.Lateral state (a) and control (b) response to a 5-deg bank angle and 3-deg
sideslip step command input, at the design point (Vo, Ho) = (120 m/s, 3000 m). The
actual design (solid line) is compared to designs with weighting matrices
Qm =diag[0.010.010.010.01], R, , =0,and Q. _ =diag[1 1] (dashed line), and

Qm,, =diag[1101 101, Ro,, =0 ad Q; =diag[0.10.1] (dashed and dotted line).

After the decoupled PI controllers have been tested for both reduced linear systems,
they can be used to initialize the neural network controller described in the following

section. Thelinear control laws designed above can be summarized by the longitudinal
set of matrices{ Cg , C, , Cg , P, }« and by the lateral set of matrices
{Cg: Ciy+ Crp s Pa, t« corresponding to the linear systems{F., G/} «and

{Fip, GLp} « respectively (where k=1, ..., 34). Producing the linear design is, in itself,
atime-consuming and often challenging task. Considering that many of these designs
already are available in the industry and that they do entail considerable engineering

knowledge and wisdom, it certainly seems important to incorporate them in the adaptive

control system.

90

4.2 Proportional-Integral Neural Network Control

The Pl Neural Network Controller (PINN) is the nonlinear structure motivated by the
linear Pl Controller. It isobtained by replacing each linear gain with a nonlinear neural
network, NNg for Cg, NNg for Cg, and NN, for C,, as shown in Fig. 24. The input-output
structure is unchanged, and the command error is integrated, asin the linear system, to
produce Type-1 response [80]. Performance targets for these networks are established
locally by the respective linear gains that the networksreplace. The output, ys, and set
point, (Xc, Uc), are computed for the fully-coupled nonlinear system. The Scheduling
Variable Generator (SVG) contains algebraic equations that produce auxiliary inputs to
the neural networks based on the command input and an exogenous vector, e, of
measured variables. The Command State Generator (CSG) usesthe aircraft’ s kinematic
equations to provide secondary elements of the state that are compatible with y.. 1t will
be described in Section 4.4, because it closely interacts with the forward neural network,

NNFE.

ys(t)

h[x(t) u(t)]
+g)7(t) Au(®) T

&)
—»D—u»NN'

A

ye(t) Nonlinear X(t)
" NNF "| Plant >
€ l Y
—{svG 1 NNg %Jr
CG r Xc(t) -

Figure 24.Nonlinear proportional-integral neural network control system.

91

All auxiliary inputs to the neural networks are included in the scheduling vector and
can be updated in real time by the on-board instrumentation, i.e., a(t) = [V(t) H(®)]". In
addition, the networks NNg, NNg, and NN, are provided with the state deviation, X(t),
the command input, y(t), and the command-error integral, &(t), respectively. Each of
these vector-output networks contributes to the total control, u(t),

u(t) = uc(t)+ dug(t)+au;) (150)

where,

Aug(t) = NN [X(t), a(t) = z,(t) (151)

As previously indicated, z denotes the network output. In order to perform aswell as an
equivalent linear structure, the nonlinear controller must satisfy a set of requirements that
are imposed on the neural network equations.

As anticipated in Section 2.3, the classical and neural control systems can be
synthesized by recognizing that the gradients of the nonlinear neural networks must
correspond to the linear gains they replace, at selected nominal conditions (e.g., OP).
Computational feedforward neural networks of the type shown in Fig. 5 with one hidden-
layer of sigmoidal functions are employed for all neural blocks. Each vector-output
neural network is obtained by joining scalar-output networks, asinferred by the
input/output relation being modeled. The remainder of this chapter shows how each
neural block is algebraically designed and trained, based on requirements generated from

the linear Pl control laws designed in Section 4.1.

92

4.3 Feedback and Command-Integral Neural Networks

The feedback neural network must provide for regulation in the control system and
produce zero output when the state, x(t), approaches the commanded state, x(t), i.e.,

X(t) — 0. Therefore, at each nominal operating point x« 0 OP considered in the linear

control design, the following must hold:

z[%(t), alt)] =z5(0, a)=0 (152)
The deviation from the commanded control, uc(t), equals the sum of the feedback and
command-integral neural networks' outputs, from eq. 150:

U(t) = dug(t) +Au, (t) = zg(t)+ 2, (t) (153)
Differentiating eg. 109 and eq. 153 with respect to the neural network input X(t) reveals
that, at the " nominal flight conditions, the gradients of the feedback neural network,
NNz, can be obtained from the feedback matrix designed for those conditions,

| au(t)
ox(t)

=-Cjh (154)

where X(t) = 0and a(t) =a”.
A total of four scalar neural networks, of the type shown in Fig. 5, is used to form

NNg, i.e., one for each control element:

v e [F o

AéS(t) _ NNBL X, (t), alt

aa)| | NN [Rio) alt) (%
AR(t) 5 Ne,p, %o () a(t)]

Initially, these neural networks are decoupled and compute their respective outputs

independently of each others. In Section 5.1.1, they will be joined algebraically to form a

93

vector-output network with equivalent off-line performance, that is further trained on-
line. The two longitudinal feedback neural networks are fed with the same input, which

includes the longitudinal state deviation, X, , defined in Section 4.1. The lateral-
directional state deviation, X, , is part of the input to the lateral feedback networks that

produce the lateral portion of the control vector Aug in eq. 155.
A gradient-based training set can be obtained for each of the scalar networksin eq.

155, from the feedback requirements in eq. 152 and 154. Clearly, the output condition in
eq. 152 extends to all feedback scalar neural networks, because X =[X| X/51":

z5(0, @) = 0, for O «. Also, known gradient vectors can be obtained from the
longitudinal and lateral feedback gain matrices computed in Section 4.1.3,
_ T
Cng - CEL (1' .)
_ T
CELZ - CEL (2’ .)
T
Chp, =Chip (L *)

CELD2 = CELD (2’ .)T

(156)

|'[h

where the argument (1, ¢) refersto the I"-row in the matrix. These vectors contain the

partial-derivative information defined by c*in eq. 38, pertaining to NN B, NN B, °

NN and NN Bip, respectively. It followsthat atraining set of the type described in

Bip; ’
Section 3.1.1 can be defined for each feedback scalar neural network. Every training set
is formed using the gradient vectorsin eg. 156 and the scheduling vectors { a} «

corresponding to al thirty-four pointsin OP. For example, the training set for NN By,

]
can be formulated as{ [0 @] , 0, cf_}r=1,...3s

94

Therefore, the gradient-based algebraic procedure described in Section 3.1.1 can be
used to determine the weights of the neural networks in eq. 155. Exact matching of the
training data is obtained by designing each scalar network with thirty-four nodesin its
hidden layer. For each of these networks, the parameters to be determined consist of the
input weights associated with the state-deviation input (such as X, or X,), Wy, the
input weights associated with the scheduling-vector input, W, the output weights, v, and
the biases, d and b. The linear systemsin eg. 58, 59, and 63 are used to determine these
weights, according to the algorithm detailed in Appendix B. Figure 25 shows the final

architecture used for NN B, where W =[W; |W,]; asimilar oneis used for all scalar

feedback neural networks, with inputs and outputs defined as in eq. 155.

The final architecture is motivated by the pre-training phase, always providing zero
output for zero sate deviations. The direct contribution of the scheduling variablesto the
output is subtracted using a mirror image of the initialized network (with zero state
perturbations), in order to eliminate any bias they might produce away from nominal
training conditions. However, the effect of the scheduling variables with respect to the
network gradients remains unaltered and, as expected, a schedules the gain interpolation
acrossthe flight envelope. Depending on the units of the input and output elements, the
neural network gradients may be too sensitive to deviations from the nominal X -input,
i.e. 0. Inthiscase, X and U can be rescaled simply by multiplying Wy, by a small
factor, e.g., f; = 107, and v by itsinverse, 1/ f<. Fromthe weight equations, it can be

seen that this factor cancels out, leaving their solution unaltered.

95

X1
I <oy

o
—
<

Figure 25.Final architecture for the pre-trained network NN B, - A similar architectureis
used for all scalar feedback neural networks (biases d and b are not shown for simplicity).
The command-integral neural network, NN, is expected to minimize integrals of the
command-vector error in order to reduce the long-term effect of uncertain parameters or
constant disturbances on the set point. It is pre-trained based on the approach introduced

above for the feedback neural network. The contribution it provides, Au,, must vanish
when the command-error integrals do so as well:

2, [gt), at)] =z (0, a*)=0 (157)
A relationship between the gradients of the command-integral neural network, NN;, and
C, can be found by differentiating eq. 109 and eg. 153 with respect to &(t) and evaluating

the derivative at the £" nominal flight condition,

]/ ——
i o (158)

(t

where &(t) = 0 and a(t) = a”“.

oz, (t)] _ou
0&(t) |, o8

K K

Initially, NN, is composed of four independent scalar neural networks (Fig. 5),

96

o) b

AB(t)| NN, 15 (), alt

aay)| 7| NN o) o) i
AR(t) | NN, [0 (t), a(t)]_

where &, (t) and & p(t) are defined as in Section 4.1. Although perfectly capable of
operating in this configuration, they later are coupled to form a unique vector-output
network that learns from the full aircraft dynamics on line. The command-integral

training set also is of the form described in Section 3.1.1. The output condition
7(0, a") = 0for O xisimplied by eq. 157, since & =[&] &],]". Thegradient
information is obtained from the longitudinal and lateral command-integral gain matrices

computed in Section 4.1.3,
_ T
C/|(|_1 - C/|(|_ (1' .)

C/|(|_2 = C/|(|_ (2’ *)T

Cll(LD1 - Cll(LD (l' .)T

= C/|(|_D (2’ .)T

(160)

C/|(LD2
with each vector’s subscript designating the corresponding scalar network.
This gradient-based training data is used to initialize the command-integral scalar
networks. For each NN, the algebraic technique introduced in Section 3.1.1 computes

the input weights associated with the command-integral input (such as&. or &.p0), W;, as

well as the remaining weights: W, v, and d. Figure 26 shows the final architecture used

for NNILl , Where W =W, |Wa]. At this point, both NNg and NN; have been initialized

and can be implemented in the PINN controller of Fig. 24. The pre-trained neural

network controller performs identically to its linear counterpart when operating in the

97

neighborhood of one of the equilibriain OP. When operating between design equilibria,
in IR, the pre-trained controller automatically interpolates between known gains, thanks

to the neural networks' generalization abilities.

Figure 26.Final architecture for the pre-trained network NN, L A similar architectureis
used for all scalar command-integral networks (biases are not shown for simplicity).

The neural networks performance is tested by applying the PINN sructure for the
control of the step-command-input aircraft response, over the steady-level flight envelope
IR (Fig. 15). Three cases are illustrated; in each case, the same command input is
provided to the full nonlinear simulation of the aircraft (eqg. 1) flying at either a design or
an interpolation operating point. Thetime histories of the relevant state elements and of
the control deflections subject to y. are used as performance evaluations and are plotted
with asolid line. The state response is judged against that of a linear-Pl-controller (Fig.
16), represented by a dashed line, that is specifically designed for the operating point
under consideration. Prior to pre-training the forward neural network (Section 4.4), the
Set point (X, Uc) can be determined from linearized dynamic and output equations as

shown in eg. 112, considering that x; = AXc + Xo.

98

Case 1: Response at a Design Point

The neural controller response is tested for alongitudinal and a lateral-directional

command input at the design point (Vo, Ho) = (200 m/s, 11, 000 m), considered in the pre-

training phase, to demonstrate the effectiveness of the algebraic technique implemented.

Both the state and control time histories are plotted in Fig. 27 for a 2-deg-path angle

command, and in Fig. 28 for a 5-deg-bank angle and 3-deg sideslip command. As

expected, the response obtained with the neural controller (represented by a dashed line)

isidentical to that obtained with the linear controller (represented by a solid line),

because all linear gains designed for OP are matched exactly.

200.4

V, m/s

199.8
0

~,

L L L L L L L L L
0.5 1 15 2 25 3 35 4 45 5

_ NN Contraller |

- -- Linear Controller

L L L L L L L
15 2 25 3 35 4 45 5

Time, s

L L
0 0.5 1

Control deflections, deg

1
osF="""" /V -----------------------
S or
05 . peeeo
B 7T
\ A TTTEEE
-1 /
4
4
-15F /
4
,I
—2”--_‘/
’
25 L L L L L
0 05 1 15 2 25 3 35 4 45
Time, s

Figure 27.Relevant aircraft state and control response to 2-deg path angle step command,
at the design point (Vo, Ho) = (200 m/s, 11 Km).

99

4, deg

/5, deg

ol
al

ol

0 ‘

0 0.5 1 1.5 2 25 3 3.5 4 4.5

4

al

’r — NN Controller

1t - -- Linear Controller

00 0.‘5 ‘1 1.‘5 ‘2 2.‘5 1‘3 3.‘5 A‘t 4.‘5 5

Time, s

Control deflections, deg

8

—————————— /
Or’x :>:§__::::==_‘,========_,
’
\
\ /’
\ ’

&

Figure 28.Relevant aircraft state and control response to 5-deg bank angle and 3-deg
sideslip step command, at the design point (Vo, Ho) = (200 m/s, 11 Km).

Case 2: Longitudinal Response at an Interpolation Point

The response of the aircraft flying at an interpolation point, (Vo, Ho) = (95 mvs,

2 000 m), subject to a 97-m/s-velocity and 3-deg-path angle command input is shown in

Fig. 29. The neural controller performance is compared to that of alinear controller

specifically designed for these flight conditions.

V, m/s

¥, deg

98

97+ =

5

o6l — NN Controller
—_—— Linear Controller

o L

0 0.5 1 1.5 2 25 3 3.5 4 4.5

6

4k & =

&

ol

0

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time, s

Control deflections, deg

Feao
-
e cacaa

-

Figure 29.Relevant aircraft state and control response to 97-m/s-velocity and 3-deg-path
angle step command, at the interpolation point (Vo, Ho) = (95 m/s, 2 Km).

100

Because this operating point was not considered in the pre-training phase, the neural

networks must interpolate between the available linear controllers to produce the control.

Nevertheless, the response is very close to that of a linear controller that is specifically

designed for these flight conditions.

Case 3: Lateral-Directional Response at an Interpolation Point

The aircraft response is evaluated for a second interpolation point, (Vo, Ho) = (140 m/s,

6 000 m), and a purely-lateral command input of 6-deg-roll angle, to demonstrate the

consistency of the results for different flight conditions. This case also shows that the

pre-training phase is effective for both the longitudinal and the lateral-directional neural

network controllers. The response of the same neural control structure and that of a

linear controller computed for the operating point are plotted in Fig. 30, for comparison.

10

0.4

=
S<=T

— NN Controller
- -- Linear Controller

Control deflections, deg

~-

- ———
Il

Figure 30.Relevant aircraft state and control response to 6-deg-roll angle step command,
at the interpolation point (Vo, Ho) = (140 m/s, 6 Km).

The network’ s generalized response is again seen to be close to the linear one. While it

only is feasible to design linear controllers for afinite set OP [IR, the neural controller

handles the entire envelope, IR, with a performance analogous to that of alinear

101

controller specifically generated for the given flight condition. If the match at any given
test point is not satisfactory, the neural network control response can be improved by

adding that point to the design set.

4.4 Forward Neural Networ k

Therole of the forward neural network in the nonlinear control system (Fig. 24) isto
approximate the trim map of the business jet aircraft. The trim map represents an
inversion of the aircraft nonlinear model (eg. 1) and, in series with the aircraft, it provides
afeed-forward path [86]. Given the command input, y., NNg must produce
corresponding control settings, ug, that trim the aircraft about the desired steady
maneuver. Under perfect conditions of exact coincidence between the nonlinear model
and the actual plant, the control is provided solely by the forward network (i.e.,, u = 0).
Perturbation feedback signals, Aug and Au,, that compensate for inaccuracy in the aircraft
model and for external disturbances are processed by feedback and command-integral
neural networks, as accomplished in Section 4.3.

Trim control settings can be defined for a given command input,

uc(t)=gcly.(t)] (161)
such that:
fxc(t) pmlt) uc)] =fxc(t) pmlt) acly.®ll=0 (162)

The command values, V., K, 1, and 4, in X are directly specified by y.. The remaining
secondary values of the state, qc, &, r¢, and pc, are computed so as not to oppose the

steady maneuver commanded by y.. Inthe present context, a steady maneuver always is

defined by zero Euler roll and pitch rates, i.e., ¢ =6, =0, and by zero body

102

accelerations. Hence, it may correspond to cruising flight, steady climb or descent, or a
coordinated (possibly helical) turn, such asthe oneillustrated in Fig. 31. The body axes
system, fixed to the airplane, is shown in Fig. 32 together with an inertial reference frame
that is fixed to the Earth. The latter is denoted by the subscript r and the former by the

subscript b.

! ‘
Z
b i #c—/Vertical axis of turn

Figure 31. Steady-climbing coordinated turn, taken from [87].

The airplane velocity can be resolved into three components, u, v, and w, along the X,
Vb, and z, body axes, respectively. The angular velocities about these axes are referred to
asroll rate, p, pitch rate, g, and yaw rate, r. Thus, in a steady maneuver, the following
must hold: u, =v, =W, =0 and p, = ¢, =r, =0. Through conventional rotations [88],
defined in terms of the three Euler angles, ¢ 6, and ¢, the transformation between these
two frames of reference can be derived [88] and the relationship between the Euler and

the body angular rates identified as:

103

p|] [1 O -snf | g
q|=|0 cosp cosfsng| O (163)
r 0 —-sng cos@cosg| @

The body velocities can be expressed in terms of the aerodynamic angles, fand a, and

the airspeed, V [88] to relate them to the elements of the state x:

u V cosa cosf
v|=| Vsng (164)
w| |VsnacospS
Lo Yo Body Frame
Eath __ -~
Xy
Yr Inertial Frame

Zr

Figure 32.Body and inertial axes systems, adapted from [88].

Given the value of the command input, y., at a specified altitude, the settings uc, &,
and ¢, capable of trimming the aircraft (i.e., satisfying eq. 13) are obtained numerically
from the equations of motion, by setting the body velocities and angular rates equal to
zero and employing the transformations above. For three-dimensional maneuvering
flight, the commanded angle of attack and Euler roll angle are fully specified by y. and

@, as suggested by the following spherical trigonometric relationships [89]:

104

a= cos'l[cosy cos;;r;n yan Gj (165)

q):Sin.{cosysnucosﬂ—snysnﬂj (166)
cosé

Subsequently, the commanded body axes and angular rates (including the secondary
values of the state, g, r¢, and pc) can be obtained from eq. 164 and eg. 163, respectively,

with eg. 163 simplifying to,

p -ysn@
g|=| ¢cosfsng (167)
r { cos@ cosg

under the assumption that ¢, = 8, =0.

Following the above procedure, the control settings uc, the state x., and parameters pm
that satisfy eg. 161-162 for the command input y. and altitude H. can be determined.
The aircraft trim map, U, is defined as the sampled set of control settings that trim the
aircraft over its full operational domain, OR:

U, (%, p)={uk: (x4, p5)OOR, flxk, p¥, uf)=0, k=12 .} (169
The mapping from OR to U, can be assumed to be bounded and one to one. In practice,
U, is obtained by solving the steady-state equation (eg. 13) for values of the command
input sampled over OR. For the airplane, OR is defined as the set of all possible
maneuvers, i.e., OR={V, H, y; i, £}, andisinitially estimated based on what is already
known about the vehicle' s capabilities, the passengers comfort, and other operational
constraints. Ultimately, the operating domain is defined as the state and parameter space
for which there exists atrim solution. Therefore, its boundaries can be determined by

solving the same steady-state equation that defines the aircraft trim map, eg. 161-162.

105

Computing the trim map is atask that is computationally challenging in itself and
whose algorithmic details are omitted for simplicity. The approach taken here consists of

specifying limits for what are known to be reasonable ranges of y; 1, and £

-6 deg< y<6 deg
OR:{-21deg< <21 deg (169)
-5deg< /<5 deg

Several combinations, { y; i, £}, are considered within these limits to sample the space in
anon-symmetrical fashion, as explained in Appendix D. The maximum allowable flight
envelope is taken to bethat for steady-level flight. Where the flight path angle is
negative, the envelope could be expanded; however, we do not allow that to happen. In
other cases, such as increased flight path angle, non-zero roll or sideslip angles, the

{V, H} envelope isdecreased. Trim solutions are sought below an estimated ceiling of
15, 000 m, progressing downwardsto sealevel (0 m) in 1, 000 mintervals (Fig. 15). For
each of these altitudes, the lower and upper bounds on velocity are determined based on
the existence of trim solutions, as schematized in Fig. 33.

Because there are many control variables and the equilibrium is quite sensitive,
numerical problems may be encountered in solving eg. 162, particularly along the low-
velocity boundary. For some combinations of path angle and bank angle, (;), the
amount of throttle required to trim the aircraft at agiven altitude does not vary
monotonically with respect to airspeed. Hence, the MATLAB fsolve routine fails to
provide reliable results. For example, it may not identify valid solutions at some interior
points, and it may not provide a smooth boundary at other flight conditions. The
conservative approach taken here is to define a reduced flight envelope that eliminates
the problem points. The collection of the {V, H} envelopes corresponding to all chosen

106

combinations of path angle, bank angle, and sideslip, { y; 1, £}, constitutes the five-
dimensional flight envelope OR={V, H, y 1, B, whose boundaries are partly projected

onto the three-dimensional space in Fig. 34, for illustration.

16000

14000}
12000 -
10000 RY
; N
ll ™
’ \‘
8000 / N
/l \\‘
6000 ; 1
I’ ‘,
ll //
4000 K S
/ .
¥ Py
2
II l/
/ L

Altitude, m

2000

0 P L L d L
60 80 100 120 140 160 180 200 220 240 260

Velocity, nv/s

Figure 33. Search of reduced {V, H} envelope associated with one combination of values
(¥, 1, P) (dashed line), starting from the steady-level envelope (solid line). The search
process is schematized for three sample altitudes.

15000

H,m

10000

5000

250

250 10)2 d% M, d% 20 “go 100 v rnl/so 200
<

Figure 34.{V, H, 1} envelope for (1, B = (20°, 5°) (a), and {V, H, 1} envelope for
(¥ B=(0-5)(d

107

The trim map, U, and the corresponding pointsin OR are sored in the multi-
dimensional array structures described in Appendix D. U.isused to pre-train the forward
neural network, NN, whose objective is to approximate the nonlinear mapping in eg.

161 over the compact input space OR. To every value of the trim-control vector, ug, there

corresponds a unique pair of values & and ¢/, that, together with uc, specify the

maneuver commanded by y.. These two parameters are needed by the Command State
Generator (CSG) in Fig. 24, in order for it to provide the control system with the
secondary values of the state, g, &, ¢, and pc, that are compatible with y.. Hence, the
forward neural network, characterized by the architecture shown in Fig. 35, must learn

the following trim data:

uk

Ve | | gk
{HJ,% (170)
&

[
k=1, ..., 2696

This equation expresses the trim data to be used for training in a form that is equivalent to
the input/output training set treated in Section 3.1.2-3.1.3. Theonly difference isthat it

refers to avector output network and, thus, can be generalized by a set of the form

Y5, ue=1 o

ERIFHI

Figure 35.Forward neural network architecture, with a generic number of nodes.

108

Because there isatotal of 2, 696 training pairsin eg. 170, it is convenient to seek only
an approximate matching of the data, synthesizing this information by using less nodes
than there are operating points. Also, since the multi-dimensional surfacein eq. 161 is
only slightly nonlinear, gradient information (Cg) is not required to achieve good
interpolation properties, as demonstrated below. Optimization-based algorithms, such as
the Levenberg-Marquardt (LM) and the Resilient Backpropagation (RPROP), are not
easily implemented for atraining set this large, as explained in Section 3.1.3. Therefore,
NN is pre-trained based on all of the trim data available, following the algebraic
approach introduced in Section 3.1.3. Thefull set (eq. 170) isdivided into smaller
subsets that are individually used to train small neural networks with the same
input/output structure as NNg. These small networks, with less nodes than there are
operating points, are trained using an optimization-based algorithm and, later, combined
algebraically to obtain the final forward neural network parameters.

The LM algorithm generally displays excellent performance for a number of training
pairs of order ~O(100) [41]. Twenty subsets are obtained from all twenty (£, 5)
combinations described in the Appendix D. Each subset contains approximately 135 trim
points corresponding to the three-dimensional envelope{V, H,)4 and to one combination
(1, B). Then, the LM algorithm is used to train twenty vector-output neural networks
(each with an input/output structure shown in Fig. 35), based on the individual subsets. It
is easily found that each subset can be approximated by a ten-node network, achieving
excellent generalization properties and, typically, afinal mean-square error of 5 x 10°®
rad or rad/s. For each training pair the network error is defined as the difference between

the ideal output vector and the actual neural network output. Because the values of 7 and

109

[are held constant within each training subset, the inputs 1 and £ are essentially
equivalent to input biases for the corresponding ten-node network. However, their values
varying across the subsets renders them equivalent to the inputs V., Hc, and p within the
full network, obtained by superimposing all twenty ten-node networks.

Using the notation introduced in Section 3.1.3, it can be deduced that
S = ... =Sy =10, and that the full network must have a number of nodes, s, equal to 200.
Also, according to the procedure described in this section, the full network’s input
weights, W and d, are obtained algebraically from the input weights of the mten-node
networks (m = 20), asindicated by eq. 76-77. Inthe case of a vector-output network, the
matrix V of output weights is obtained from the vector-output equivalent of eg. 80:

v =(s"u) (171)

I™-row and the i"™-column of V and represents the

vii denotes the element in the
interconnection weight between the i™-node and the I™-output in the network. The
sigmoidal matrix Sis defined in the usual fashion, based on eq.47, and U contains all of

the output training data from eg. 170,

Tnal
u=|g; --- 6° (172)
l/’i "'[/Icp

with a number of training pairs, p, equal to 2, 696. In this case, the error brought about
by this superposition is not zero, but amounts to a mean-square error of 2 x 10” rad or
rad/s, which is an acceptable error for this application. This full network, with

architecture shown in Fig. 35 and parameters W, d, and V, constitutes NNE, as it

110

approximates the full trim-data training set (eq. 170), corresponding to the full envelope
OR={V,H, v u, 5.

The generalization capabilities of the forward neural network are tested throughout OR
by computing the mean-square error at points not included in the training set, and by
projecting the neural mapping onto three-dimensional space. Two sets of additional trim
data are produced for validation purposes. one with 39, 764 points and one with 2, 629
points, all from conditions in OR that were excluded from the set in eq. 170 (Appendix
D). Thetrim settings at the validation points are compared to those computed by the pre-
trained forward neural network; the mean-square error is found to be approximately
3x10° rad or rad/s for both sets. Hence, good generalization properties are obtained
consistently across OR, indicating that overfitting does not occur. Furthermore, the
surface approximated by NNk is plotted in Fig. 36 and compared to trim data from the
first validation set (Fig. 37) by holding), 1, and S constant and computing the output
over afine-grid V-H input space. Figures 38 and 39 show a similar comparison
obtained by holding the inputs Hc,), and £ constant.

These results show that the neural surfaces obtained through algebraic superposition
are smooth and that the approximation error is concentrated in areas corresponding to

zero outputs, such as L = £, to which there corresponds an output ¢, = 0, for any value

of the inputs V¢, He, and J¢. This can also be observed from the linear systemin eg. 171,
where the trim data produces an inconsistency [74] that is reflected on the rank condition.
If the input/output training data were fully consistent, eq. 171 would possess an exact
solution and the algebraic superposition would bring about zero error (although some

error would likely persist from the optimization-based training of the small m networks).

111

The pre-trained forward neural network isimplemented in the nonlinear control system to
compute the trim settings corresponding to the desired command input. Its parameters
are held fixed during the on-line adaptation, with the remaining neural networks
accounting for possible parameter variations. It is conceivable that the forward neural
network also be adapted to account for changes or parameter variations in the plant to be
controlled. Inwhich case, it isrecommended that a model network also be used, as
explained in Section 6.3.

Given y. and the corresponding values of & and ¢, approximated by the forward

neural network (Fig. 35), the Command State Generator computes the secondary
elements of the state that are consistent with the commanded maneuver. The altitude at
which the maneuver isto take place, He, is approximated by the current altitude, H. The
exact value of H. is virtually impossible to compute, because the trgjectory and the time
required to bring the aircraft from the present atitude, H, to the commanded one, H,, are
not known a priori. Based on the available information, the CSG computes the Euler roll
angle, @, from eg. 166 and, subsequently, all body rates, pc, gc, and r¢, fromeq. 167. The
combination of NNg and CSG is responsible for computing the set point (X, Uc) for the

nonlinear aircraft, as anticipated by the block diagram in Fig. 24.

112

Figure 36. Trim control surfaces modeled by the forward neural network, plotted over a
{ V¢, Hc} -input space by holding the remaining inputs fixed at (J, &, &) = (3°, 14°, 4°).

< anon

_ “om
10000 150

Figure 37. Actual trim control surfaces plotted over a{ V., Hc}-input space by holding the
remaining inputs fixed at ()¢, 1, B) = (3°, 14°, 4°).

113

100 -20 100 -20

100 220 -20 140 100 -20

Figure 38. Trim control surfaces modeled by the forward neural network, plotted over a
{ Vs, 1} -input space by holding the remaining inputs fixed at (Hc,), &) = (5 Km, 4°, 3°).

o, %) X5, deg
1 Oy
-1
0s
-
0l :
H 34
1580
2D150

i
100 20 L, deg 100 20

og,deg
10

100 -20

Figure 39. Actual trim control surfaces plotted over a{V, (&} -input space by holding the
remaining inputs fixed at (Hc, J,) = (5 Km, 4°, 3°).

114

4.5 Critic Neural Network

As anticipated in Section 2.1, acritic network is used to evaluate the neural controller
performance on line, within the DHP adaptive critic architecture. In particular, the critic
approximates the derivative of the value function with respect to the state in the
optimality condition criterion (eg. 36), which isto be minimized by the control strategy.
The critic network, NN¢, aso is pre-trained based on knowledge available from the
corresponding linear control design. In fact, it wasfirst established in Section 2.3 that
there exists a correspondence between the critic network gradient and the Riccati matrix,
at nominal operating conditions. Inthe LQ optimal control problem, the Riccati matrices
are used to obtained the feedback and command-integral gains, but they do not appear
explicitly in the Pl control structure (Fig. 16). Similarly, the critic needs not be
implemented for the pre-trained PINN controller (Fig. 24) to operate based on linear
control knowledge. It is, however, required during the on-line phase (Chapter 5), where
it aids the control networks (NNg and NN;) in their adaptation to improve performance
for large-angle and coupled maneuvers, new operating conditions, and unforeseen
failures that were unaccounted for by the pre-training phase.

The same Pl cogt function, eg. 107, optimized in the pre-training phase, is optimized
during the on-line phase. Therefore, the corresponding optimal cost-to-go or value
function can be defined asin eq. 11, based on the Pl Lagrangian L[x,(t), U (t)], and
minimized with respect to the control deviation, u . For an infinite-horizon problem, the
terminal cost can be assumed to be equal to zero (as explained in Section 2.1). Hence,
the value function can be differentiated with respect to the augmented state, x,, to obtain

the Pl performance measure equivalent to eg. 12,

115

N a9

(omitting the asterisks for simplicity) that isto be approximated by the critic network:

)"a [Xa (t)]

ha(t) = NNc[x,(t). alt)] = zc (t) (174)
The vector a(t) contains all relevant auxiliary inputs identified during the pre-training
phase and used for al other neural networks (eg. 151).
The linear designs obtained in Section 4.1 for the set OP of operating points, shown in
Fig. 15, are used to pre-train the critic network. At every design point indexed by

« [OP, the critic output must equal the locally optimal value function derivative,

2l 0r 0 (79

obtained by reformulating eq. 19 in terms of the Pl augmented state and Riccati matrix,
and by differentiating it with respect to x,. Furthermore, when the flight conditions are
truly nominal, by definition both the state deviation X and the output-error integral & are
identically equal to zero; hence, from eg. 175, the following must hold:

2, t). alt)], =2c (0, a*)=0 (176)
The gradient of NN at the & operating point is found to correspond to the Riccati

matrix P, by differentiating both eqg. 175 and eqg. 174 with respect to Xa:

0zc(t) _ona(t) _ o«
o) o) (&77)

Initially, each element in A, is modeled by a scalar sigmoidal network of the type

K K

shown in Fig. 5. Based on the decoupled linear designs of Section 4.1, these networks

can be characterized as longitudinal critic networks,

116

[av X\t 1V (t _NNCLl Xa (t)’ a(t)J_
oVx,()/ ot NN, [x,, (t). alt)
oV, (t)]/aalt NN, [, (). alt)
oVl 01000) 1| g e 0 af) (178
0VIx, (t)l/a([V(r)dz NN, [, (t) alt)
oVl o[7(dr)| | NN [x,, (). alt)
or as lateral-directional critic networks:
oV, (/ort) 1 [NNew, [Xa) al)]]
aV[x, ?}/aﬁ z NN, [Xa,s () at)
OVIxa(t)]/9B(t) | | NNe [xa, (t) alt)
oVix,(t)l/oalt) |= NNcLDj ... (1), alt) (179)
aV[x]/6 ,ur)dr NNc, . [Xa (t) a(t)
5| D !
VI @l BET)] | NG, [xa,, (). alt)

Similarly, the augmented state input X, can be partitioned into the longitudinal vector
Xg = [’)Z[el]T and the lateral-directional vector X, _ = [SZID &b]T . Prior to the on-
line phase, these neural networks can be algebraically joined into a single vector-output
network, NNc, with equivalent off-line performance, as will be shown in Section 5.1.1.
The critic requirementsin eq. 176-177 are equivalent to those obtained for the
feedback and command-integral neural networks, eq. 152-154 and eg. 157-158,
respectively. Equation 176 is extended to all scalar critic networks that must satisfy an
equivalent requirement: z-(0, @) = 0. Gradient information can be obtained from the
longitudinal and lateral Riccati matrices designed in Section 4.1.3 and organized such

that they provide known gradient vectors for the corresponding longitudinal critic

networks (eg. 178),

117

(L)

2,

O
oO=x
g

1

o
2 x

(@]
oOx
)
1
2%

(
(
(
(

(6 -

g
oO=x
&

I
2%
w

[)

=

(180)

(@]
OX
£
1
o
E
~

QD
=

(63

(@]
o=
e
(62
11
o
X X

)
)
°)
)
)

(@]
oOx
&
1
oJ

L

and for the corresponding lateral critic networks (eq. 179):

@)
(2
D(.

)
)
o)
)
)

K
Cipy

11
o
E

QD
'_

K
Cibp,

1
=%

K
Cipg

11
U
E

QD
=

w

(181)

K
Cipy

11
U
B

QD

~
[]

K
Cipg

1
23
O

5 -

L

1
TJ

o (6

c:LD6

It follows that a gradient-based training set of the type described in Section 3.1.1 can
be obtained for each scalar critic network. According to the procedure described in
Section 3.1.1, anumber of nodes equal to the number of design points (thirty-four) allows
for exact matching of the training data. All network parameters are determined
algebraically, in one step, using the algorithm in Appendix B. For each scalar critic
network NN, the initialized parameters consist of the weights associated with the state-

deviation input (X, or X,), Wy, the weights associated with the command-integral
input (§. or §.p), We, the weights associated with the scheduling-vector input, W, the
output weights, v, and the biases, b and d. The final architecture of one critic network,
NNCLl , is shown in Figure 40, where W = [W5 |W, |W, |. Thistype of architecture

always provides zero output for zero augmented state input and is representative of all

118

critic networks, whose input/output structure is detailed in eg. 178-179. The performance
of these algebraically pre-trained critic networks can be tested by comparing their
gradients to corresponding Riccati matrices specifically designed for any of the
interpolating points in IR (Fig. 15). However, this step is not necessary as the gradient-
based algorithm always provides excellent generalization properties, thanks to the strict

formulation of the requirements it satisfies.

1
>
o< <)

Lt ooviov

Figure 40. Final architecture for the pre-trained network NNCLl . A similar architectureis
used for all scalar critic networks (input biases are omitted for smplicity).

4.6 Chapter Summary

The initial specification of the nonlinear control law is obtained from a set of linear
controllers that are designed at thirty-four nominal conditions, chosen from the steady-
level flight envelope of the aircraft. These controllers are computed for the motivating
linear control structure, the proportional-integral controller, by implicit model following,
which is awell-established procedure that prescribes desired handling qualities and

criteria by means of ideal linear models. This phase of the design can be carried out

119

independently for the longitudinal and the lateral-directional dynamics, simplifying the
computation and testing of the control gains. The nonlinear controller is obtained by
substituting the linear gains of the proportional-integral controller with nonlinear neural
networks that bear the same name and the same input/output structure. Asa
consequence, an exact correspondence is found between the gradient of the nonlinear
neural networks and the linear gains they are replacing.

An algebraic approach is used to determine the neural architectures and parameters
that match the set of control gains exactly in one step, by solving linear systems of
equations. Subsequently, the neural network controller with the initialized parameters
held fixed is tested throughout the aircraft flight envelope. At the design points, its
performance is identical to that of the corresponding linear controller; at the interpolation
points, its performance is very close to that of a linear controller that is specifically
designed for the given flight conditions. This demonstrates that the algebraic gradient-
based technique not only matches the training set exactly, but also provides excellent
generalization properties. A forward neural network also is trained based on the full trim

map of the airplane using an approximate, input/output-based algebraic algorithm.

120

Chapter 5

Adaptation of the Neural Network Control System

In this chapter, the neural network controller adapts to large-angle maneuvers, control
failures, and parameter variations, learning to deal with new system dynamics as they
arise. The on-line adaptation is based on an approximate dynamic programming (ADP)
approach. Neural networks are the parametric structures used to predict the control
system’s performance into the future, in an effort to reduce computational complexity.
Unlike most dynamic programming algorithms, where convergence to the optimal control
law and evaluation function requires multiple generation and expansion of the state
vector, ADP iterates only on one value of the state and incorporates results at the
corresponding time step. By using this iterative successive-approximation concept and
Bellman's optimality conditions, it can be shown that, over time, the solution converges
to the optimal trajectory [16].

In practice, it has been observed that when the neural control system learns by means
of ascalar evaluation function (such as the cost-to-go or value function) convergence to
the globally optimizing solution is slow for any reasonable-sized state vector [18, 91].
Instead, approximating the gradient of the value function by a neural network accelerates
convergence, and it alleviates the need for persistence of excitation [92]. The Dual
Heuristic Programming (DHP) approach [18-20] also guarantees convergence to the
optimal solution over time, provided that the control law (action) and the value function
gradient (critic) are adapted according to criteriathat can be derived from the recurrence

relation of Dynamic Programming (Section 2.4).
121

The use of neural networks as function approximators for the action and the critic
functionals allows both for incremental adaptation and efficient system initialization.
Prior control knowledge is incorporated off line solely by initializing the neural network
parameters, as explained in Chapter 4. On line, a plant model also is used within the
DHP adaptive critic architecture to predict the state and the transition matrices one step
into the future. In the following sections, both theory and simulations show that the on-
line learning algorithm can retain and benefit from a-priori knowledge, while improving
system performance incrementally over time when subject to unforeseen conditions. A
necessary assumption isthat the action and critic functionals to be approximated belong
to the class of functions that the respective neural networks can generate for different
values of their adjustable parameters. While it can be shown that the number of nodesin
these networks is sufficient for approximating prior knowledge as well as additional on-
line information, a proof that guarantees the latter statement to hold under all possible
circumstances (e.g., for all values of the state, parameter variations, and control failures)
is not available. 1n some sense, it seems unlikely that such a guarantee be provided for

truly unforeseen conditions.

5.1 Dual Heuristic Adaptive Critic Design

The DHP adaptive critic design introduced in Section 2.3 isrecaptured in Fig. 41,
where the sequence of events suggested by the successive approximation approach is
emphasized. Thison-line logic isimplemented in discrete time, with the events

illustrated in Fig. 41 taking place during every time interval At = ty.q — tx.

122

nodel L ——— | Critic (@---=--=--=-=---=

Y
) |
) |
\ A
“Control | Contral ["Actual | State
. Action P
Action”
State "
Mode |——p| Critic |«
Prediction
Actionf
Update
I
]
e “Action) Actual | State
Adaptation” Action |- - Plant
N ~ x ‘
Modd ﬁ} Critic |«
Prediction |
E Critic
v Update
"CI’ItIC Action _____> AHCtU?I Sate
Adaptation” $ an

Figure 41. Event sequence performed during the time interval At = tys1 — t, by the DHP
adaptive critic architecture (the solid lines represent the events that are taking place).

The DHP approach can be related to the pre-trained neural control architecture specified
in Chapter 4 by realizing that the same metric optimized by the linear control designsis
to be optimized during the on-line adaptation. Subsequently, the input/output structure of
the action and critic networks can be identified, and any other details of the adaptive
critic architecture can be defined. The sampled-data utility function or Lagrangian

introduced in Section 2.4 can be obtained from the PI cost function in eg. 107:

Lolalt) T01=3 0 0)Quxa 6) + 267 (M) + 7 1)R)

(182)

The utility can also be viewed as the cost that accrues during one time interval or stage.

123

The augmented state x, and the control deviation U are defined as in Section 4.1.1,
with respect to the full state and control of the plant, x and u, respectively. Since these
vectors can be partitioned into their longitudinal and lateral-directional components, as
Xa=[X] X/, &l &,]1"and G =[U] U],]", the weighting matricesin eq. 182 can be
composed from the longitudinal and lateral-directional matrices obtained in Section 4.1.3:

Q. 0 0 0

0 0o o0
Q.=| ¢ Q(SD Q;, O (183)

0 0 0 Q

Mo=| o Mio (184)
0 0
ol]

Since these matrices are designed for the set of operating points OP (Fig. 15), their value
throughout OR is decided using a look-up table approach based on the scheduling vector
a
Following the development in Section 2.4, with eg. 182 as the utility function, the

recurrence relation (eg. 34) can be formulated in terms of the augmented state and control
deviation:

V[xa (t)] = Lo [Xa (ti) 0t)]+ VXt)] (186)
It follows that the criteria,

a\g%(? k(t)k] _dLg [gggt ; att), xa(tm)w -0 (187)

oty)

and,

124

0V[xy(t)] _ 0L oo [xalti)Ulti)] , 0L oo[xalti) Tt)] OT[xa (6)] ,
aXa(tk) aXa(tk) aa(tk) aXa(tk)
aXa(k+1) aXa(k+1) afj[xa(k)]
oy R iy

)‘a(tk) =

(188)
can be used for the on-line adaptation of the Pl neural network control system, provided

the action and critic networks approximate the following input/output relations:

U(t,) = NN Ao, ()]
(189)

)‘a(tk) = NNC [pa(tk)]

As anticipated in Section 2.3, the input to both networks includes the state and the

scheduling vector; thus pa(tk) = [Xa(t)" a(t)']". Sections5.1.2 and 5.1.3 describe the

implementation of the on-line adaptation scheme derived thus far. Inthe following

section, the architecture and the initial parameters of the action and critic networks are

obtained based on the results from Sections 4.3 and 4.4.
5.1.1 Action and Critic Network Initialization

The initial parameters of the action and critic networks can be determined
algebraically from the weights of the pre-trained neural networks described in Sections
4.3 and 4.4. Because of the decoupled nature of the linear designs, the pre-trained
feedback, the command-integral, and the critic scalar networks were initialized
independently. During testing (Section 4.3), their scalar outputs were grouped together,
asineg. 155, 159, 178, and 179, to form the desired vector outputs. The initialized
action and critic networks (eq. 189) are expected to perform equivalently to these
decoupled networks; also, they must have coupled inputs and outputs to, potentially,

capture any possible form of the functionals in eq. 189, during on-linetraining. This

125

means that al q inputs and r outputs of the action and critic networks must be connected
to al of their s hidden nodes. This approach to initializing the neural networks
guarantees that they will be capable of assimilating on-line information while preserving
a-priori knowledge, aswill be demonstrated in Section 5.3.

The vector-output sigmoidal architecture shown in Fig. 42 is used for the full action
and critic networks, NNa and NN¢. The output of the network is computed similarly to
eg. 39, as.

z=Ve[Wp+d]+b (190)
The derivative of each output with respect to each of the inputsis given by:

0z, S0z on, S .
= L=Yvo'ln)w, j=1,...,gand| =1, ...,r 191

The vector-output neural network notation is the same as that introduced in Section 3.1,
except for the output weightsthat are organized into amatrix V = { v}, where v;

represents the connection weight between the i™-node and the I™-output of the network.

Figure 42. Sample vector-output network with g inputs, s hidden nodes, and r outputs.

Algebraic operations that combine networks with the same output and different inputs,
or that superimpose networks with the same input/output structure are presented in

Sections 3.2 and 3.1.3. Similarly, networks with the same input and different outputs or
126

with different inputs and outputs can be combined and summed together, ultimately
producing an architecture such asthat in Fig. 42, asillustrated below. Suppose two
networks with a common input x and with outputs u; and u,, respectively, have been
trained (or algebraically initialized) based on corresponding training sets, producing the
parameters W, d1, V1, and b, for the first network and the parameters Wo, d,, V2, and b
for the second network. Then, aneural network with input x and output [u;" u2']", that
performs identically to the two decoupled networks (i.e., that approximates both training

sets) can be obtained, as suggested by Fig. 43.

Figure 43. Two neural networks (with s; and s, nodes, respectively) are combined into
one s-node network with the same input x and a combination of their outputs u; and us.
The bold lines represent the new connections being introduced.

The number of nodes in the new network, s, is equal to the sum of the nodes in the

original networks, s; and s,, respectively (s= s + $). Itsinitial input-weight matrix is

obtained from W, and W,
_| Wy
w4 52

and itsinitial output weight matrix is obtained from the weight matrices V; and V:

127

V= [\(’)1 \?J (193)

The new network biasesared =[d;' d2']" and b =[b1" b,']". The weight equations of
these networks can be used to prove that the above operation preserves performance (as
shown in Appendix C).

A similar operation can be performed to combine two (or more) networks with
different inputs, x; and X, and different outputs, u; and u,, as sketched in Fig. 44. Again,
the number of nodes in the new network equals the sum of the nodes in the original
networks. The initial input weight matrix can be formed from the original parameters as

follows,

W = [vgl VSJ (194)

and the relations used in the previous case hold for the remaining weights, V, d, and b. A
neural network whose input is the combination of x; and X», and whose output is the sum

of u; and uy, also can be obtained algebraically from the decoupled networks parameters
(Fig. 45), provided z; = z,. The summing network’s output weight matrix isV =[V1 V2].

The input-weight matrix can be computed asin eg. 194, and the new biases are

d=[d:" d>']"and b = by + by.

128

_/

Figure 44.Two neural networks (with s; and s, nodes) are combined into one s-node
network with a combination of inputs, x; and x,, and outputs, u; and u,. The bold lines
represent the new connections being introduced.

Figure 45.Two neural networks (with s; and s, nodes) are summed to produce one s-node
network with inputs x; and x, and with output (u; + uz). The bold lines represent the new
connections being introduced.

These algebraic operations can be used to obtain the parameters of NN and NN,
such that, their performance is initially equivalent to that of the pre-trained neural
networks. That is, the initialized NNa and NN¢ in eg. 189 aso satisfy the linear-control
requirementsin eq. 152, 154, 157, 158, 176, and 177. Hence, their initial performance

will be satisfactory with respect to the design criteria established in Section 4.1. A full,

129

feedback neural network NNg that has the required input/output structure (eg. 151) and

an architecture of the type in Fig. 42 can be obtained from the scalar feedback networks

in eq. 155. This neural network can be abbreviated as Aug = NNg[X, a], and is shown in

Fig. 46.
v
14
9
x ¢ ¢
r
B
b
M
Y
&1 H
ad Vv
H

Figure 46. Architecture of the feedback neural network NNg (input and output biases are
not shown, for smplicity).

The initialized parameters of the scalar networks carry an homonymous subscript
(according to the notation of eq. 155) and are known from Section 4.3. According to the

above network operations, the initial weight matrices of NNg are given by,

WiBLl 0 WaBLl
Wy 0 w
— BL2 aB|_2
W; = 0) W (195)
XBLp 4B p,
| 0 WXBLDZ WaBLDZ |

and

130

Vy, = L2 196
° 0 Vg, O (199
T
I 0 0 0 Ve,
The full feedback network’sinput and output biases are,
d
dg =| .2 (197)
d BLp;
d BLD,
and,
b
by =| 2 (198)
BLp;
BLD,
respectively.

Similarly, afull, command-integral neural network NN, that models the desired
mapping (eg. 151) and has coupled inputs and outputs, is obtained from the scalar
command-integral networksin eq. 159. Its architecture can be abbreviated by
Au; = NNi[&, a] (Fig. 47). Itsinitial input and output weight matrices are obtained from

those of the scalar networks, initialized in Section 4.3, as follows,

=
I

and

W
W

E.:I|_l

§||_2

0
0

0
0
W

E-"LD]_

E.:I|_D2

w

a| Ly

131

(199)

Vi
V_O vlTL2
"1 o o I 0
ILpy
.
0 0 0 v

The full, command-integral input and output biases are,

dILl
d,
d, =| 2
ILp;
I'LD,
and,
bILl
b,
b, =|, 2
ILDy
ILD,

(200)

(201)

(202)

respectively. They, too, are obtained from the command-integral pre-trained neural

networksin Section 4.3, as indicated by the algebraic operations illustrated in Figs. 43

and 44.
t—..,
fvdr
0
t
| Tydr
E< ¢
fadr
¢
[Bdr
0
v
a{ ¥
v
a{

Figure 47. Architecture of the command-integral neural network NN; (biases not shown).

132

A full critic network that models the input/output relation in eq. 174 also can be
obtained from the scalar, decoupled critic networks initialized in Section 4.5. Its weights

can be computed from those of the networksin eq. 178-179. The initial input-weight

matrix is:

Wro, 0 We 0 Wy]
Wi, O We = 0 W
Wi, 0 W = 0 W
Wi, O W = 0 W

0 X CLDy 0 W%cLDl WaCLDl

W = g iCLDZ g &cLp, \\;\\//aCLDZ (203)

XCLpg &lp; CLpg

0 XCLp, 0 WgCLD4 WaCLD4

Wi, O W 0 Wa
Wi, O W 0 W

0 XCLpg 0 &CLpg WaCLD5
| 0 XCLpg 0 &CLpg WaCLDG_

The initial output-weight matrix, Vc, is obtained by placing the ve(:torva:Ll , VELZ , VELB ,

T T T T T T T T T H
Ve, Ve, Ve, ' Ve, Ve, Ve Ve o Ve, » and Ve along the diagonal

of azero matrix, in this order, similarly to eq. 196 and 200. The input and output biases
are,

—_ T T T T T T
de =[df, df_df_df di, d

T T T T T T T
o, Ot dE, df, df dl dl d]

Cips ~Cipy Cips ~ Cipg
(204)

and,

- T
bC _[bCLl bCL2 bCL3 bCL4 bCLDl bCLD2 bCLD3 bCLD4 bCL5 bCL6 bCLD5 bCLDG] (205)

133

respectively. The full critic neural network, NN, is shown in Fig. 48. Since its
input/output structureis fully coupled and consistent with eg. 189, it is now ready for use

in the adaptive control system.

aVvIov
avIoy
ov/og
ov/oa
avior
ovIop
ov/op
ovIou

oI)

Xa

<
o
3

Xt
o
~

t _—
ovia(fvdr)
0

=
o
~

t
ov/a(fydr)
0

OO " 0O " O —
™
o
~

t
av/ia([fdr)
0

aV/a(} Bdr)
0

\%
H

Figure 48. Architecture of the critic neural network NN¢ (input and output biases are not
shown, for simplicity).

According to eg. 189 and 153, the action-network output, U, must equal the sum of
the feedback and command-integral network outputs, Aug and Au,. Also, theinput paisa
combination of the feedback and command-integral inputs, X , &, and a. Therefore, the
architecture and the initial parameters of the action network can be determined from NNg
and NN, through the algebraic network addition described above. The action input and

output weight matrices are initialized as follows:

134

WiBLl 0 0 WaBLl
WXBLZ 0 0 WaB'—Z
0 Rouo, 0 0 Waswl
0 . 0 0 |W
WA — |:WiB | 0 |WaBj| — XBLD2 aBLD2 (206)
0 |W§| |Wa| 0 0 Sy 0 WaILl
0 0 - 0 waIL2
0 0 0 wgILDl WalLDl
i 0 0 0 wéILDZ WauLDZ_
Vi, 0 0 vi, 0 0 0 |
0 v! 0 0 vi 0 0
V,=[Vg |V,]= . e (207)
0 0 vg, O |0 0 v, O
0 0 0 vy, [0 0 0 vi, |

The action input and output biases are da = [dg’ d\']" and ba = bg + by. Figure 49 shows
the final architecture of the action network to be used in the on-line adaptive controller

discussed in the following section.

135

™ot <y

Xa

<! <)
Q o
~ ~

=
o
~

Ot O O O ey

A\l
o
~

PN IR

Figure 49. Architecture of the action neural network NN, (input and output biases are not
shown, for simplicity).

5.1.2 Action and Critic Network On-line Adaptation

A nonlinear controller that adapts on line based on the DHP adaptive critic
architecture is shown in Fig. 50. The proportional-integral designs obtained in Section
4.1 are contained, implicitly, in the action and critic network’s parameters initialized in
the preceding section. During each time interval At = ty+1 — ty, the networks are adapted
based on the actual state of the aircraft, x(tx), to more closely approximate the globally-
optimal control law and value function derivatives, through the criteriain eq.s 187 and
188. Figures 51 and 52 show that the implementation of these criteria involves an on-

going flow of information between the action and the critic that also isillustrated in Figs.

136

41 and 50. In particular, eq. 187 and 188 are used to generate desired outputs or targets
for the action and the critic, denoted by U, (t,) and A, (ty), that correspond to the
present value of their input, i.e., pa(ty). The parameters of each network are updated to
minimize the mean-squared error between the target and its actual output, z[pa(ty)].
During thefirst time interval, (t1 — to), the initialized network weights are used before
each network’s update. Afterward, the weights obtained during (tx — t-1) are used as

initial weights for the interval (tir1 — t).

YO I 1 .u(o]]«

+ V(t)j £ |

— A

X(t) N
e
Y0 »|NNg Nonlinear L x(j)
Plant :" g
e(t) |
4@ a |

== X(t)
CSG

»
>

Figure 50.Action critic neural network controller. The dashed lines represent the flow of
information for the adaptation, during the time interval (t:1 — tx).

The action network’ starget, Uy (t,), is obtained by solving the optimality condition

(eg. 187), which consists of a set of nonlinear equations. The MATLAB function fsolve

(part of the Optimization Toolbox) is used for solving these equations by a least-squares
method. The initial guessto their solution, Ty (t,)€, is provided by the action network

using its latest weights obtained during (tk — tk-1), and is perturbed by the chosen
algorithm (e.g., Newton-Raphson) until the default stopping condition is met. The search

for Up (t,) can be constrained to the physically-meaningful valuesof U by assigning

137

exponential weighting to the control elements beyond the reasonable bounds. Solving the
optimality condition independently of the action weights update is considerably more
effective then optimizing eg. 187 with respect to the network weights (thet is, the true
reinforcement-learning approach). It alows the algorithm to explore a reduced, m-
dimensional parameter space, and to recover from bad solutions (e.g., lying outside the
bounds) before the action network is affected.

Given a guess for the solution, U (t,) ©, and the actual value of x4(t), the optimality

condition can be evaluated from the quantities in eq. 187, as described in Fig. 51. The

utility function derivative is computed analytically from eq. 182:

Ol solalt). T s 1 7t R, (208)
au(t,)

The following equation represents the sampled-data model for the augmented system:
Xa(tien) = Fago [Xa () Dt 1 Tt)], Xa(to) given (209)

It is obtained numerically by using a Runga-Kutta algorithm [90] to integrate the aircraft

simulation (eg. 1) described in Chapter 4 and the ordinary differential equation governing

the behavior of & in continuoustime, i.e.:
: H, 0 |x (t)} -
t)=| 2t [J =H,X(t 210
0" o [2] -0 1)
Then, the discrete model in eg. 209 is perturbed numerically, using the MATLAB
function numjac [79], to obtain the transition matrix 0xa(tx+1)/0U(t,) . This model also is

needed to predict Xa(tk+1), based on U (t,) and Xa(tk). Once Xa(tk+1) is known, the critic

network can be used to compute A4(t+1) in eq. 187, based on the latest value of the neural

parameters. After the optimality condition has been solved for U (t,), thistarget can be

138

used to update the weights of the action network, by means of the on-line training

algorithm (Section 5.1.3).

Given the state, x,(ty), guess
desired control, Up(t)®

Compute utility function
derivative, dLgp[*]/00(ty)

'

PLANT MODEL:
- State prediction, Xa(ty+1)
- Transition matrix prediction,
OXa(tie 1)/0T(ty)

v

CRITIC:
- Predict cost-t0-go, Aa(tis1)

v

Compute optimality
condition, OV[Xa(ti)]/0T(ty)

Check
stopping
condition

Continue

Perturb desired
control guess, Tp(t)®

Stop

Update action network
weights based on Up(ty)

Figure 51.Dual heuristic programming action network adaptation, during At = ty+q — t.

139

Given actual state, X(ty)

v

ACTION:
- Compute control, T(ty)
- Compute control gradient,
OU(t)/Oxa(ti)

v

Compute utility function
derivatives, dLsp[*]/0U(ty)
and dLgp[*]/0Xa(tx)

v

PLANT MODEL:
- State prediction, Xa(ti.1)
- Trandtion matrices prediction,
00Xty 1)/0U(t) and 0Xa(tkr1)/0Xa(ty)

v

CRITIC:
- Predict cost-to-go, Aa(ty+1)

v

Compute desired
cost-t0-go, Aap(ty)

v

Update critic network
weights based on Ap(t)

Figure 52.Dual heuristic programming critic network adaptation, during At = tyq — tk.

Following the update of the action network’s parameters, the critic’s desired output
A, (t) iscomputed from eq. 188 based on Xa(ti), as shown in Fig. 52. At this point, the
actual values of u(t,) and du(t,) /0xa(tx) also are known. Inthe case of the critic, no

iteration is needed to compute its desired output, which is merely an approximation to

140

Aa(ty). Inorder to determine the right-hand side of eq. 188, eq. 208 must be re-evaluated

together with the utility derivative,

0 LSD[Xa(tk) G(tk)]

— T ~ T
aXa(tk) - Xa(tk)Qa + [M au(tk)] (211)

which also is obtained from eq. 182. The transition matrices 0xa(tx+1)/0u(t,) and

0Xa(tk+1)/0Xa(tx) both are computed numerically from eg. 209. Finally, the critic network
is needed to produce Aa(tk+1) in eg. 187, based on the latest prediction of Xa(tk+1) and on

the critic’s parameters obtained during (t — t-1). After thetarget A, (t,) becomes

available, it can be used to update the critic network through the on-line training

algorithm described in the following section.
5.1.3 Neural Network On-line Training Algorithm

As part of the adaptation taking place during the time interval At = tx.1 — ti, the action

and the critic neural parameters are updated based on their respective targets (U (t,) or
A, (tc)), ascomputed by the algorithmsin Figs. 51 and 52. In particular, each of these

networks is updated to more closely approximate its desired output, denoted in general by
Zp, as soon as it becomes available. The modified resilient backpropagation (RPROP)
algorithm introduced in Section 3.2 is used for this purpose. Given the network input
pa(ty), an error function of the type in eq. 86 can be defined with respect to a vector of
ordered weights, w = {w}, i.e.:

2

E(w)= %”ZD - z(w))| (212)

Where, z denotes the actual network output corresponding to pa(tk). Atthetimety, wis

obtained from the input and output weights of either the action or the critic networks

141

(depending on which one is being updated). Then, during At, w(tk) is modified by the
RPROP algorithm, ultimately producing the network parameters w(tx:1), for the next
moment in time, as sketched in Fig. 53. Based on the idea of backpropagation learning
[76], at each iteration or epoch -- indexed by (i) -- the algorithm modifies the value of
each weight w,") by asmall increment of size A" that is based on corresponding

derivative information, 0E(w)/ow; (as explained in Section 3.2).

w = w(t)

v

WD < RPROP R w®
‘. Algorithm |-

W(tke1)

Figure 53.Conceptual illustration of on-line training by aresilient backpropagation
algorithm that updates the weights through a number of epochs (i), during At = tiq — tx.

Thanks to the pre-training phase, the weights are close to their optimal values, and the
minimization can be kept local. The on-line adaptation is effective as well asreliable
when the error (eg. 212) is decreased at the on-set of training, indicating an immediate
descent toward a nearby minima, and when the update algorithm does not disregard nor
degrade prior network weights, which already contain valuable information. Also, the
action and critic networks, with the architecture and parametersinitialized in Section
5.1.1 arefairly large (having between 102 and 408 nodes), and have weights that are
highly dissimilar in magnitude. Therefore, the modified RPROP algorithm obtained in
Section 3.2 is particularly well suited for this application. For both networks, the user-

specified parametersare: 7" = 1.2, 17 = 0.5[77], fu ~ O(10®), and fy << 1.

142

To demonstrate the effect of the proposed modifications, the action network NNa
(initialized in Section 5.1.1) istrained at tx = 0.2 sec using both the MATLAB’s RPROP
training function trainrp based on the original algorithm [77], but without backtracking,
and the proposed modified version. The effectiveness of both updates is tested by
carrying out training until its convergence, when the mean square of the network error,
i.e.,

ewn =2p —2(w) (213)
ceases to change. The network error is plotted vs. the number of epochs as a measure of
performance in Fig. 54. The results are typical among a number of simulations that

involved both the action and the critic networks.

1020

(]

Q

é MATLAB® agorithm
S 10° /

S Modified algorithm
o
_§ 10°

2

g

L Initia

@ error
= 10'10 L

0 56 160 150

Epochs

Figure 54. Performance comparison between the MATLAB® resilient backpropagation
algorithm and its modified version, for the action network training at t, = 0.2 sec.

The modified algorithm begins decreasing the error by the third epoch, and it
converges to amost the same performance asthe MATLAB function in half the number

of epochs. Although the initial error is relatively small in magnitude, the MATLAB
143

function begins with too large an increment, and degrades the initial weights by looking
for minimathat are far away because of the absence of the backtracking feature. Asa
consequence, the error increases considerably (in this case, of approximately twenty
orders of magnitude) before the appropriate increment size is found. Using eq. 91 for the
initial increment size, A/?, typically diminishes the number of epochs required to adapt
Ay; meanwhile, backtracking prevents the algorithm from degrading the weights. This
can be verified, for example, by monitoring the size of the increments and the number of
weights for which backtracking is performed at every epoch.

The final network error alone is not a key component for the comparison of the two
algorithms, because it only is based on local information, i.e., on one piece of
input/output data, { pa(tk), zo}, rather than on global knowledge. Therefore, a smaller
value of E(w) may actually imply aworse global performance, as is the case for the
MATLAB-trained action network in Fig. 54. On the other hand, an algorithm that
decreases E(w) while preserving initialization knowledge as much as possible can
improve performance locally and globally over time by exploring new regions of the
input space. The final simulations in Section 5.2 demonstrate that this is, indeed,
achieved satisfactorily by the modified RPROP algorithm. Also, asafirst sepinthe
validation process, the values of the action network weights updated in Fig. 54 are
compared to their initial valuesin Fig. 55. After 150 epochs, the initialized weights have
been modified to a much greater extent by the MATLAB algorithm than by the modified
RPROP. The latter algorithm achieves a performance similar to the former, but exploits
mainly the neural parameters that were initialized to zero in Section 5.1.1, and only

slightly perturbs the remaining ones. The MATLAB algorithm not only alters the zero

144

parameters by about ten orders of magnitude more than the modified algorithm, but also
brings about a noticeable change in the non-zero ones. Section 5.3 shows how this result
can be explained theoretically, and how the algorithm can be further modified to

guarantee the preservation of a-priori knowledge.

Initial weights, w®

log|w|

!M
i
+H—
+i
Ea.

B

i o

o=k Final weights (modified algorithm))]
LR a2 ol R R PR A .

10'25 * & % $EFEFEEEF & FEE = & X 3
0 1000 2000 3000 4000 5000 6000

Weight vector dement index

Figure 55. Comparison of the action network’ s weights trained with the MATLAB®
resilient backpropagation algorithm and with its modified version. The initial weights
w© are selected at t, = 0.2 sec and trained for 150 epochs, producing the final weights.

A key design attribute, that also is motivated by the above considerations about local
vs. global performance, consists of terminating the action and critic network on-line
training before reaching convergence. Convergence often is loosely identified with a
flattening of the network-error curve during training (see also Fig. 54), but, in actudity, it
cannot be so easily recognized. Inthisimplementation, for every input/output pair
{pa(ty), zo}, the network update terminates after the mean-squared network error has
decreased by 10% and at least three epochs have elapsed, allowing the increment-size
adaptation to take place. When more than a few epochs are needed to decrease the error

145

by this amount, it means that eq. 91 is not producing a satisfactory initial increment.
Thus, the terminating value of A, is saved and used as A/? for the next time interval’s
update (for all £). This stopping rule also guarantees that the terminating weights, w(ti+1),
to be used during At = ty:2 — ty+1, Will deliver better local performance (E) than the
previous weights, w(ty). Several epochs may be required to update the action and the
critic during the first one or two time intervals or when significant changes in the overall
controller’s performance occur, that is, when the increment size needs substantial
improvement. Otherwise, three epochs typically are sufficient to decrease the network
error by a significant amount.

Using this early-termination rule not only is computationally less expensive than
waliting for local convergence, but it also eliminates problems such as divergence and
overfitting. Employing the sign instead of the value of the derivatives also brings about
considerable computational savings and efficiency, as anticipated in Section 3.2. This
partly is true because of the savings associated with storing and computing the quantity
sgn[0E(w)/ow] instead of the value 0E(w)/ow, for all £. Only the action and critic input

and output weights are updated on ling, i.e.,

w=[veelw,)" [veclv)] =fw) (214)

£=1, 2, ...
anticipating the results of Section 5.3. The input and output biases, d and b, and W, are
kept constant. Then, the performance derivatives needed in RPROP’ s eg. 89 and 90 can

be defined as,

T
a_E = Vec[_aE j
ow ow

gEY | [oE
ol [=[] o1
£)e=1, 2, ..

146

and, the remaining quantities were previously introduced. For the “signum” and “Vec”

operators the following holds:

o{ i) vfolin)] vl |

Thanks to the sigmoidal function’s property sgn[o(n)] = sgn(n) (Section 3.1), the vector

of gradient signsin eq. 217 can be obtained from the signs of the input weights,

sgn[:—vij = sgn(— Vieyw)sgn(x;) (217)

and from the signs of the output weights,

Sgn(g—:ij = sgn(— SN)Sgn(nT) (218)

where n isdefined asin eq. 39. Therefore, sigmoidal-function evaluations only are
required to compute the network output, z, for use in the action/critic implementation and
in eg. 213. Finally, an example of modified-RPROP agorithm similar to the one

employed for all network updatesis shown in Appendix B.
5.2 Adaptive Flight Control Results

The adaptive Pl neural network controller (Fig. 50) is implemented for the control of a
full, six-degree-of-freedom simulation of a business-type twin-jet aircraft. The controlled
aircraft follows a sequence of set points (i.e., atrajectory) specified by the command
input, as by intent of the pilot or of aguidance law. PI dynamic compensation improves
performance in the presence of constant or owly-varying disturbances and parameter
variations [81]. The simulation is allowed to explore any region of the aircraft

operational domain (OR), defined as the envelope for which trim control settings exist,

147

and to temporarily leave this domain, for example, due to emergency situations and
abrupt maneuvers. On-line adaptation by a DHP architecture (described in Section 5.1)
learns new simulated aircraft dynamics, based on full-state feedback. A metric that
expresses stability and control characteristics as well as handling qualities that are safe
and pleasant to the pilot (Section 4.1.2) is optimized during both off-line and on-line
learning. The resulting control system is as conservative as the scheduled linear designs
incorporated during the pre-training phase, and as effective as the global nonlinear
controller.

The action and critic network parameters were initialized based only on linear control
knowledge obtained for a set of thirty-four operating points (OP). Any remaining
information is incorporated entirely on line. In fact, the discrete model (eq. 209) used in
the DHP architecture and the forward neural network, NNg, obtained from the aircraft
simulation (eg. 1), only are utilized by the on-line adaptation. Therefore, in principle,
they also could be updated on line, based on the actual aircraft state. In this application,
they always are held fixed; whereas, the aircraft simulation that represents the real plant
is modified in Section 5.2.2 and 5.2.3, to reproduce unexpected control failures and
parameter variations. In the following section, the controller learns the simulation’s
nonlinear and coupling effects that were missed by the linearized longitudinal and lateral-
directional models incorporated a priori. In every instance, the ssmulated equations of
motion with feedback control provided by the nonlinear neural controller are integrated
using a4™-order Runga-Kutta (RK) routine [90] with a constant time step of 0.1 sec. The

adaptation time interval, At, also is chosen equal to 0.1 sec.

148

5.2.1 Full-Envelope Maneuvers

The histories of the state elements directly commanded by y. are used to asses the
adaptive controller’s performance, similarly to Sections 4.1.3 and 4.3. During every
interval At, the adaptation also is locally evaluated by monitoring the optimality condition
(eg. 187) as well asthe progress of the mean-squared network error (exn) of both the
action and the critic. The optimality condition is solved numerically for the action

network target, U, (t,), asexplained in Section 5.1.2; because the terms in eq. 187 are

approximate, the MATLAB function fsolve usually terminates before finding its exact
solution, returning a final objective-function value that is greater than zero. Asthe DHP
adaptation converges to the optimal policy over time, the quantitiesin eq. 187 also
converge to their optimal value and the objective-function value decreases considerably.
This scalar objective constitutes a convenient means for monitoring the temporal
behavior of the solution to eq. 187. In addition, the network error is a direct indication of
how well the network is doing with respect to the desired target (zp). Since the network
input (pa) represents the deviation from the desired trgjectory (commanded by y.), the
network output also is expected to decrease in time, a least until a new command input is
provided. Thus, a network error that consistently decreases in time over a newly
explored region of the input space suggests that the adaptation is taking place efficiently.
Finally, in order to obtain a fair evaluation of the effects of on-line learning, the state
response is judged against that of the initialized Pl controller tested in Section 4.3, whose

parameters are held fixed.

149

Case 1: Adaptive Control During a Coupled M aneuver

The aircraft response is considered during a large-angle asymmetric maneuver, for
which coupling effects between the longitudinal and lateral-directional dynamics are
significant. Initially, the aircraft is flying steady and level, at a nominal airspeed V, of
95 nv/s and an altitude Ho of 2, 000 m, i.e., a an interpolation point where (Vo, Ho) [J OP.
At timet =0, astep command consisting of 5-deg climb angle and 30-deg roll angle is
initiated, as would be required to perform a climbing steady turn. The response of the
aircraft subject to the on-line adaptive controller is plotted with asolid line in Fig. 56,

together with that of the aircraft subject to the initialized Pl controller (represented by a

dashed line).
95.5 ‘ ‘ ‘ ‘ \
(]
S
S
>
©
XX
-5 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4 45 5
60 T T T T T T T T T
8’ 40 B
© ol s «««= Initialized neural network control |
3 - Adaptive critic neural network control
0 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4 45 5
1 T T T T T T T T T
©
Q -1 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4 45 5
Time, s

Figure 56. Comparison between the on-line trained adaptive critic neural network
controller and the initialized neural network controller subject to 5-deg climb angle and
30-deg roll angle step command, at (Vo, Ho) = (95 m/s, 2 Km).

150

This comparison shows that the on-line adaptation taking place every 0.1 sec brings
about an improvement with respect to the scheduled linear controllers. Theideal
characteristics of the aircraft response to a step-command input are defined in Section
4.1.2. Following this maneuver, additional tests show that the resulting controller not
only is characterized by improved performance over this region of the state space but aso
has preserved prior knowledge over the remaining input space (IR). When the final
parameters are used for simulations that originate from different operating pointsin IR,
the initial performance of the adaptive controller is equivalent to that of the pre-trained
controller. Also, over OP, the gradients of the networks are found to be very close to the
linear gains obtained during the pre-training phase. For example, when the final
gradients of NN are compared to Cg* and C,*, for all x O OP, following the maneuver in
Fig. 56, the total mean-squared error is found to be only 1.81x10™.

The adaptive control’ s time history is compared to that of the initialized controller in
Fig. 57, showing a minor difference in control usage. The weights of the action and critic
network undergo a small change, similarly to Fig. 55, except this change takes place over
time rather than after many training epochs based on a single piece of input/output
information. Figures 58 and 59 show how the on-line training algorithm modifiesthe
network error a different stages in the adaptation. Initially (Fig. 58), eq. 91 is used to
determine the increment size for the network weights; a flat curve of thiskind usually
indicates that the majority of the weight increments are too small and, thus, are being
adapted (as explained in Sections 3.2 and 5.1.3). At later times (e.g., Fig. 59), afew
epochs are sufficient to decrease the network error in the direction of a nearby minima,

thanks to the modified RPROP algorithm described in Section 5.1.3.

151

The mean-squared network error constitutes a scalar representation of the progress
made during training. However, extensive numerical simulations have demonstrated that
a smooth, monotonically decreasing training curve is obtained for mse(eny) only when

appropriate increment sizes (A,) are found, and both eq. 89 and 90 are converging.

o
>
. L L L
35 4 45 5
0 T T T T T T T T T
o 5 / B
% -10 L L L L L L L L L
0 0.5 1 15 2 2.5 3 35 4 45 5
40 T T T T T T T T T
8) o™ ...« Initialized neural network control
g n\%aptive critic neural network control
- oL 4
% -20 1 1 1 | | | ! ! !
0 0.5 1 15 2 2.5 3 35 4 45 5
10 T T T T T T T T T
g o
-O_ -10 / B
% 20 L L L L L L L L L
0 0.5 1 15 2 2.5 3 35 4 45 5

Time, s
Figure 57.Comparison between the on-line trained adaptive critic neural network control

history and the initialized neural network control history subject to 5-deg climb angle and
30-deg roll angle step command (Fig. 56), a (Vo, Ho) = (95 m/s, 2 Km).

The behaviors of the network error and of the optimality condition over time also show
that the adaptation is drawing closer to the optimal policy. The action and critic network
errors decrease similarly to Fig. 59 during every time interval At = ty.1 — t, with

tx > 0.1 sec. An overall-decreasing objective-function value (eg. 187) isshown in Table 3

for representative momentsin time, at the on-set of At, i.e,, at tx.

152

[N

N
Ou

log{ mse(enn)}, for NNa

i
O.
o
o

—
&

10 15 20 25

Epochs

=
(=]
'~

w

log{ mse(enn)}, for NN¢

=
o

5 10 15 20 25 30

Epochs

o

(b)

Figure 58. Mean-squared network error for the action (a) and the critic (b) versus the
number of on-line training epochs, for the coupled maneuver in Fig. 56-57, at tx = 0 sec.

&

=
ov

log{ mse(enn)}, for NNa

=
o
IS

o

—
&

2 3 4 5

Epochs

w

[
o

[
o
N

log{ mse(enn)}, for NNc

4 6 8

o
N

Epochs
(b) P

Figure 59.Mean-squared network error for the action (a) and the critic (b) versus the
number of on-line training epochs, for the coupled maneuver in Fig. 56-57, &t tx = 0.4 sec.

t(sec)

01| 05 | 10

15| 20 | 30 | 40 | 45 | 50

ENVES

210*

710°| 210° | 492

279 | 19 | 48 |610°| 721 | 660

Table 3. Tempora behavior of the optimality condition at sample time intervals, for the
coupled maneuver in Fig. 56-57.

153

The DHP on-line phase takes advantage of prior information and improves upon it,
without compromising it for later use. Thisis easily verified by using the final weights
from the present adaptation, w(t;), asinitial weights, w(to), for any of the maneuvers
presented in the following sections. Inthis case, the results -- to be introduced shortly --
remain virtually the same. On the other hand, if the maneuver performed were the same,
one could expect a further improvement in the performance the second time around, as
will be demonstrated in Section 5.2.2. Hence, the optimization truly is global.

Case 2: Adaptive Control During a Large-Angle Maneuver

The adaptive controller isimplemented on a large-angle maneuver for which the
nonlinear coupling effects are so significant asto, otherwise, lead to closed-loop
instability. To demonstrate this capability, a —70-deg turn is commanded, while the
aircraft is flying steady and level at the nominal airspeed and altitude of 160 m/s and
7, 000 m, respectively. Typically, the maximum steady bank angle for a general aviation
or transport aircraft does not exceed 60 deg. Beyond such an angle, the aircraft cannot
produce sufficient lift to maintain altitude, and the coupled dynamics become so
significant as to compromise any decoupled control design; also, it becomes more
difficult to coordinate the turn. While a pilot normally would refrain from performing
such a maneuver, abiding to safety regulations, it is conceivable for these conditions to
come about in an emergency situation (or in aerobatic flight). Infact, very-large bank-
angle turns near the ground contributed to many fatal accidents.

In this case, the initialized controller, represented by a dashed line in Fig. 60, causes
the aircraft to become unstable and, possibly, to enter a spin. Theroll and climb angles

increase beyond acceptable limits; after about 4 sec, the angle-of-attack time history

154

shows that the aircraft entersa gtal. At this point, the simulation can no longer be
considered a faithful representation of the aircraft dynamics, as post-stall aerodynamic
effects have not been modeled. Still, the uncoupled control design causes the aircraft to
gyrate wildly, and it is not capable of recovering from this maneuver. Figure 60 also
shows the response of the adaptive controller (in a solid line), for the same flight
conditions. In this case, the control system learns the relevant nonlinear neural network

weights on line, preventing loss of stability.

200

(%]
E 150 [~ === i
>— w0 T b
50 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
T T T T T T r N T T T
0 L S : i
- ————— s -
S=s]
© -20+ . . ’,: ," B
y N ~ ~es I
A _40 L \\\ ,’ ‘\/I \“ Il \‘ II B
L L L L L L L L v 1
0 1 2 3 4 5 6 7 8 9 10
0 T T T T T T T T T
B sof J
© Sy
-~ -100- 0 TTTeeS=TO i
l ~
-150 1 1 1 1 1 1 ! ! !
0 1 2 3 4 5 6 7 8 9 10
0 I o
-§ 50| ««=« Uncoupled neural network control ~ “S====< \ ,]
- — Adaptive critic neural network control g
Q
-100 1 1 1 1 1 1 L L L
0 1 2 3 4 5 6 7 8 9 10

Time, s
Figure 60. Comparison between the on-line trained adaptive critic neural network

controller and the initialized neural network controller subject to —70-deg roll angle step
command, at (Vo, Ho) = (160 m/s, 7 Km).

Under challenging circumstances, the tendency is for the system to demand
unreasonable control usage. While control bounds cannot always be easily incorporated
in the control design, they can be accounted for in the adaptive critic architecture smply

by modifying the weighting matrices in eq. 183-185. In this implementation, the control-

155

weighting matrix R, in eg. 187 is modified such that the search for the action target,
Up(t,), (Fig. 51) isconstrained by physically meaningful values of the (total) controls.
The original matrix, eq. 185, can be used everywhere else in the implementation
(Appendix E) without loss of generality, thereby preventing numerical blow ups.

The soft control constraints used in the large-angle simulation of Fig. 60, and in the

simulations hereafter, are plotted in Fig. 61 for the throttle input and stabilator deflection.

When the guess T, (t,)€ leads to athrottle input, OT®, that is greater than the upper

bound, JTmax, Or that is smaller than the lower bound, JTmin, the throttle-weighting

element in R, takes the exponential form,

R 1)= elo‘za're_q

(219)
where, amax = 1 %, ITmin = 0 %, and Ra(i, j) represents the element in the i™-row and the
j™-column of the matrix Ra. Similarly, when the target guess leads to a stabilator
deflection, &5, that is greater than its physical upper bound, &G, or smaller than its

lower bound, &&5qin, then the stabilator-weighting element in R, is given by,

R,(2 2)= eli = (220)
where, &Sy = 0.6 rad and &y, = —0.6 rad. A relation of the formin eq. 220 also is used
for the elements weighting the aileron and rudder deflections, R4(3, 3) and Ra(4, 4),when
the following bounds are exceeded: —0.6 rad < 0A < 0.6 rad, and —0.6 rad < JR < 0.6 rad.

The simulation representing the actual aircraft (eg. 1), prevents the controls from

exceeding their physical limitations, regardless of the control law’s outcome.

156

@
(S

12 ! { 16 - —
~ S | I
\\J L,’ 1k Ny v’/ 1.
I~ I I M
05k | | N [P
™ b i) L
— gl | | ! !
- \\\: :/// (V] 10¢ \\\: :/// 1
-) | - | | 4"
= i | N s | [
~ SO e ~ N [
DEU 1 r d:u 6] r
~ I I s
b ! ~ L
A i 4T~ ! !
I I
2r | [}
~ L 2t l g
~\U | .\ |
0 ! 0 : T
02 0 02 04 06 08 1 12 0.5 0 0.5
@ o % (b) & deg

Figure 61. Exponential weighting on the throttle (@) and on the stabilator (b) controls,
producing the bounds represented by the dashed bars. The weighting function in (b) also
is used for the aileron and rudder controls.

The time histories of the initialized and adaptive controllers that produce the aircraft
response in Fig. 60 are plotted in Fig. 62. These results show how the DHP architecture
modifies the control law with respect to the one designed off line, considerably
improving performance in time. The adaptive controller is capable of learning the control
bounds on line, meaning that it learns how to optimize the control law for the actual
plant, subject to soft constraints that are known but not accounted for a priori. Thiscan
be seen as another level of integration of a-priori and a-posteriori knowledge. Although
its control inputs also are bounded by the simulation, to represent the physical limitations
of the control surfaces, the initialized controller can not become aware of these
congtraints, nor can it cope with them inreal time. Theresult is that while the adaptive
control can sustain the desired banked turn, the uncoupled classical design leads to

hazardous maneuver, asillustrated by the trgjectoriesin Fig. 63.

157

=« Uncoupled neural network control |
— Adaptive critic neural network control

Figure 62. Comparison between the adaptive critic neural network control history and the

initialized neural network control history subject to —70-deg roll angle step command, at
(Vo, Ho) = (160 m/s, 7 Km)

Adaptive critic neural network control

7050

7000

6950

6900 Uncoupled neural network control

6850
6800

6750

Altitude, m
e

. —Lj

800

Eaﬂ 400 600
position, m 200 North
position, m

Figure 63. Comparison of the trajectories obtained with the on-line trained adaptive critic
neural network controller and with the initialized neural network controller subject to a

—70-deg roll angle step command, at (Vo, Ho) = (160 nvs, 7 Km).

158

5.2.2 Control System Failure

The adaptive controller’ s response to control failure, possibly due to physical damage
or actuator malfunctioning, is evaluated using the tools and metrics introduced in Section
5.2.1. Thefailuresare simulated by modifying the aircraft equations of motion (eg. 1).
They are not included in the discrete model (eg. 209), asthey are assumed to be
unforeseen conditions. The DHP architecture proves capable of accounting for them on
line, based on the observed aircraft dynamics (xa).

Case 3: Adaptive Control During Multiple Control Failures

The capability of the adaptive control system to handle a near-emergency situation is
considered by simulating control failures during an approach for landing. The aircraft,
initially flying steady level at (Vo, Ho) = (100 nvs, 3, 000 m), begins its final approach by
decreasing its velocity and performing a descending turn, following the step command
input y. = [90 (mV/s) -6 (deg) 50 (deg) O (deg)] " for ten seconds. During thistime,
multiple control failures occur, impairing control of the aircraft. The rudder and
stabilator are temporarily stuck at 0 deg, for 5 sec <ty < 10 sec; during 0 sec <ty < 5 sec
the rudder also is stuck at -34 deg, and both engines produce no thrust (oT = 0 %), at all
times. Asaconsequence, by tx = 10 sec, the airplane has entered a steep dive with a large
roll angle and fast accelerations. The state response and the control history during these
first ten seconds, as produced by the initialized controller, are shown in Figs. 64 and 65,
respectively. Thiscritical situation is simulated in order to compare the adaptive and the
initialized control systems during a recovery maneuver with reduced but sufficient

control authority.

159

L05
100 femmmcmmmee

95| —~
20 ‘ L T RRELEEES IS E w ! !

—”‘
....

200 T e L -

y, deg V, m/s

-40 1 1 1 1 1 1 1 1 1

0
80 T T T T T T T T T
60 - B

20 - .

Plad

20 T T T T T T T T T
20} Sse
40 ! | ! ! ! ! ! ! !

50 -

&, deg B deg W deg

0 1 2 3 4 5 6 7 8 9 10

Figure 64.Uncoupled neural network controller response in the presence of failed control
inputs, with y. = [90 (m/s) -6 (deg) 50 (deg) O (deg)]" and (Vo, Ho) = (100 m/'s, 3 Km)

or, %

AS, deg

1

R,deg OA deg

0 1 2 3 4 5 6 7 8 9 10

Figure 65.Uncoupled neural network control history in the presence of failed control
inputs, with y. = [90 (m/s) -6 (deg) 50 (deg) 0 (deg)] " and (Vo, Ho) = (100 m/'s, 3 Km).

160

It is presumed that 10 sec after the initial failure, the pilot or guidance logic on board
the aircraft has become aware of the critical situation and has aborted landing, initiating a
wings-level climb to avoid obstacles on the ground. First, the wings are brought back to
level by commanding a O-deg roll angle for 2 sec. Then, an airspeed of 95 m/sand a 5-
deg path angle are commanded for climbing. 1nthe meantime, the stabilator has become
fully operational, and the available throttle is increased to 50% (as by restoring full thrust
to asingle engine); the rudder is stuck at — 15 deg. The response of the adaptive
controller is compared to that of the initialized controller, resetting the integrator state to
zero in both cases, to avoid the phenomenon known as integrator wind-up [93]. The
error signal is said to wind-up the integrator when the integral component of the control
signal has saturated and does not drop from its maximum value, even though the desired
output has reached the set point and the error has changed sign.

Figure 66 shows that the adaptation improves the command-input response, at times
by more than 30 %, even though these conditions are being experienced for the first time
(i.e., the adaptive critic is exploring a new region of the multidimensional flight envelope
OR). All relevant state histories, including total airspeed, are improved upon by the
adaptive critic architecture. The velocity and path angle are followed more closely,
despite a lesser throttle usage, because the adaptive-controlled aircraft experiences
smaller angles of attack and sideslip and, hence, lessdrag. The adaptation also
diminishes the amplitude of the roll and heading-angle oscillations. The adaptive and
initialized-control time histories are shown in Fig. 67. Dueto the limited (50 %)
available thrust, the throttle-input profile is significantly modified and its usage is more

evenly distributed over the time interval. With the rudder stuck at — 15 deg, the lateral-

161

directional response is improved by adapting the aileron control input. The next case
shows not only that the latter adaptation has preserved prior global control knowledge,
but also that revisiting this maneuver for a second time further improves local

performance.

T T
L » = Commandinput -
S
>
§ ------- «ess Initialized neural network control |
~ — Adaptive critic neural network control |
L L L L L
13 135 14 14.5 15
T T T T
©
I
©
g
©
S
©
I

Figure 66. Comparison between the adaptive and the initialized neural controllersin the
presence of multiple control failures (Fig. 67).

162

oT, %
o o
N oD

—————

«««« |nitialized neural network control
— Adaptive critic neural network control
L L L L L

r—\\\\l\\r—\

10.5 11 11.5 12 12.5 13 13.5 14 14.5

R, deg OAdeg S deg

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
Time, s

Figure 67. Adaptive and initialized neural control histories with 50 %-available thrust and
the rudder stuck at —15 deg.

Case 4: Adaptive Control During a Previously-Encountered M aneuver

In the previous case, the adaptive control system was confronted with an unexplored
region of the state space (OR) and with novel dynamics characterized both by nonlinear
effects and by unexpected control failures. Given the amount of information to be
assimilated on ling, it is reasonable to expect that this first adaptation left room for further
improvement. Therefore, the action and critic neural weights obtained at the end of the
previous time period, i.e., at ty = 15 sec, are used as initial weights for a second
adaptation that is performed under the same conditions as the previous one. This
scenario can be considered equivalent to a case in which the aircraft encounters the same
situation (Case 3) for a second time, with no significant adaptation in between.

The state response obtained during the second adaptation (solid line) is compared to

that obtained during the first adaptation (now represented by a dashed line) in Fig. 68.

163

The fact that initially these two responses are virtually identical signifiesthat, while
improving performance over time, the first adaptation had not degraded prior knowledge
elsewhere (in this case, over the region of the state space visited during the first few time
intervals). Hence, the second adaptation inherits what was learned both through the pre-
training phase and during the first on-line adaptation; moreover, it improves performance
with respect to the latter and, thus, aso with respect to the former. In particular, Fig. 68
shows that the updated controls (plotted in Fig. 69) considerably reduce the amplitude of
the angle-of-attack and sideslip oscillations, eventually preventing stall. All thisis
achieved without compromising the velocity and path-angle response, implying that the
control system is being reconfigured over time to deal with the failed control inputs.
Testing the adaptation for the recovery maneuver (that is, after tx > 10 sec)
demonstrates that persistence of excitation [92] is not required to learn about the failed
controls. The adaptive controller copes with the failures as soon as it encounters a
stimulus, without having to prepare for it ahead of time through another challenging
maneuver. Therefore, if the failures were to occur during steady level flight when little
or no learning takes place, the control system would still be able to account for them
effectively once the need arose. Monitoring the optimality condition and network errors
over time confirms that the adaptive elements are converging to a nearly optimal, global
control policy. The optimality condition and the network errors during the second
adaptation are smaller than during the first one. This behavior always is observed during
simulations of the adaptive DHP controller, provided that the neural network input p, is

bounded.

164

(2] 105 == T T T
E 100:r::.:.:7- = Commandinput -
- 95 M L I It e o e]
> ® S e P
1 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
8 20 = T T T T T T T T -\- ------
S 0L - ooz zzo==oSE : ..« Adaptive control (1% adaptation) |
204 === — Adaptive control (2™ adaptation) |
L L L L
13 13.5 14 14.5 15
8) T T
©
l
©
g
©
S
©
s
10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
Time, s

Figure 68. Adaptive controller response to a maneuver experienced for the first and
second time, in the presence of multiple control failures.

(=]
>
©
S o ooz====m=EE) -
- === . Adaptive control (1% adaptation)
% T — Adaptive control (2" adaptation)
1410 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
S s
% 16 | | | | | | | | |
10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

Time, s

Figure 69. Adaptive control history for a maneuver experienced for the first and second
time, in the presence of multiple control failures..

165

5.2.3 Parameter Variations

Case 5: Adaptive Control in the Presence of Parameter Variations

The adaptive controller is tested for acase in which the parameters of the simulated
aircraft have changed with respect to the original model (eg. 1) that was used to design
the initialized controller (Chapter 4). All control effectors are assumed to be unfailed.
The pitch-rate and angle-of-attack-rate effects are decreased by 50 %, the static and
directional stability coefficients are reduced by 20 % and 30 %, respectively. With the
original aircraft parameters, the response of the initialized controller subject to a small-
angle command input of 2 deg path angle, 5 deg roll, and 3 deg sideslip can be
considered to be optimal at a design point, e.g., (Vo, Ho) = (200 m/s, 11, 000 m). Dueto
these modified aerodynamic effects, actual dynamic characteristics such as Dutch roll and
natural frequency differ from those accounted for by the linear design (Section 4.1).
Therefore, the performance of the initialized controller is degraded with respect to its
original baseline, as shown in Figs. 70-71.

Although the DHP architecture employs a model that is based on the original aircraft
parameters, it can learn about the new dynamics through its knowledge of the actual state.
In this case, afirst adaptation does not bring about a considerable improvement. But Fig.
72 shows that if the simulated aircraft with modified parameters undergoes the same
maneuver a second time, the adaptation considerably improves performance and provides
aresponse that is nearly optimal (Fig. 70). Control usage also is reduced with respect to
the initialized controller, as shown in Fig. 73. The DHP implementation is found to be

robust and capable of learning through an imperfect model.

166

5
2 s o f
© — Initialized control with perfect modeling
: ««= |nitialized control with parameter variations
Q O 1 1 1 1
0 1 2 3 4 5
g | = coceomsonee ’
© 2L i
pal
0 1
0 1 2 3 4 5

Time, s

Figure 70.Initialized controller response for the perfectly-modeled aircraft and in the
presence of parameter variations, with y. = [200 (m/s) -2 (deg) 5 (deg) 3 (deg)]” and at
the design point (Vo, Ho) = (200 m/s, 11 Km).

0.6 |
0 1 2 3 4 5
O __________ T
g L SISEEES
-O_ ol omem==m2 — Initialized control with perfect modeling |
‘(‘8 ««=« Initialized control with parameter variations
3 I I I
0 1 2 3 4 5
R f | ’
©
S |
0 1 2 3 4 5
5, T T T 3
g |
AN EEEEEEE
% Or ~——’\—“‘ I I]
0 1 2 3 4 5

Figure 71.Initialized control history for the perfectly-modeled aircraft and in the presence
of parameter variations, with y. = [200 (m/s) -2 (deg) 5 (deg) 3 (deg)]" and at the design
point (Vo, Ho) = (200 m/s, 11 Km).

167

-
S rccca=="

¥, deg

0 ‘ ‘ — Adaptive control (2 adaptation) |
0 1 2 3 4 5
2 s B
© _/’/ =« = Initialized control with perfect modeling
3 = Initialized control with parameter variations
0 L L L L
0 1 2 3 4 5
8 4 C J—— T T T a
ks N 7
g
0 L L L L
0 1 2 3 4 5

Time, s

Figure 72. Comparison between the adaptive neural network controller and the initialized
neural network controller in the presence of parameter variations, with

ye = [200 (mVs) -2 (deg) 5 (deg) 3 (deg)] ™ and (Vo, Ho) = (200 mVs, 11 Km).

-.6 :
0 1 2 3 4 5
0 T -t T T
8} 1 .’ e R XX Ky
© , T = = |nitialized control with perfect modedling |
‘(‘8‘ p ««=« Initialized control with parameter variations
_3 L L L L
0 1 2 3 4 5
5 [T T T . \nd .]
8’ — Adaptive control (2" adaptation)
© L2 e I oI T TS o oo s
% O L L L L
1 2 3 4 5
15 = T T T T |
g 10 1
T 5L Nl eetmimimimimimimicimimimimimimimi—emioioioaoio: -
g ool e]

Time, s

Figure 73.Control history of the adaptive neural network controller and of the initialized
neural network controller in the presence of parameter variations, with
ye = [200 (nVs) -2 (deg) 5 (deg) 3 (deg)]" and (Vo, Ho) = (200 Vs, 11 Km).

168

5.3 Algebraically Constrained Adaptive Critic Architecture

Neural network output and gradient weight equations can be used to guarantee that a-
priori knowledge is preserved during incremental learning over time, by following a
development along the lines of the one introduced in Section 3.3. A portion of the neural
parameters can be used to satisfy the same set of requirements that were incorporated by
initializing the neural networks off line. Meanwhile, the remaining parameters are
updated incrementally through an optimization-based on-line training algorithm.
Typically, the set of requirements to be incorporated off line consists of a batch training
set and can be matched exactly through an algebraic training technique (Section 3.1). In
on-line learning, the objective is to improve the overall neural function approximation
based on local information that become available a piece at the time and, therefore, can
be incorporated only incrementally. One of the main challenges of on-line learning is
retaining, or remembering, previous information while assimilating new information. In
particular, when global knowledge of the function being approximated is available off
line, the on-line training algorithm must be able to take advantage of it beforeit is
forgotten. This can be achieved by the action and critic networks, and prior knowledge
can be maintained intact while their performance is improved incrementally over time.

A basic assumption is that the linear control knowledge obtained in Section 4.1 also
holds on line; thisisimplied, provided the aircraft dynamics always can be approximated
by the linearized models at the operating points in OP. When the plant to be controlled is
expected to undergo considerable unforeseen changes (as due to system failure or
damage), the on-line adaptation should not be constrained in this fashion; instead, it

should be carried out as described in Sections 5.1 and 5.2. Nevertheless, this technique

169

demonstrates that the neural controller has the capability of adapting on line, while
retaining an established baseline performance. In addition, it produces an algorithm that
guarantees the realization of this capability, and is characterized by polynomial
computational complexity. The method is referred to as constrained because it solves a
nonlinear optimal control problem (eg. 1 and 10), subject to equality constraints on the
state and the control (eq. 13 and 20).

The constrained-learning results in Section 3.3 can be extended to both the action and
the critic networks initialized in Section 5.1.1; in the interest of conciseness, they are
illustrated here only for the action network, NNa. Section 5.1.1 shows how the final
action network architecture (Fig. 49) is obtained by algebraically combining the scalar
NN and NN

networks NNBLl, NNBLZ’ NN , NN

Bip; ’ NN Bip, ’ NNlLl ILp; ? ILpy !

I,
trained in Section 4.3. As a consequence of network combination and addition
operations, the initial action input and output weight matrices (eg. 206 and 207) contain
the scalar networks' pre-trained weights, as well as zero weights. Eventually, all of these
parameters are modified on line. Imposing the pre-training requirements on the action
network equations reveals that the action parameters obtained from the pre-trained scalar
networks can be adjusted to continue to satisfy the same requirements on line, while the
remaining parameters are updated to minimize the error function in eq. 212.

In other words, the action network input/output and gradient equations (eg. 190 and
191) must satisfy the feedback and command-integral requirements over OP (i.e., eg.
152, 154, 157, and 158) smultaneously, at every instant in time t,. Moreover, if they do

S0 at every training epoch, while the function in eg. 212 is being minimized with respect

to the vector w, then the resulting optimization is constrained by these requirements at all

170

times. For the moment, the time and epoch indices are omitted for smplicity, implying
that the following equations hold at any time and epoch. The feedback and command-

integral requirements can be formulated as a unique gradient-based training set of the

type introduced in Section 3.1.1, i.e,, { [O‘a’(T 17,0, C x=1 .. 3, Where k D OP. The

following matrix is known from the gains in eq. 156 and 160:

c e _
Cg,, Cs, 0 0
K K
0O O CBLDl CBLD2
K
Ciy, 0 0

K K
0O O Ciip, c|LD2_

o (221)

K

C'Ll

Similarly to eg. 38, this matrix represents the Hessian of the multidimensional function to
be approximated, e.g., u = h(y), evaluated at selected points (OP), such that C* = du/ay|".
It is reasonable to assume that at the equilibria OP, defined in Section 4.1, the
longitudinal and lateral-directional dynamics are decoupled, and that eq. 153, 154, and
158 hold at all times. However, these assumption need not hold (and most likely will not
hold) elsewhere in OR.

The above training set is matched exactly by the action network parameters when they
satisfy the output weight equations,

0=V,o|W,,a" +da|+bs, k=1, ..., 34 (222)

and the gradient weight equations,

cr =W {diagle'(W,,a¢ +d, AT} k=1, ..., 34 (223)

both of which are obtained from the vector-output network equation. The action
network’s matrix, W, also can be partitioned into submatrices that bear the subscripts of

the inputs they weigh, as follows:

171

Wa = |.WXaA |WaAJ = |.WiA |W€A |W3AJ (224)
It can be observed that if the input weights associated with the scheduling vector, Wa,

and the input bias, da, are held constant at al times, then the input-to-node values of the
action network not only are constant but are known from the pre-training phase. In fact,
the following relationship can be derived for the action network’ s input-to-node vector

from the input-to-node variables' definition (eg. 39):

B 7 K
apy, d, | n By
B|_l nK
ag, d B, B,
W K
4BLp, d Bioy B,
W d ne
apg B B
K — K — LD2 K LDy | — LD2
Ny =W, a" +d, = W a -+l gy = . (225)
a. I Ly n |
1 d L1
K
Wa, Ly I Lo n | Lo
W [K
ay |_D_|_ d LDl | LD]_
W, ILD, n«
L ILD2 i - - | LDs

The notation is consistent with that used in Sections 3.1.1 and 5.1.1. Wag,, d By, ° and
1

n ’ng are the a-input weight matrix, the input bias, and the input-to-node vector of the

pre-trained network NN By, » the remaining quantities in eq. 225 are smilarly defined.

Hence, the action input-to-node values can be computed and stored off line for later use.

The output weight equations, eg. 222, can be formulated as a linear system in terms of

the output weights,

0=S,V, +B} (226)
where,

Sp= SBLl SBL2 SBLDl SBLD2 SILl SIL2 SILDl S|LD2 (227)

172

and Ba = [ba ... ba] isanm x 34 matrix of output biases that also are held constant. The
sigmoidal matrices in this equation (defined asin eq. 47) can be computed from the pre-
trained scalar networks corresponding to their subscripts, by using the appropriate input-
to-node vectorsin eq. 225. Thus, they are known a priori, and they remain constant. By
rearranging eq. 226, it can be observed that the action network’s output weights
determined during the pre-training phase can be used to satisfy the same output
requirements on the feedback and command-integral contributions, Aug and Au,, for any
value of the remaining output parameters. Of course now those contributions are
automatically summed by NN,; nevertheless, they till can be identified within the output
weight equations above.

With this goal in mind, the output weight matrix is partitioned as suggested by its

initialized value, eq. 207,

T T T T T T T T
Vi1 V1o Viz Vig Vis Vig Vi7 Vig
T T T T T T T T

v, =| Va1 V22 Vg Vaa Vs Vs Va7 Vg (228)
A T T T T T T T T
V31 Vzp V33 Vg V35 Vg Va7 Vgg
T T T T T T T T
Var Vap Va3 Vag Vas Vag Var Vag

and, then, substituted back into eg. 226. This results into four independent systems of

equations,

_ T
0= SBLl SBLz SBLDl SBLD2 S S'Lz SlLDl SILDZ] Vis +BA(|1 ') (229)

L1

173

that each can be solved for v; and vig+m), with 1 =1, ..., 4 (asin the pre-training phase,
where the remaining weights equaled zero). For example, the first two weight vectors are

obtained from the solution of the first system (I = 1):

Vi = _(SBLl)_1 |.SBL2 Seip, SBLDZJ [sz Vis VI4]T _(SBLl)_1bBL1 (230)
Vis = _(SILl)_1 |.S|L2 S|LD1 SILDzJ [V-lrﬁ Viz VI8]T _(SILl)_1b'Ll (23D

The vectors bBLl and bILl can be obtained from the homonymous scalar output biases

b and b, L, S in eq. 46, because ba = bg + b;. The remaining output weight vectors

Ly
are similarly computed, by performing a permutation of the set of values for the index I.
Except for the output weights, all quantities in eq. 230 and 231 can be computed off line.
A procedure that is slightly more involved leads to the simplification of the gradient
weight equations. Inthis case, the input weights that satisfy the gradient requirements
can be computed on line, while the performance function (eq. 212) is being minimized.
Again, it is convenient to partition the action network’ s input weight matrix as suggested

by itsinitialized version, eg. 206,

Wi Wip | Wi Wiy |Wis
Wa1 Wy (Woz Woy |Wos
Wa Wiy (W33 Wiy |Was
Wiy Wiy |Wyz Wy |Wys
W, We, |Wsz Wy, |Weg
We Wep |Wez Wiy |Wes
W71 Wap \Waz Wo, |Wog
We; Wy |Wez Wey [Wes |

S
1

(232)

With appropriate dimensions, the submatrices in eq. 232 assume the values of the
corresponding submatrices in eq. 206 at the initial time, to. The submatrices in the fifth

column (W s through Wgs) correspond to the a-input and together form the matrix W

ap’

174

which is held constant at all times for the reasons mentioned above. All of the remaining

submatrices together form Wi, which is modified on line at every training epoch.

With the above partition, the gradient equations (eq. 223) can be conveniently

reformulated as four independent linear systems:

OBLl :GI[N A]diag[v '][WT Wle WeTl WIl W5T1 ng W7T1 W8T1]

) T wT wT wT wT wT T (233)
GBL =c [NA]d'ag[V [W Wy, W3 Wy, Wg We Woy W81]
GBLD :“’[NA]diag[V '][WT Wsz WeTz le W5T2 Wgz W7T2 W8T2]
T \wT wT wT wT wT T (234)
GBLD =c [N]dlag[V [W Wy, Wi, Wy, Wg, We, W, Wsz]
|L =G [N A]d'ag[v '][WT W2T3 W?T3 WI3 W5T3 Wg3 W7T3 W8T3] (235)
0,,, =N ldiag[V,(2 W5 Wi, Wi Wi Wi wi, w, w
01,5, =0 N JcicglV (3, - Il Wi, Wiy iy i, wi, wi, wi
) T \wT wT wT wT wT T (236)
9|LD2 =c [N]dlag[V [W Wy, Wy Wy, Wg, Wg, Wy, W84]

The matrices of gains, 0, are obtained from the p = 34 respective gradients in eg. 156 and

! ...c?]". Thefunction“diag” representsan operator

160 as, for example, 85 =[c, B
1 1

that places the ordered elements of a column or row vector on the diagonal of azero
meatrix of appropriate dimensions. From eq. 225, the action input-to-node values are
known and can obtained from the N matrices (eg. 78) of the pre-trained scalar networks:

N, =N (237)

B NBL2 NBLDl NBLD2 NlLl N|L2 NlLDl N'LD2
Assuming that the matrix V4 is known, each of the 2p gradient equations above can be

solved for 2p input parameters: eg. 233 for W11 and Wi, eq. 234 for W, and W 42, €.

175

235 for Ws3 and W3, and eq. 236 for W74 and Wy, consistently with the pre-training
phase.

Thus, with the matrix V a obtained from the new output weight equations (eg. 229), the
latest form of the gradient equations can be solved for the input weight matrices indicated
above. The procedureis described for eg. 233, and naturally extends to eq. 234 through
236. Thefirst step consists of rewriting eg. 233 by parting the submatrices to be
determined, W13 and W21, from the remaining input weights, as follows:

[6'(N Bl)diag(vll)“"(N BL,)diag(vlz)] D/VVH} =K B,
21

(238)

[G'(N Bl)diag(vm)‘c’(N BL,)diag(vzz)] [VV\\gﬂ =K BL,

The matrices K B, and K B, Can be computed from the known gradients and from the

remaining input and output weightsin eq. 233. They are defined as:.

,[] | Vs W31
KBLl =BBL1 -c NBLDl NBLD2 N||_l N|L2 N|LDl N|LD2 diag v:18 W (239)

, [V Wy
K BL2 EBBLZ -0 [N BLD]_ NBLD2 NIL]_ NIL2 NILD]_ NILD2]dl@ . . (240)
Vg | W
Then, the solution of the system in eg. 238 can be written as:.
! H [. -1
Wyl |© {N B, gd'ag(vn) G {N BL, }d'ag(vlz) K B,
W, ¢'{N B, diag(v21) ¢'\N BL, diag(sz) K BL, (241)
=Z Ele Kg

The subscript “By.” refers to the input-to-node values and gain matrices that generate the

matrices Z and K ; as, these weights are associated with the longitudinal outputs (T and

176

&5 and with the input-to-node values of NN By, and NN BL, in the gradient equations

(eq. 233-236).

All of the initialized (non-zero) input and output weights that satisfy the pre-training
reguirements on line can be computed with low-order polynomial time (as explained in
Section 5.4). The remaining parameters, initialized at zero in eg. 206 and 207, can be
used to minimize eq. 212. An iterative algorithm of the type in eq. 101 can be used to
accomplish both objectives incrementally. With the above developments in mind, the

vector w is formed from the parameters allocated for the performance-function

minimization:
W31 W41 W51 W61 W71 W81
V W12 W22 W52 W62 W72 W82
W13 W23 W33 W43 W73 W73
W.,, W,, W.,, W, W, W
W= 14 24 34 44 54 64 (242)

Vip Viz Vi Vig V17 Vig
Vi Vo1 Vo3 Vog Vog Vp7 Vog
Va1 V3o Vg V3 Vgg Vg
Var Va2 Vaz Vas Vas Var

At every epoch (i+1), an increment Aw," that modifies each of the weights w," inw® is
computed from eq. 89 and 90 by the algorithm in Section 5.1.3. Then, all of the
submatrices in eq. 242 are known from w*?.

With the stated assumptions of constant biases and W, , the solution of the output

equations is formulated in terms of constant matrices that can be computed prior to the

on-line adaptation. For example, the constant matrices in eg. 230 are defined as

-1
FBLl _(SBLl) |.SB|_2 SBLDl SBLD2 (243)

Eq, =(Se, [*bs, (244)

L1

177

They can be used to solve for the output weights associated with NN B, i.e, vi1. All of

the remaining systemsin eg. 229 can be formulated in terms of matrices that are similarly
defined. The gradient weight equations (eq.s 233-236) can be expressed in terms of
constant matrices that are easily computed a priori from the known input-to-node values,
and in terms of input and output weights that become available on line (as shown in eq.
241). In particular, the diagonal structure of the output-weight submatrices that compose

Z g, (eq. 241) can be exploited to reduce the amount of computation required to invert

this matrix (e.g., through its LUP decomposition [94]).

Thus, the input and output weights excluded by eq. 242 are computed from the
respective weight equations at every epoch. The simplified equations obtained above are
used within an algebraically-constrained supervised-training algorithm to guarantee that
the pre-training requirements are satisfied on line, while the weights in w are used to
minimize the network performance, E. In summary, at each epoch, the action network

parameters are updated according to the following sequential rules:

wi*) = wi) + an) - wii+) (245)
| Vi) | Ve
Vi =1y (VY +Eg vl =T VI 4E, (246)
¥ e
. Ve . vie?
VB =T, | VB vEa,, VB =T VYR, (247)
i+ i+1
Vg41) Vs
V(i1+1) v (i+1)
v =g (VY | vEg, . VBV =r (VB E (248)
et et

178

ngl) =r Bip, V%{;i) * EBLD2 ’ Vggl) =T, LDy vggl) * EI'—DZ (249)
v Vi

_W (i+1)7 i+1) |1

nglfl) :{Z (BLl)} Ke o
—W:§i2+1)_ _ {Z (+1)}_1K 251
w8 e, -
Wit)

w i) |~ Zi,) Ky 9
| Wes ™ |

Wi e

W5§i4+1) - ZI|_D Kio .

The above algorithm implies that, at the (i)™ epoch, the update of the Z matrices is
based on the new (i+1)™ value of the input and output weightsin eq. 239-241. The
remaining matrices, I', E, K, 0, and ¢'(NT)-1 can be computed off line, from a-priori
information (such as eg. 225, 156, and 160) and they are held constant thereafter. Hence,
these algebraic equations congtitute the criteria for updating the action network weights
on line, while preserving the a-priori knowledge intact. A virtually identical algorithm
can be obtained for the critic network, but is not shown for brevity’s sake. Thisresult
proves that the neural networks involved are capable of meeting the objectives of both the
pre-training phase and the on-line adaptation, providing atheoretical justification for the
results obtained in the previous sections. Together with the simulations in Section 5.2,
this conclusion also implies that the modified RPROP algorithm (Section 5.1.3) aready is
powerful enough to approximate the solution of eq. 246-253 exclusively through a

gradient-based search.

179

5.4 A Word on Computational Complexity: Execution Time of Algebraic and

Adaptive-Learning Algorithms

From a computational perspective, the use of Approximate Dynamic Programming
(ADP) for solving optimization problems can be justified by the existence of many NP-
complete problems for which obtaining an optimal solution is intractable. The DHP
adaptive critic architecture presented in the previous sections can be considered as an
approximation algorithm that seeks a near-optimal solution for the optimal control
problem at hand. Although aformal analysis of the proposed algorithm is beyond the
scope of thisthesis, it is important to address the running time of the main subroutines
introduced thus far, to begin to show that the approach produces a polynomial-time
approximation algorithm. In particular, the running time of the newly developed training
algorithms is discussed to emphasize their efficiency. Error-bounds are not analyzed
here; however, since they congtitute an integral part of approximation schemes’ analysis,
they are strongly recommended as a topic for future work.

The inputs to the optimization problem and, thus, to the DHP solution scheme can be
identified with the state x, and the control U of size (n + e;) and m, respectively. A
general concern is how rapidly the running time grows with respect to these dimensions.
However, in considering individual subroutines, the input size typically refersto the
number of itemsin the input to the agorithm [94]. Therefore, the relevant dimensions
depend on the context that is being investigated. Also, the running time is measured as
the number of primitive operations executed, where it is understood that different
operations require different execution times. Since the order of growth with respect to

the input dimension is of major concern, the worst-case running time is independent of

180

the primitive execution times[94]. In this section, the bounds on the running-time
function are used to judge the computational expense of algorithms. In particular, the ©-
notation, asymptotically bounding a function from above and below is adopted. For a
given function g(d), the notation ©(g(d)) denotesthe set of functions,
©(g(d))={f(d): Oc,,c,,and d, such that 0= ¢, g(d) < f(d) < c,g(d),0d = d,}
(254)
where ¢, Cy, and dp are positive constants.

It can be observed from the previous sections that the algebraic and adaptive learning
techniques introduced are based entirely on matrix operations. More precisely, they are
comprised of steps whose worst-case running times are associated with matrix operations,
such as multiplication and inversion. Therefore, satements characterized by lower-order
polynomial times, such as “diag” or “Vec” operations, can be ignored. Also, al of the
learning algorithms terminate in a finite number of stepsthat is independent of the
number of inputs. Strictly speaking, in the case of the RPROP on-line training algorithm,
thisis not true, because as the input dimension increases, where the input can be
identified with w (and, hence, with the size of the network), the number of epochs needed
for satisfactorily improving the performance function also is expected to increase. Inthis
instance, error-bound analysis would be required to produce a formal estimate of the
reguired running time. For practical purposes, if we assume that the early-termination
rule of Section 5.1.3 produces a satisfactory performance bound, then this routine also
terminates in afinite number of steps that is either independent of w, or that has alow-

order-polynomial dependency with respect to its size.

181

The solution times of matrix multiplication and inversion are key attributes for this
analysis. Typically, linear systems of equations are solved through LUP decomposition,
rather than by matrix inversion, to avoid numerical instability [94]. The cost of
computing the LUP decomposition of ad x d matrix is ©(d®). Once the LUP
decomposition of a matrix is available, any corresponding linear system of equations can
be solved in time ©(d?) [94]. The multiplication of two d x d matrices performed
according to its definition requires a running time that is ©(d*), but it also can be obtained
by the Stressen’s algorithm in reduced time ©(d*®Y). A useful property of the ®-notation
isthat if an operation with polynomial running time ©(dP) is repeated a number of times
¢, than the resulting algorithm is ©(cd®), or simply ©(d”) when c is constant with respect
tod. For example, the gradient-based training algorithm in Section 3.1.1 consists of
solving one p-dimensional linear system (eq. 55) and n p-dimensional linear systems (eq.
56). Provided it iswell posed, the algorithm is not recurrent. Therefore, for constant n,
the worst-case computation time of this subroutine is ©(p?). The running time for pre-
training m scalar networks could be obtained in terms of the dimensions of the
optimization inputs, X, and U, by observing that p depends on n and, in particular, on the
number of scheduling variables (n — €). Since p grows exponentially with (n — €), this
dependency is likely to be far less optimistic than the former one.

Following the pre-training phase, the neural networks are trained on line by a modified
RPROP algorithm (Section 5.1.3). Because only the sign of the gradient is needed,
sigmoidal-function evaluations only are required once, for computing the neural network
output; and, they also require polynomial time. The sign of the gradient in eq. 217 is

obtained from the matrix multiplications in eg. 217-218, in one step. The update rulesin

182

eg. 89 and 90 are characterized by linear first-order recurrence. Therefore, apreliminary
analysis shows that this algorithm also is executed in low-order polynomial time, when
the appropriate conditions for local convergence are satisfied.

The constrained version of the RPROP algorithm (in Section 5.3) entails solving linear
systems of equations for which the LUP decomposition can be computed and stored off
line. The only exception to this statement consists of the gradient weight equations.
However, in this case, the diagonal structure of the output-weight submatrices (shown in
eg. 241) can be exploited to reduce the computational complexity of the solution.
Therefore, the running time for the algebraically-constrained training algorithm also is
low-order polynomial. In summary, breaking the optimal control structure down to sub-
problems that can be solved by computationally efficient algorithms showsto be a
promising approach to tackling otherwise intractable problems. On the other hand, a
more extensive analysis is required to investigate the behavior of the approximation
scheme and error bounds with respect to the most relevant dimensions, i.e., those of the

state and control vectors.

5.5 Chapter Summary

The results of the pre-training phase are linked to the adaptive critic architecture of
choice, i.e., dual heuristic programming. Consequently, the cost function and the neural
parameters to be optimized on line are determined algebraically from those computed
from linear control theory. The proportional-integral neural network controller is adapted
on line through action and critic criteria obtained from the recurrence relation of dynamic

programming. During every time interval, the adaptive critic design is used to compute

183

desired targets for the action and the critic networks, and a modified resilient
backpropagation algorithm is implemented to update the network parameters accordingly.
The adaptive controller is tested during large-angle maneuvers and flight conditions
unaccounted for by the pre-training phase. The results show that the system’s
performance is improved incrementally over time. The optimality condition and the
network errors are monitored to verify that the action and the critic function
approximations are converging to a near-optimal solution. The adaptation is so effective
asto prevent closed-loop instability during a large-bank turn, and to improve
performance in the presence of unforeseen maneuvers, unmodeled failures, and parameter
variations. Under virtually all circumstances, the global control knowledge introduced
during the pre-training phase always is well preserved; and, eventually, it isimproved
upon in those state-space regions that are explored by the simulation. An algebraically-
constrained algorithm can be obtained to guarantee and justify the preservation of a-
priori knowledge during on-line learning. Finally, a preliminary analysis of the training
algorithms is proposed to address computational complexity and worst-case solution

times.

184

Chapter 6

Conclusions

6.1 Summary

The primary objective of thisthesisisto develop a systematic design procedure for a
control system that retains the stability and robustness characteristics of the classical
designs, while capitalizing on the computational capabilities of approximate dynamic
programming and neural networks. The result is an adaptive control system that learns to
deal with new system dynamics as they arise, improving performance during large-angle
maneuvers and unforeseen conditions, such as control failures and parameter variations.
The proposed design philosophy consists of constructing a nonlinear controller,
comprising a network of neural networks, using a two-phase learning procedure. First,
the networks' architecture, parameters, and size (i.e., number of hidden nodes) are
determined from the initial specification of the control law. Secondly, on-line learning
by an adaptive critic approach is expected to preserve prior control knowledge and
improve performance by accounting for dynamic effects that were not captured in the
initial control law.

Gain scheduling is awell-known procedure for applying linear control theory to
nonlinear systems that is widely applicable, especially in the aerospace and chemical-
processes industry. It consists of locally approximating the nonlinear plant as alinear-
parameter-varying system at several operating points, and of designing corresponding

control gains that later can be interpolated through dynamically-significant scheduling

185

variables. Central to this novel approach isthe recognition that the gradients of a
nonlinear control law represent the gain matrices of an equivalent, multivariable linear
control structurethat is chosen as the proportional-integral (PI) controller, for illustration.
Hence, a set of satisfactory linear controllers is obtained through an established procedure
known as implicit model following to satisfy well-known aircraft handling qualities and
design criteria. Then, anovel gradient-based pre-training technique is used to match
these linear controllers exactly by means of nonlinear neural networksin one step. A Pl
neural network controller is obtained by replacing the linear gains of the PI controller
with the pre-trained neural networks. This architecture performs at least as well as an
equivalent gain-scheduled design, immediately following the pre-training phase.

Adaptive critic designs constitute a class of approximate dynamic programming
methods that optimize a short-term metric, ensuring optimization of the cost over all
futuretimes. Neural networkstypically are the approximating structure of choice,
because they easily handle large-dimensional input and output spaces and can learn in an
incremental fashion. A dual heuristic programming adaptive critic architecture is used to
adapt the pre-trained Pl neural network controller over time, while a full-scale simulation
of the aircraft is flying throughout its operating region. A good deal of literature has been
written about the theoretical motivation behind dual heuristic programming, as a method
that promises fast convergence and great potential for on-line learning. However, for
several years now, the bottlenecks associated with its implementation have prevented this
approach from realizing its promise.

The implementation’s details and algorithms that alow for a successful

implementation of dual heuristic programming (DHP) are described in thisthesis. The

186

pre-training phase provides an excellent initialization point for the on-line phase.
Furthermore, the advancement made in algebraic and adaptive learning achieve the on-
line phase’ s objective of improving performance in the presence of unknown dynamics,
while preserving the global designs incorporated off line. Classical control theory
provides a unifying framework for the two training phases. The pre-training phase is
based on the linear quadratic regulator; the adaptive critic approach is based on the

recurrence relation of dynamic programming.

6.2 Conclusions

The foundations have been laid for a novel approach to designing nonlinear control
systems that make the most of prior knowledge and experience, while capitalizing on the
broader capabilities of adaptive control theory and computational neural networks. The
principles introduced can be applied to any nonlinear control law that affords a gain-
scheduled law formulation. During pre-training, not only the adjustable parameters, but
also the network’ s size and architecture that are apt to meet the desired specifications are
rapidly determined by solving linear algebraic equations, with no need for iteration. For
example, through this novel algebraic approach it can be shown that a number of nodes
equal to the number of operating points (or training pairs) achieves exact matching of the
data with probability one. The approximation properties of neural networks can be
investigated to agreat extent by using elementary linear algebra.

The simulations show that arelatively small number of operating points, and thus of
hidden neural nodes, is sufficient to obtain satisfactory neural network control throughout
the steady-level flight envelope of the aircraft. The method produces a network of

minimal neural networks that approximate the hypersurfaces of a global, nonlinear

187

control law effectively and that match equivalent, locally linearized controllers exactly.
Furthermore, a number of algebraic training algorithms have been developed that can be
extended to many other neural network applications, provided the training datais free of
noise and available at once (also referred to as batch or off-line training).

Additional advances have been made in on-line learning techniques and in adaptive
critic methods. The pre-training phase can be linked to the on-line adaptation by
realizing that the same cost function is to be optimized during both phases, for
consistency. Then, the cost weighting matrices and the action and critic initial
parameters to be used during the on-line phase can be determined algebraically from the
results of the previous phase. An existing training algorithm, resilient backpropagation,
is modified to take into consideration properly-initialized parameters. It is found that the
use of proportional initial increments, backstepping, sigmoidal monotonic properties, and
early termination rules leads to an on-line training algorithm that preserves initial
knowledge and that is characterized both by excellent convergence and computational
savings.

These and other developments described in this thesis lead to a successful
implementation of the nonlinear adaptive controller for the command-input control of a
full-scale aircraft simulation. Relatively high-dimensional neurocontrollers adjust on line
while retaining their baseline performance in unexplored regions of the state space. This
behavior, observed in the simulations, can be justified theoretically by investigating on-
line learning through the neural network weight equations, according to the algebraic
training approach. During the on-line phase, the adaptation spontaneously utilizes those

parameters that were unused during pre-training. Also, it allows the neurocontrollersto

188

significantly improve their performance over only one or few epochs, during each time
increment. The advancements of all key design stages combined greatly increase the

potential for real life applications of intelligent and reconfigurable control.

6.3 Recommendations

The main recommendation for future work is to expand upon the findings of this thesis
to investigate error bounds, closed-loop stability, and robustness of the adaptive control
system. Since the approach isiterative and relies heavily on computation, a rigorous
analysis of the algorithms presented can be related to the first objective. In particular, it
would be relevant to determine the worst-case computation times and error bounds with
respect to the dimensions of the state and control, as well as the number of stages. The
algebraic techniques developed, together with existing theories on Markov decision
processes and on the stability of gain-scheduled designs show particular promise in this
direction. Alternatively, other classical designs could be used for pre-training the
controller and existing techniques (such as linear matrix inequalities) extended to include
this adaptive system. The investigation of the neural approximation properties should
remain akey ingredient in the process, as the neural architectures determine the class of
control and cost functionals that can be approximated and, therefore, the optimal control
problems that can and cannot be solved.

One of the most desirable features of this approach is its flexibility. Not only isit
unrestricted by the form of the governing dynamic equation, but it allows for extensions
that can deal with system identification, stochastic processes, disturbances, and state
estimation, to name afew. For example, it is possible to use a model network to

approximate the plant dynamics, allowing it to perform system identification online. In

189

this case, local network gradients would be provided by the transition matrices that derive
from the difference governing equation. Inthis case, the gradient-based algebraic
training algorithm could be used to pre-train the model network aswell. Subsequently,
its parameters could be updated on line through the modified resilient backpropagation
algorithm, as for the other networks. Inthis case, the forward neural network, which
approximates an inversion of the plant dynamics, also should be updated on line. The
rest of the design would likely remain the same, whereas the controller already learns
nonlinear system dynamicson line.

A valuable extension would be to use not only the training techniques developed here,
but aso the entire control design process for other applications. Thiswould be an
excellent way to validate the results of the thesis, as well as to identify bottlenecks that
may have been missed during this implementation. The range of possibilitiesis at least
asdiverse as are the neural network applications that already exist today in the literature.
In particular, designs that can benefit both from a-priori and a-posteriori knowledge of
the system would be ideal. Examples include process control and planning, routing
problems in air traffic management and communication networks, pattern identification
for speech/audio-recognition devices, criminal profiling, and target assignment in combat
scenarios.

The optimal estimation problem can be seen as the dual of the optimal control
problem. Therefore, the approach developed here for the near-optimal solution of the
aircraft control problem could be extended to train a near-optimal nonlinear estimator by
using, for example, Kalman filter gains during the pre-training phase [81]. Another

consideration is that the sampled-time interval that was kept small in the simulations

190

could easily be increased to deal with a discrete-event process or to alow sufficient time
for the adaptation to take place in areal-life application. Inthis case, atrivial extension
consists of using discrete-time linear designs to pre-train the neural networks for solving
either a control or an estimation problem. Since the on-line phase already is analyzed in
discrete time, the same adaptive critic architecture could be used for improving the
performance of a discrete controller.

In principle, adaptive critic designs should be capable of determining a near-optimal
policy for a stochastic plant and/or environment. In fact, there exist important
convergence proofs for the approximate dynamic programming approach that also hold in
the presence of white noise and Markov noise [16, 4]. Thisisan important and, yet,
ambitious direction of research that is likely to require substantial modifications of the
approach, such asthe use of stochastic approximators[95]. Finally, thereis considerable
interest in the field for high-dimensional problems, where the state and control have
many variables[96]. Hence, the study of computation complexity should be a major

focus of any solution method pursued hereon.

191

APPENDICES

192

Symbol

Appendix A: Nomenclature

Description

0

Hu

Hx

Matrix of selected known gradient vectors

Vector of all known gradientsin agiven training set

Vector of input-to-node values evaluated at all of the operating pointsin a
given training set
Time integral of the output error

Constant matrix formed from selected sigmoidal matrices, for
algebraically-constrained on-line training
Scheduling vector (or vector of scheduling variables)

Matrix of all scheduling vectorsin agiven training set

Output bias of a vector-output neural network

Constant matrix formed from the network output weights and from the
sigmoid’ s derivatives evaluated at selected input-to-node-values

Linear control gain matrix

Known vector gradient of a scalar-output neural network, evaluated at the
K™-operating point in a given training set

Known Hessian gradient-matrix of a vector-output neural network,
evaluated at the k™ operating point in a given training set

Input bias of a neural network

Constant matrix formed from the inverse of a selected sigmoidal matrix
and the output bias, for algebraically-constrained on-line training

Neural network vector-output error

State-Jacobian matrix of alinear dynamical system

Control-Jacobian matrix of alinear dynamical system

Matrix of selected known quantities in an algebraically-constrained on-line
training algorithm

Jacobian matrix of alinear system’s output with respect to the control

Jacobian matrix of alinear system’s output with respect to the state

193

= < =

=

Xo

Diagonal matrix with n elements along the diagonal

Matrix of cross-coupling weighting between the state and the controls

Matrix of input-to-node values evaluated at all of the operating pointsin a

given training set

Vector 01_‘ [_nput-to-node values evaluated at the k™-operating point in a
given training set

Riccati matrix

Vector input of aneural network

Parameter vector of a dynamical system

State-weighting matrix

Control-weighting matrix

Sigmoidal matrix

Linear transformation matrix

Control vector

Matrix of all known output vectorsin a given training set
Neural network sampled vector-output information
Nominal control vector

Output-weight vector of a scalar-output neural network
Output-weight matrix of a vector-output neural network
Input-weight matrix of a neural network

Vector of ordered neural network weights

State vector

Sp_arse_matri_x comp_os_ed of the matrices B¥, evaluated at all operating
points in a given training set

Nominal state vector

Matrix of all known input vectorsin a given training set

194

Command input

Neural network sampled input information
Output of adynamical system

Output of a neural network

Matrix of output weights and known sigmoidal-function derivatives, in an
algebraically-constrained on-line training algorithm
Damping ratio of alinear system’s response
Time constant of a linear system’s response
Aircraft Euler pitch angle

Aircraft angle of attack

Aircraft Euler yaw angle

Natural frequency of alinear system’ s response
Time increment in a sampled- time representation
User-defined scalar factor

Aircraft altitude

Nominal aircraft altitude

Aircraft mass moment of inertia about the x, axis
Aircraft mass product of inertia about the y, axis
Aircraft mass moment of inertia about the y, axis
Aircraft mass moment of inertia about the z, axis
Aircraft body-axisroll rate

Aircraft body-axis pitch rate

Aircraft body-axis yaw rate

Time variable, in a continuous-time representation

195

tk

Yb

Yr

S B ¥ D

S

Time variable, in a sampled-time representation

Forward, or x-body-axis component of aircraft velocity
Neural network sampled scalar-output information

Total aircraft velocity or airspeed

Side, or y-body-axis component of aircraft velocity
Nominal airspeed

Downward, or z-body-axis component of aircraft velocity
Adjustable #"-ordered parameter, or weight, of a neural network
Aircraft x body axis

Inertial x axis

Aircraft y body axis

Inertial y axis

Aircraft z body axis

Inertial zaxis

Size of the increment for the #™-ordered parameter of a neural network
Increment for the #"-ordered parameter of aneural network
Aircraft-sideslip angle

Aircraft-aileron deflection

Aircraft-rudder deflection

Aircraft-stabilator deflection

Aircraft-throttle control

Aircraft Euler roll angle

196

20!
o)
AY)
O[]
=0
b, (*)

Op, (*)

Op, (*)
H[]
J°]
Jal]
L[]
Lu(*)
Ms(*)
Ni(*)
V]
Xb(*)
Yo(*)

Zy(*)

Aircraft-path angle

Aircraft-bank angle

Derivative of the sigmoidal function with respect to its argument
Sigmoidal function

Derivative of the value function with respect to the state
Terminal state penalty-term in the cost function
Performance function of a neural network

x body-axis gravity component

y body-axis gravity component

z body-axis gravity component

Hamiltonian

Cost function

Cost function between the K" and the N stage in a multi-staged (or
sampled-time) process

Lagrangian

Acceleration due lift

Acceleration due to pitching moment

Acceleration due to yawing moment

Value function or cost-to-go

Acceleration modeled in the x, direction

Acceleration modeled in the y, direction

Acceleration modeled in the z, direction

197

ER

NN
NN
OP
OR
Uc

*)
)
O

()

(O)a
(a
(a
Os
Oc
O
Oo
Oor
Or
0°
O

Set of extrapolating conditions in the operating region of a dynamical
system

Set of interpolating conditions in the operating region of a dynamical
system

Vector-output mapping by a neural network

Scalar-output mapping by a neural network

Set of design operating points

Full operating region of adynamical system

Aircraft trim map

Deviation from the commanded value of a variable
Estimated value of avariable

Optimal value of avariable

Variable associated with &, the time integral of the output error
Inverse of a matrix

Variable associated with the action neural network
Variable associated with a, the scheduling vector
Variable associated with the augmented state, xa
Variable associated with the feedback neural network
Variable associated with the critic neural network
Commanded variable

Desired value of a variable

Variable associated with the Dutch Roll

Variable associated with the forward neural network
Initial guess for an unknown variable

Variable associated with the command-integral neural network

198

() or ()"
O
O
O
Op
0"
O
O
O
Ox
0
H

©

A()
diag()
mse()
rank()
sgn()

Vec()

Variable evaluated at the K" training pair/triad, or at the K" operating point
Variable associated with the aircraft longitudinal dynamics
Variable associated with the aircraft lateral-directional dynamics
Variable associated with the ideal aircraft model

Variable associated with the Phugoid mode of the aircraft

Left pseudo-inverse operator

Sampled-data (or discrete-time) variable

Variable associated with the short-period mode of the aircraft
Transpose operaor

Variable associated with x, the state vector

Derivative with respect to time

Element-wise multiplication between vectors of the same size
Asymptotically bounds a function from above and from below

Deviation from the nominal value of the variable

Diagonal operator, extracting the diagonal of the square-matrix argument,
or placing the vector argument on the diagonal of a zero matrix
Mean-squared error of avector or matrix

Rank of a matrix

Signum operator

Kronecker Vec operator, rearranging the elements of a matrix column-wise
into a vector

199

Appendix B: Algorithms

This appendix provides the MATLAB implementation of sample algorithms
developed in the thesis. The first algorithm was used in Chapter 4 to pre-train the
feedback, command-integral, and critic scalar neural networks, and is based on the exact

gradient-based solution introduced in Section 3.1.1. Figure B.1 illustrates how it can be

the matrix “AQ” can be obtained from the p scheduling vectors, as:

A0 =[al|---]ar] (B1)
In Fig. B.1, the scalar “P” represents the number of training triads, p, and “c” represents
the vector of known gradients, ¢, defined in eq. 60. The scalar “n” is the dimension of
the x input.

In Fig. B.1 the constants AO, P, ¢, and n are assumed known from the training set. All
of the remaining variables are defined locally as indicated by the lines of code. The
objective of the program is to compute the quantities“w_a”, “v”, and “w_x",
representing the neural weight vectors defined in Section 3.1.1, i.e., Wy, v, and wy,
respectively. The algorithm isimplemented for a scalar-output sigmoidal network with
one input bias, one output bias, and two scheduling variables. A user-defined subroutine
“sgm” (not shown here) evaluates the sigmoidal function of its input component wise,
according to the definition of the sigmoid, o(¢), introduced in Section 3.1.1. A similarly
defined function “dsgm” also can be produced based on the definition of o) (Section

3.1.1).

200

% GIVEN: AO, P, c, n

% SOLVE INPUT-TO-NODE EQUATIONS

% Create the A-matrix:

A = zeros(P"2, 3*P);

fori=1:P,
Al =[AO0(i,1)*ones(P,1), AO(i,2)*ones(P,1), ones(P,1)];
AP = spdiags(A1,[0 P 2*P], P, 3*P);
A((I-1)*P+21:i*P, 1:3*P) = AP;

end

% Create the n-vector:

N =randn(P, P);

N = N - diag(diag(N));
n_vec = reshape(N, P"2,1);
w_a = pinv(A)*n_vec;
n_vec = A*w_a;

f_n=10/(max(abs(n_vec)));
n_vec = n_vec*f n;

% Compute the matrices N and S:
N = reshape(n_vec, P, P);
S =sgm(N);

% Compute vector of input biases and a-input weights:
w_a=w_a*_n;

% SOLVE OUTPUT EQUATIONS

% Create the b-vector from the output bias:
bias = 10*rand(1,1);

b = -bias*ones(P,1);

% Compute output weights:
v = inv(S)*b;

% SOLVE GRADIENT EQUATIONS
% Create the X-matrix:
X = zeros(n*P, n*P);
fori=1:P,
for j = 1:n,
X((+((-1)*n)), (P*(-1)+1):(P*j)) = (v.*(dsgm(N(:,i))))’;
end
end

% Compute the x-input weights:
w_x = inv(X)*c;

Figure B.1. Sample code for the exact gradient-based algebraic training algorithm.

A sample code is provided for the exact input/output-based solution algorithm

(Section 3.1.2) in Fig. B.2. Here, the matrix “Y” and the vector “u” (corresponding to Y

201

and u, in Section 3.1.2) are provided to the program, based on the training set

{y*, U}k=1, ...p. The number of inputs“q” and the number of training pairs “P”,
corresponding to g and p, also constitute inputs to the routine. The program computes the
neural network weights W and v represented by the variables “W” and “v” in Fig. B.2.
The output bias, b, can be set equal to zero, as shown by the weight equations in Section

3.1.2.

% GIVEN: Y, q,u

% Create matrix of input weights:
f=3;
W = 3*randn(P,q);

% Compute input bias:
d = -diag(Y*W");

% Compute input-to-node-value (N) matrix:
N = Y*W'’ + ones(P,P)*diag(d);

% SOLVE OUTPUT EQUATIONS:
S =sgm(N);
v = inv(S)*u;

Figure B.2. Sample code for the exact input/output-based algebraic training algorithm.

When gradient information is available in the training set {y*, u¥, }x=1, ..., it canbe
used to improve the generalization properties of the neural network trained by the sample
codein Fig. B.2, asexplained in Section 3.1.4. According to the previous routine, the
number of nodes, s, in the network equals p, or “P” in the program’s notation. At each
step, indexed by “i”, the code in Fig. B.3 compares the gradient of the neural network to
the known derivatives in one training triad. Since s=p, theindex “i” can be considered

equivalent to k (as explained in Section 3.1.4); therefore, the algorithm always terminates

inp steps.

202

% GIVEN: Y, u, C, W, d, v, tol_max

% Recreate N:
N = Y*W'’ + ones(P,P)*diag(d);

fori= 1:P,
wi_old = W(i,:);
% Compare neural network gradients with “ideal” ones:

c_i=C(,);
c_nn = (v.*dsgm(N(i,:)))*W;

if max(abs(c_i-c_nn)) > tol_max, %Change input weights wi)

wi_new = W(i,:) + (c_i-c_nn)/v(i)/dsgm(N(,i));

if max(abs(wi_new)) > 50, %Impose a “safe” upper bound
wi_new = wi_old; %Retain old weights
end
else,
wi_new = wi_old; %Retain old weights
end

% Update neural network weights:
W(i,:) = wi_new;

d@i) = -Y(@i,:)*W(,:)"

NC,i) = d() + Y*W(,:)"

% Recompute output weights:
S = sgm(N);
v = inv(S)*u;

end

Figure B.3. Sample code for the approximate general solution training algorithm.

If the user-supplied gradient tolerance “tol_max” is exceeded by the gradient error at
the i™-step, the input weights corresponding to the i™-node, wi, (or “wi” in the program)
are modified. Consequently, the new output weightsv, or “v”, must be re-computed from
the output equations. The program in Fig. B.3 utilizes a matrix of known gradients, that
can be obtained from the training set as,

C =[ct]--+|cP] (B2)

203

aswell asthe information used in Fig. B.2. The neural network weightsto be refined,
“W”, “d” and “v”, also must be provided to this approximate algorithm.

Figures B.4-B.5 provide sample code for the resilient-backpropagation (RPROP)
algorithm presented in Section 3.2, and implemented by the adaptive critic architecture
(Section 5.1.3). For convenience, the program is illustrated in two parts: (a) and (b). The
inputs consist of the neural weights, “W”, “V”, and “d”, and of the network’sinput and
target, “p” and “nn_target”, respectively. The algorithm modifies the weights “W” and
“V”, that arerearranged in the vector “w” (or w), as explained in Sections 3.2 and 5.1.3.
For smplicity, the program isillustrated for a network with no scheduling vector (or a
input). Part (8), in Fig. B.4, prepares the data needed by the iterative portion of the
algorithm (Fig. B.5).

As anticipated in Section 5.1.3, the scheme implements a “ backtracking step” [77], a
gradient-sign computation (based on eg. 217-218), and an “early-termination rule” as
stopping condition. Also, the increment size A, (or “delta_w”) initially is computed
through the proportional rule in eg. 91. However, since the RPROP training algorithm is
called repeatedly by the adaptive critic architecture, under the stated circumstances
(Section 5.1.3) the algorithm can store A; in the binary file “delta_file.mat”. Figure B.4
also shows that, at the on-set of training, the modified-RPROP routine accesses the value
of “delta_w” stored in the latter binary file, and that it uses eg. 91 to compute A/ only if
the “delta_w” variable isempty. A file named “delta_file.mat” with an empty variable

“delta_w” always should be available to this program.

204

% GIVEN: p, W, d, V, b, nn_target

% RPROP user-defined parameters:
delta_max = 50;
delta_inc = 1.2; delta_dec = 0.5;

% Create vector of ordered weights:
[s, n] = size(W); [m, s] = size(V);
w = [reshape(W,s*n,1); reshape(V,m*s,1)];

% Compute old-NN gradient-sign and output-error:
n_vec = W*p + d;
nn_output = V*sgm(n_vec) + b;

e_w = nn_target - nn_output; %Output error
e v =V%e_w,;
nn_mse0 = mse(e_w);

% Gradient signs:
sign_gW = sign(-e_v)*sign(p’);
sign_gV = sign(-e_w)*sign(n_vec’);

sign_gw = [reshape(sign_gW,s*n,1); reshape(sign_gV,m*s,1)]; %Gradient sign

% Initialize loop variables:

epochs = 0;

sign_gw_old = sign_gw;

save_delta w = 1; stop_condition = 0; %Loop flags

dw_old = zeros(length(w),1); %Weight increments
f_mse = 10/100; %Desired mse-change

% User-specified performance parameters:

epochs_max=5; %Maximum epochs
mse_perf_final=1e-5; %ldeal performance
f2_delta_w=1e-5;

% Initialize weight-increment size:
load delta_file %With: delta_w
if isempty(delta_x) == 1,
f1_delta_w = nn_mse0*f2_delta_w;
delta_w =f1_delta_w.*abs(w) + 1e-20; %Proportional rule
end

Figure B.4. Part (a) of a sample program based on the modified-resilient-backpropagation
(RPROP) on-line training algorithm.

205

% GIVEN: p, W, d, V, b, nn_target
% GIVEN: delta_max, delta_inc, delta_dec, m, s, n, dw_old, from Part (a)
% GIVEN: stop_condition, epochs, sign_gw, sign_gw_old, from Part (a)

% Resilient Backpropagation (RPROP) Algorithm:
while stop_condition == 0,
epochs=epochs+1;

sign_ggw= sign_gw_old.*sign_gw;
delta_w = ((sign_ggw=>0)*delta_inc + (sigh_ggw<0)*delta_dec + (sign_ggw==0)).*delta_w;

% Bound increment size:
delta_w = min(delta_w, delta_max);

% "Backtracking" step:
dw = (-sign_gw.*delta_w).*(sign_ggw>=0) + (-dw_old).*(sign_ggw<0);
sign_gw(find(sign_ggw<0)) = 0;

% Update old variables for next epoch:
w_old =w; dw_old = dw; sign_gw_old = sign_gw;

% Update variables for next epoch:
w=w + dw;

% Compute new NN gradient-sign and output-error:
W = reshape(w(1:s*n), s, n); V = reshape(w(s*n+1:end), m, s);
n_vec = W*p + d; nn_output = V*sgm(n_vec) +b;

e_w = nn_target - nn_output; %Output error
nn_mse=mse(e_w); e v=V"*e w;,

sign_gW = sign(-e_v)*sign(p’);
sign_gV = sign(-e_w)*sign(n_vec’);
sign_gw = [reshape(sign_gW,s*n,1); reshape(sign_gV,m*s,1)]; %Gradient sign

%Check stopping condition:

if epochs > epochs_max & nn_mse < (1-f_mse)*nn_mse0, stop_condition=1;
elseif nn_mse <= mse_perf_final, stop_condition=1;

end

% Adaptive initial-increment-size rule:
if nn_mse < (1-f_mse)*nn_mse0 & save_delta_w == 1 & epochs > 3,

save delta_file.mat delta w %Store
save_delta w = 0; %Reset flag
elseif nn_mse < (1-f mse)*nn_mse0 & save_delta w == 1 & epochs <= 3,
save_delta w=0; %Don't store
end
end

Figure B.5. Part (b) of a sample program based on the modified-resilient-backpropagation
(RPROP) on-line training algorithm.

206

Appendix C: Proofs

Algebraic Network Operations. Output Combination

This section of the appendix shows that the algebraic operation that combines two
nonlinear neural networks with the same input and different outputs, illustrated in Fig. 43,
preserves performance. The proof demonstratesthat, if the original networks each match

the training sets {x*, us, C1}k=1, .. p and {x*, us*, C}x=1, ..., , then afinal network that

matches the full set {x*, u, C"}y=1, ..., can be obtained by the simple algebraic

operations described in Section 5.1.1. The matrix of known gradients, C¥, is defined asin
Section 5.3, and the remaining quantities are defined consistently with Section 5.1.1.
From Fig. 43 it can be deduced that the following relationships hold for the known

outputs,

o=t)

uz
and for the known gradients:
ck =[ck ct] (€2)

Network weight equations can be used to show that if the full training set is matched
by the final network (with weights W, d, V, and b), then the parameters of the two
original networks (W1, d1, V1, by, and Wy, da, V2, by) also satisfy the weight equations
corresponding to the original training sets. If thisisthe case, then the opposite argument
also must apply, and the final network can be constructed from the original networks
parameters through the stated algebraic operations. A single, generic training triad
indexed by k can be considered without loss of generality. The output weight equations

for the final network can be written as the vector-output equivalent of eg. 44, i.e.,

207

uk =Ve[Wxk +d]+b (C3)
Using the parameters obtained by the algebraic operations in Section 5.1.1, as well as eq.

C1, the final output weight equations (eq. C3) can be reformulated as.
ui [_fve 0] Wyl . [ds b,

_[v, O _G{Wlxk +d1}+[bl}
0V, W,xk +d, b,
i N (C4)
_[v; 0 GéW1Xk +dlﬂ+[bl}
0 V, | e(Wyxk+d, b,
[Vy6(Woxk +d1%+ b,
T V,6(W,xk +d,)+b,

The above equation is found to be equivalent to the two output weight equations of the
original networks. Thus, it can be concluded that this network operation preserves output
information.

The gradient weight equations of the full network can be written as the vector-output
equivalent of eq. 49, for the case in which derivatives are known with respect to al of the
inputs (e = g), that is:

cx = WT{diag[e'(nk)V T} (C5)
The vector of input-to-node values can be computed from the K™-training triad, as:
nk =Wxk +d (Co)

Just asin eq. C4, it can be shown that the following holds,
W, xk +d nk
K = 1 1 ="
" [szk "'dj L‘S} (€

Then, the diagonal matrix in eg. C5 can be partitioned as,

208

O AL) ©

such that, by using the final network’ s parameters and eg. C2, the gradient weight

equations (eg. C5) can be reformulated as.
[ck | cs]=wrT diagle’(n< v T

L AR | T B

= diaglo'(nt vy | W3 diagle'(n)v]
The above equation is expressed as two independent equations that correspond to the
original networks gradient weight equations, demonstrating that gradient information
also is preserved by this operation. Similarly, it can be verified that the remaining

network operations (Figs. 9, 13, 44, and 45) also preserve performance.

209

Appendix D: Description of Trim Data Sets

The aircraft trim map is obtained by sampling the entire operating range of the
airplane, OR={V, H, y 1, f}, and by determining whether a trim solution exists at each
operating point (V, H, y; i, B). Section 4.4 describes the philosophy behind the sampling
process that also determines the boundaries of the multi-dimensional envelope OR.
Ultimately, the trim map U, is defined by the collection of trim control settings
corresponding to the operating points for which trim solutions exist (eq. 168). This
appendix describes how the space OR is sampled numerically, and how the
corresponding trim solutions are stored once they are found. Subsequently, the trim data
is reduced to obtain the training and validation sets used in Section 4.4 to train and test
the forward neural network.

Initially, the outer bounds of {V, H} are assumed to be those of the steady-level flight
envelope, Fig. 15, with y= = £=0. Then, different combinations of y; 1, and Sare
explored within the prescribed ranges (eg. 169), redefining the V-H limits when trim
solutions do not exist everywhere inside the initial boundaries. Several (¥, i, p)
combinations are obtained by sampling each of these variables. The path angle, y; is
sampled between — 6 and + 6 deg, with constant intervals Ay=1 deg. The bank angle, 4,
and the sideslip, S, are sampled as shown by the Table D.1. To each combination of
values (; u, p) there corresponds a two-dimensional envelope {V, H}. Each of the{V,
H} envelopes is explored by sampling the altitude between 0 and 15, 000 m, at intervals
of AH =1, 000 m. For each altitude, the corresponding velocity range is sampled at

intervals of AV =5 nvs.

210

£ (deg) H (deg)
5 |-20|-15(-10| 5| 0 | 5 |10 | 15 [20
4 |-21|-17|-13| 7| 2| 3 | 8 [14| 19
3 |-20|-16|-11| 6| -1| 4| 9 | 16 | 20
2 |-18|-122| 8| -4 | 0| 4| 9 | 13| 18
1 |21 |-17|-183| -7 | 2| 3| 8| 14| 19
0O |-20|-15(-10| 5| 0 | 5 |10 | 15 | 20
-1 [-19|-14|-9|-3| 1|6 |12|17 |2
2 |-20|-16|-11| -6 | -1 | 4 | 9 | 16 [20
-3 |-18|-12| 8| 4| 0 | 4| 9 | 13| 18
-4 |-21|-17|-13| -7 | 2| 3 | 8 | 14| 19
-5 [-20|-15|(-10 -5 0 | 5 | 10 | 15 | 20

Table D.1. Sampled values of bank angle, £, and the sideslip, £, used to compute the
aircraft trim map, U.

For each combination (; i, [) considered above, there exists an envelope {V, H} of
sampled V and H values and corresponding trim control settings. This suggeststhe
following approach to storing relevant trim datain MATLAB. The full envelope of the
aircraft is stored in one three-dimensional cell array, denominated “ENV”, that contains
nested cells with two-dimensional envelopes{V, H}. Each nested cell corresponds to one
combination (y; ki, £), with yvarying along the first dimension of the cell array, y varying
along its second dimension, and S varying along its third dimension, as shown in Fig.

D.1. Then, the actua values of y; 1, and S can be stored in three matrices, e.g., “G”,
“M”, and “B”. In each one-dimensional nested cell, the first element contains a vector of

altitudes (with AH = 1, 000 m), up to the appropriate ceiling; the remaining elements

211

contain corresponding vectors of velocities sampled between the minimum and the

maximum speed, with AV =5 m/s (Fig. D.1).

Multidimensional cell array, “ENV” Nested cell with
{V, H} envelope

0
1,000 ///
2,000

15,000

[80 85 90 --- 150] A

[90 95 ... 155]&

[145 150] /

Figure D.1. Cell array structure “ENV” used to store the aircraft multidimensional flight
envelope, OR={V, H, y, i, 5.

Another multidimensional cell array, “ENVPAR”, is used to sore the trim control
settings over the full aircraft flight envelope, as shownin Fig. D.2. This second array has
the same outer correspondenceto J; u, and Svalues. However, in this case each nested
cell istwo dimensional and contains a vectors of control settings, “TrimPar” (or ug),
obtained for the corresponding values of H and V, stored in “ENV”. H varies along the
first dimension (column-wise) and V varies along the second dimension (row-wise). The
cell dimensions are ordered consistently with the MATLAB convention for multi-

dimensional arrays. Since the number of V values may be different at every altitude, H,

212

some of the vectors in the nested cells will be empty, asillustrated by the empty brackets,

[],inFig. D.2.
Multidimensional cell array, “ENVPAR” Nested cell with control settings
“TrimPar”
{H} /
4

[0.02] {o.osr {0.03]
0.01[]/0.01]| -ee 0.01
0.23|](0.31 0.4
10.03 ||]0.04

0.02 002 . []
0.27 || | 0.43

oo
0B

...... []

[m===-="=-==-=--=

Figure D.2. Cell array structure “ENVPAR” used to store the aircraft trim map, U, i.e.,
the trim control settings, “TrimPar”, corresponding to the multidimensional flight
envelope, OR={V, H, y, i, 5.

Thetraining set for the forward neural network, NN, (eq. 170) is obtained from the
above data by reducing it to 2, 696 operating points or, equivalently, 2, 696 (V, H, y; i, B
combinations. Thisis achieved by first reducing the number of (£, £) combinationsto
the following subset:

-21 -14 -21 -21
-15 -6 -1 -15
0 4 9 0 |¢(deg) (DY)

14 0 15 8
20 21 19 20

——

X

A

1

|

o1

|

w
RPONWE
[Ga RSN &) & AN

213

For each of the (i,) combinations above, four to five values of yare selected randomly
within the chosen range (eq. 169). Then, for each of the resulting (y; &, £) combinations,
the altitude values are chosen in AHy.in = 2, 000 m increments, aternatively between 0 m
or 1, 000 m and the applicable ceiling. For each altitude value, velocity values are
selected using AViin = 30 mVs, and retaining the minimum and maximum velocities (i.e.,
the envelope boundaries). This approach samples the space OR uniformly, while
minimizing repetition in the final data set (eq. 170).

Two validation sets also are created from the full-envelope trim data. The first set is
obtained by using all 1, 287 (y; 1,) combinations, and by selecting altitude and velocity
values with the same criteria described above. Since, in general, the envelope {V, H}
associated with one combination (y; i, f) differs from that associated with a different (y;
M, B) combination, these sampling criteria diversify the data set with respect to V and H,
aswell. Thisvalidation set contains 39, 764 operating points. The second validation set
contains 2, 629 operating points and is obtained by randomly picking 87 (y; 1, B)
combinations from the original possibilities, and using the same selection criteria for V
and H.

The values of avariable, say y, are said to be picked randomly when they are selected
by randomly choosing among a selected number of index permutations. For example,
Table D.1 shows that to different values of S there correspond different sampled sets of
M. However, all of these p-sets contain the same number of elements, i.e., 9, (with more
or less constant spacing to provide for uniform sampling). Thus, the elementsin a z-set
always can be indexed by the vector [1:9] (in MATLAB notation). Here, two vectors of

indices are used to define two g+subsets: [1:2:9] and [2:2:8]. Then, random values of u

214

are chosen by randomly picking between these two vectors. This approach guarantees
uniform sampling, while the set is being reduced in a random fashion to minimize

repetition.

215

Appendix E: Flight Control Software Architecture

The dual-heuristic-programming (DHP) adaptive critic design (ACD) described in
Chapter 5 isimplemented using a modular software comprised of user-defined MATLAB
functions that take advantage of this high-level language's capabilities. The proposed
modular structure has not been optimized for computational efficiency. Instead, it is
designed to permit implementation changes to be performed quickly and reliably. Every
function corresponds to a particular mathematical entity in the DHP architecture. An
overview of the software is provided in this appendix, and the details of each function are
omitted for smplicity. It isassumed that the action and critic neural parameters are
initialized (according to Chapter 4 and Section 5.1.1) and stored inaMATLAB cell
array, referred to as“nn_cell”. The initialized cell array is stored in a binary file called
“weightsA.mat” for the action network (NN,), and in a file called “weightsC.mat” for the
critic network (NN¢). Using the same name “nn_cell” for both the action and the critic
allows the subroutines to be applicable to either networks. During every time interval,

At = ty4q — t, the neural parameters are modified by the DHP architecture and, as soon as
they are updated to “nn_cell” (tx+1), they are stored in the corresponding binary file,
replacing the previous parameters “nn_cell” (ty).

The main file, “ACDpinn.m”, is used to specify a command-input time history, U..
However, the command-input becomes known to the DHP architecture only the present
time, t,, comes about in the simulation. The initial conditions, X and up, and the time
span (tr — to) are prescribed in this file that computes the corresponding aircraft state and
control histories, X and U. The sampled-time history of avector is stored column-wise in

amatrix, as suggested by the MATLAB convention for ordinary differential equations.

216

The input/output structure of the main file and of the subroutines it implements are
sketched in Fig. E.1. The global variables uc(tx), a(ts), Xo, and up can be obtained by all
functions without being included in their inputs. The notation used for the input and
output variables corresponds to that introduced in Chapters 1 through 5, and summarized
in Appendix A. A dashed arrow indicates the function is accessing the binary file as
shown, in the direction illustrated (i.e., either to store“1” or load “1” its contents).

The function “CIEoM.m” represents the aircraft closed-loop equations of motion. It
produces the time-derivative of the augmented state, X,(tx), computing the control u(t,)
by means of the action network, with the parametersin “weightsA.mat”. The function
“OlEoM.m”" issimilarly defined, except it represents the open-loop equations of motion,
therefore it also takes the control as input. Both functions simulate an ordinary
differential equation and are referred to as “odefiles’. A function denominated
“RKstep.m” can be used to compute the Runga-Kutta [90] integration step, Ay(ty), for a
generic “odefile[y(ty), t]”, with y(ts) as dependent variable and t as independent variable.
Then, the ordinary differential equation simulated by the “odefile” can be integrated
simply by computing y(tk«1) = y(tk) + Ay(ty) a every interval, At, over the desired time
span, e.g., (tr — to). Both “CIEoOM.m” and “OIEoM.m" access the aircraft simulation
described in Chapter 4, referred to as“FLIGHT.m” [64]. This program has been
customized to output the aircraft parameters, pm(tx), based on the present aircraft state,

X(tx), and control, u(ty).

217

] X(t t
Ue —»| AcDpimnm Lpd X | [Figrrm [Pm®
U | u
Xa(t) CIEoM.m | Xa(t) | %a(t) %t
o _ —> uty) ¢ —> OlEoM.m | —»
| tk
WeightsA.mat
y(t) Ay(t) | Xa(td Xa(tr1)
At -—»{ RKsepm Lp u(ty .—»| Model.m ’
tk ? tk
odefilely, t
nncell(t) nncell (o) | nneell(td nneell (ti)
‘ —p| adaptA.m | (e —p| adaptCm | » .
Pa(ty) Pa(ti) .
f :
v \ 4
weightsA.mat weightsC.mat
Xa(t
Xa(ti)) FunAm oVl f() —»{ FunC.m VI
i) ol(ny | UM Oxa(t)
% 4
. weightsA_mat
weightsC.mat weightsC.mat
el rpupatem | Tt mce”}—» VecNN.m |2

Figure E.1. Input/output structure of the user-defined functions used in the dual-heuristic-

programming adaptive-critic software implementation.

218

The aircraft model (eq. 209) used by the DHP architecture is implemented in the

function “Model.m”. Given the state and control, xa(tx) and u(t,), this function predicts

the state for next time interval, Xa(tk+1), based on “OlEoM.m” and “RKstep.m”. The
model function also is called by the MATLAB built-in function “numjac” to predict the
system transition matrices, as explained in Section 5.1.2 (eg. 187 and 188). The module
for the action network adaptation, “adaptA.m”, and the module for the critic network
adaptation, “adaptC.m”, are called by the main program once every time interval, in this
order. These functions implement the flowcharts in Figures 51 and 52, respectively. The
action adaptation module solves the optimality condition (eg. 36) -- represented by the
function “FunA.m” -- using the MATLAB built-in function “fsolve”. Then, it calsthe
subroutine “RPupdate.m” to update the action network parameters, by means of the
resilient-backpropagation algorithm. The code in Figs. B.4-B.5 can be used to create the
“RPupdate.m” function, provided it is customized to take the neural weights w(ty) from
the cell array “nn_cell” (t) and to return the updated weights w(tx:1) in the same structure
“nn_cell” (tx+1). Oncethe routine “adaptA.m” has obtained “nn_cell” (tk+1) from
“RPupdate.m”, it returns the action parametersto “ACDpinn.m” and storesthem in the
binary file “weightsA.m”.

Following the above action-network adaptation, the main file * ACDpinn.m” callsthe
module for the critic network adaptation, “adaptC.m”. This function computes the critic
network target by calling “FunC.m”, which implements the criterion in eg. 188. Given
thistarget (“nn_target”) and the old critic parameters, “nn_cell(ty)”, “adaptC.m” calls
“RPupdate.m” to compute the new parameters “nn_cell” (tx+1). This updated critic

network information is stored in the binary file “weightsC.m” for later use. A function

219

“vecNN.m” that simulates a vector-output ssgmoidal neural network is used by several of
the subroutinesin Table D.1. It computesthe network output z based on the available
input, p, and network information, “nn_cell”. Based on the inputs provided, “vecNN.m”
plays the role of either the action or the critic network, a any moment in time t.

During each of the DHP sequenced events sketched in Fig. 41, the functions in Table
D.1 exchange input/output information asillustrated in Fig. E.2. Thisdiagram illustrates
the implementation of the control action, Fig. E.2.(a), the action adaptation, Fig. E.2(b),
and the critic adaptation, Fig. E.2(c), during the time interval At. The modular software
architecture allows the user to perform quick implementation changes and
troubleshooting. Every function has a distinct role within the adaptive critic architecture,
and corresponds to awell defined mathematical entity. For example, the on-line training
routine can be changed virtually instantaneously by modifying or substituting the
function “RPupdate.m” alone. Another example involves the “Model.m” routine.
Suppose on-line identification isto be carried out by a model neural network, as
suggested by Section 6.3. Then, “Model.m” can be substituted by a function that
implements “vecNN.m" to simulate the model network and that utilizes “ RPupdate.m”

(aswell as other functions in Fig. E.1) to adapt the model parameters.

220

-~

ACDpinn.m »| RKstep.m {[«—» CIEOM.m
A
“Control Action” FLIGHT.m
. @
(b) (
“ Action Adaptation” Model.m —| RKstep.m
A A
A 4
ACDpinn.m |« adaptA.m [« FunA.m Model.m OlEoM.m
A A A
A 4 A
LA RPupdate.m vecNN.m FLIGHT.m
(]
P
LI
\\\“——l
\ |
/“CriticAdaptation” Model.m — RKstep.m\
A
A4 A
ACDpinn.m |« adaptC.m je—»{ FUNC.m [«—>| Modd.m OlEoM.m
A y A
A A
\ RPupdate.m vecNN.m FLIGHT.m

(©)

Figure E.2. Sequence of eventstaking place during the time interval At = tys1 — ty, inthe
dual-heuristic-programming adaptive-critic software architecture. The arrows indicate
communication between functions, whose inputs and outputs are described in Fig. E.1.

221

Appendix F: Aircraft M odel

The eguations of motion and state elements that are used in the aircraft simulation
(eg. 1) arereviewed in this Appendix. The simulation represents a business-type aircraft
with two turbojet engines, a gross cruising weight of 4, 536 kg, and anominal cruising
Mach number of 0.79. The maximum available thrust is 26, 423 N at sea level, and
11, 735N a 10, 000 m. The service and performance ceilings (calculated in [64]) are
15, 315 mand 15, 275 m, respectively. For afull explanation of the physical and
performance characteristics modeled by the business twin-jet simulation, the reader
should refer to [64]. The model estimates low-angle-of-attack Mach effects, power
effects, and moments and products of inertia by using available full-scale wind tunnel
data and physical characteristics, according to the methods described in [64]. The state
accelerations, denoted by Xy, Yy, Zb, Lb, My, and Ny, are a function of the available
thrust, and of the aerodynamic force and moment coefficients produced by the controls
for the present aircraft state and wind field.

The nonlinear equations of motion are formulated with respect to the aircraft body-
axis velocities and angular rates, and with respect to its position relative to an inertial

frame of reference (Section 4.4), as.

u:Xb(°)+ng(°)+rV_qW (F1)
V=Y, () +g, (+)-ru+ pw (F2)
W:Zb(.)+gbz(.)+qu_pv (F3)

X, =ucosdcosy +v(sin ¢gsin @cosy — cosgsiny) -
F4
+w(cos@sin 8 cosy —sin psiny)

222

y, =ucos@siny +v(sin gsin @siny + cosg cosy)
(F5)
+w(cosgsin siny - sin pcosy)

z, =-usin @+ vsin gcosé + wcosgcosld (F6)

Q{lzzl-b(')"'lszb(')_pl.lxz(lyy_|>0<_IZZ)J+r|.I>%z+|zz(Izz_|yy)J}

b= (Ixxlzz_lgz) (F7)
q:[Mb(.)_pr(lxx_llzz)_lxz(pz_rz)] (F8)
yy
ol L) LNl 1= L B2 Ll
(Ixxlzz _I)%z)
@=p+(qsing+r cosg)tand (F10)
0 =qcosp-rsng (F11)
e (qsing +r cosg) (F12)
cosd

The body-axis gravity components, gj, | b, » and g, , and the state accelerations are a

function of the state and, possibly, of the controls and wind field. The moments of
inertia, 1y, lyy, and 1, and the product of inertia, |, are estimated using simplified mass
distributions, and are held fixed during the simulation.

The time history of the state vector x = [V yq 8r Bp 4" isobtained by integrating the
equations of motion above. The following relations are used to compute the state

elements that do not explicitly appear in the chosen formulation:

\V/ Ju2 +v2 + w2
B|=| sn2v/V) (F13)
y sn-i(-w/V)
L=din _{[cos&sm @Ccosf + (cosa:onse — sin @ cos@ cosg)sin ,8]} (F14)
y

223

For small-angle maneuvers, the bank angle, 1, isvery closeto theroll angle, ¢ however,
while @is measured about the body axis xy, £ is measured about the velocity vector [64].
The angle of attack, a, iscomputed asin eq. 165. The body velocities and angular rates,
and flow angles are sketched in Fig. F.1. Section 4.4 provides additional information
about the body and inertial axes systems. The references [64, 87, 88] include a detailed

description of all aircraft angles and coordinate transformations.

Horizonta plane

Figure F.1. Definition of path angle, angle of attack, and sideslip, adapted from [88].

224

[1]

[2]

[3]

[4]
[S]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

References

K. S. Narendra, “Adaptive Control using Neural Networks,” Neural Networks for
Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds., pp. 115-142, MIT
Press, Cambridge, MA, 1990.

L. J. Lin, “Self-improvement based on reinforcement learning, planning and
teaching,” Machine Learning: Proceedings of the Eight International Workshop,
L. A. Birnbaum and G. C. Collins, Eds., pp. 323-327, Morgan Kaufmann, San
Mateo, CA, 1991.

A. G. Barto, “Reinforcement Learning and Adaptive Critic Methods,” Handbook
of Intelligent Control, D. A. Whiteand D. A. Sofge, Eds., pp. 469-492, Van
Nostrand Reinhold, New York, NY, 1992.

D. P. Bertsekas and J. N. Tditsiklis, Neuro-dynamic Programming, Athena
Scientific, Belmont, MA, 1996.

K. S. Narendra and K. Parthasaranthy, “ldentification and control of dynamical
systems using neural networks,” |IEEE Trans. Neural Networks, Vol. 1, pp. 4-27,
1990.

J. Neidhoefer and K. Krishnakumar, “Nonlinear Control Using Neural
Approximators with Linear Control Theory,” Proc. AlAA Guidance, Navigation
and Control Conference, New Orleans, pp. 364-372, 1997.

T. Iwasa, N. Morizumi, and S. Omatu, “Temperature Control in a Batch Process
by Neural Networks’, |EEE International Conference, |EEE-0-7803-41223-8/97,
V 6, no.1, pp. 2430-2433, 1997.

A. J. Calise, “Neural Networksin Nonlinear Aircraft Flight Control,” IEEE
Aerospace and Electronics Systems Magazine, Vol. 11, No. 7, pp. 5-10, 1996.

K.S. Narendraand O.A. Driollet, “ Stochastic adaptive control using multiple
models for improved performance in the presence of random disturbances,”
International Journal of Adaptive Control and Sgnal Processing, VVol. 15, No. 3,
pp. 297-317, 2001.

A. O. Esogbue, “Computational Aspects and Applications of a Branch and Bound
Algorithm for Fuzzy Multistage Decision Processes,” Journal of Computers and
Mathematics with Applications, Special Issue, Vol. 21, No. 11-12, pp. 117-128,
1991.

R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ,
1957.

D. E. Kirk, Optimal Control Theory; an Introduction, Prentice-Hall, Englewood
Cliffs, NJ, 1970.

R. Bellman, Methods of Nonlinear Analysis: Volume I, Academic Press, 1973.

225

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

[28]
[29]

P. J. Werbos, “Building and Understanding Adaptive Systems: A
Statistical/Numerical Approach for Factory Automation and Brain Research,”
|EEE Trans. Syst., Man, Cybern., Vol. 17, No. 1, pp. 7-20, 1987

D. P. Bertsekas, “Distributed Dynamic Programming,” |EEE Trans. Automatic
Control, Vol. 27, pp. 610-616, 1982.

R. Howard, Dynamic Programming and Markov Processes, MIT Press,
Cambridge, MA, 1960.

P. J. Werbos, “Neurocontrol and Supervised Learning: an Overview and
Evaluation,” Handbook of Intelligent Control, D. A. Whiteand D. A. Sofge, Eds,,
pp. 65-86, Van Nostrand Reinhold, New York, NY, 1992,

P. J. Werbos,” A Menu of Designs for Reinforcement Learning Over Time,”
Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds,
pp. 67-96, MIT Press, Cambridge, MA, 1990.

P. J. Werbos, “ Advanced Forecasting Methods for Global Crisis Warning and
Models of Intelligence,” General Systems Yearbook, 1997.

A. Barto, R. Sutton, and C. Anderson, “Neuronlike Elements that Can Solve
Difficult Learning Control Problems,” |EEE Trans. Systems, Man, and
Cybernetics, Vol. 3, No. 5, pp. 834-846, 1983.

P. J. Werbos, “Applications of Advances in Nonlinear Sensitivity Analysis,”
System Modeling and Optimization: Proceedings of the 10" IFIP Conference, R.
F. Drenick and F. Kozin, Eds., Springer-Verlag, New York, NY, 1982.

C. Watkins, “Learning from Delayed Rewards,” Ph.D. Thesis, Cambridge
University, Cambridge, England, 1989.

T. H. Wonnacott and R. Wonnacott, Introductory Statistics for Business and
Economics, 2™ Ed., Wiley, New York, NY, 1977.

D. Prokhorov and D. Wunsch, “ Adaptive Critic Designs,” |EEE Trans. on Neural
Networks, Vol. 8, No. 5, pp. 997-1007, 1997.

S. Laneand R. F. Stengel, “Flight Control Design Using Non-linear Inverse
Dynamics,” Automatica, Vol. 24, No. 4, pp. 471-483, 1988.

M. G. Cox, “Practical Spline Approximation,” Lecture Notes in Mathematics 965:
Topicsin Numerical Analysis, P.R. Turner, Ed., Springer Verlag, New York, NY
1982.

A. Antoniadisand D. T. Pham, “Wavelets and Statistics,” Lecture Notesin
Satistics 103, Springer Verlag, New York, NY, 1995.

C. K. Chui, An Introduction to Wavelets, Academic Press, New York, NY, 1992.

T. Lyche, K. Marken, and E. Quak, “Theory and Algorithms for Nonuniform
Spline Wavelets,” Multivariate Approximation and Applications, N. Dyn, D.
Leviatan, D. Levin, and A. Pinkus, Eds., Cambridge University Press, Cambridge,
UK, 2001.

226

[30]
[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

J. H. Friedman, “Multivariate adaptive regression splines,” The Annals of
Satistics, Vol. 19, pp. 1-141, 1991.

S. Karlin, C. Micchelli, and Y. Rinott, “Multivariate splines. A probabilistic
perspective,” Journal of Multivariate Analysis, Vol. 20, pp. 69-90, 1986.

C. J. Stone, “The use of polynomial splines and their tensor productsin
multivariate function estimation,” The Annals of Statistics, Vol. 22, pp. 118-184,
1994.

G. Cybenko, “Approximation by Superposition of a Sigmoidal Function” , Math.
Contr., Sgnals, Syst., Vol. 2, pp. 359-366, 1989.

K. Hornik, M. Stichcombe, and H. White, “Multilayer Feedforward Networks are
Universal Approximators,” Neural Networks, Vol. 2, No. 5, pp. 359-366, 1989.

A. R. Barron, “Universal Approximation Bounds for Superposition of a
Sigmoidal Function,” |EEE Transactions on Information Theory, Vol. 39, No. 3,
pp. 930-945, 1993.

S. Ferrari and R. F. Stengel, “Algebraic Training of a Neural Network,” Proc.
American Control Conference, pp.1605-1610, Arlington, VA, 2001.

S. Ferrari and R. F. Stengel, “ Classical/Neural Synthesis of Nonlinear Control
Systems,” J. Guidance, Control and Dynamics, Vol. 25, No. 3, pp. 442-448,
2002.

H. Demuth and M. Beale, “Radial Basis Networks,” Neural Network Toolbox —
For Use with MATLAB, Version 3, The MathWorks Inc., Natick, MA, pp. 6.2-
6.19, 1998.

K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural Networks for
Control Systems— A Survey,” Automatica, Vol. 28, No. 6, pp. 1083-1112, 1992.

D. Marquardt, “An Algorithm for Least Squares Estimation of Nonlinear
Parameters,” J. Soc. Ind. Appl. Math, pp. 431-441, 1963.

M.T. Hagan and M. B. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Trans. Neural Networks, Vol. 5, No. 6, pp. 989 —
993, 1994.

R. F. Stengel, J. Broussard, and P. Berry, “Digital Controllers for VTOL
Aircraft,” |EEE Trans. Aerospace and Electronic Systems, Vol. AES-14, No. 1,
pp. 54-63, 1978.

R. F. Stengel, J. Broussard, and P. Berry, “Digital Flight Control Design for a
Tandem-Rotor Helicopter,” Automatica, Vol. 14, No. 4, pp. 301-311, 1978.

R. F. Stengel, P. Berry, and J. Broussard, “Evaluation of Digital Flight Control
Design for VTOL Approach and Landing, Guidance and Control Design
Considerations for Low Altitude and Terminal Area Flight,” AGARD CP-240,
October 1977.

227

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

W. T. Baumann and W. J. Rugh, “Feedback Control of a Nonlinear System by
Extended Linearization,” |EEE Trans. Auto. Control, Vol. AC-31, No. 1, pp. 40-
46, 1986.

W. T. Baumann and W. J. Rugh, “Feedback Control of a Nonlinear System by
Extended Linearization: The Multi-Input Case,” Proc. 7" Int'l Symp. on Math.
Theory of Networks and Systems, pp. 107-113, Stockholm, Sweden, 1985.

J. B. Plant, Y. T. Chan, and D. A. Redmond, “A Discrete Tracking Control Law
for Nonlinear Plants,” Proc. IFAC 8" Triennial World Congress — Control
Science and Technology, pp. 55-60, Kyoto, Japan, 1981.

H. Nijmeijer, A. J. Van der Schaft, Nonlinear Dynamical Control Systems,
Springer Verlaf, New York, NY, 1990.

D. J. Bugagski, D. F. Enns, and M. R. Elgersma, “A Dynamic Inversion Based
Control Law with Application to the High Angle of Attack Research Vehicle,”
Proc. AIAA Guidance, Navigation, and Control Conf., pp. 20-22, 1990.

S. A. Snell, D. F. Enns, and W. L. Garrard, “Nonlinear Inversion Flight Control
for a Supermaneuverable Aircraft,” J. Guidance, Control and Dynamics, Vol. 15,
No. 4, pp. 976-984, 1992.

J. M. Buffington, A. G. Sparks, and S. S. Banda, “Full Conventional Envelope
Longitudinal Axis Flight Control with Thrust Vectoring,” Proc. American
Control Conf., pp. 415-419, 1993.

Q. Wang and R. F. Stengel, “Robust Nonlinear Control of a Hypersonic Aircraft,”
J. Guidance, Control, and Dynamics, Vol. 23, No. 4, pp. 577-585, 2000.

J. S. Brinker and K. A. Wisg, “ Stability and Flying Qualities Robustness of a
Dynamic Inversion Aircraft Control Law,” J. Guidance, Control, and Dynamics,
Vol. 19, No. 6, pp. 1270-1277, 1996.

R. J Adamsand S. S. Banda, “An Integrated Approach to Flight Control Design

Using Dynamic Inversion and p-Synthesis,” Proc. American Control Conf., pp.
1385-1389, 1993.

J. M. Buffington, R. J. Adams, and S. S. Banda, “Robust Nonlinear High Angle of
Attack Control Design for a Supermaneuverable Vehicle,” Proc. of the AIAA
Guidance, Navigation, and Control Conf., pp. 690-700, 1993.

S. Golpaswami and J. K. Hedrick, “Robust Adaptive Nonlinear Control of aHigh
Performance Aircraft,” Proc. American Control Conf., pp. 1279-1283, 1990.

J. J. E. Slotine, “Sliding Controller Design for Nonlinear Systems,” Int. J.
Control, Vol. 40, No. 2, pp. 421-434, 1984.

S. H. Lane, “Theory and Development of Adaptive Flight Control Systems Using
Nonlinear Inverse Dynamics,” Ph.D. Thesis, Princeton University, Princeton, NJ,
1988.

K. S. Narendra, “Adaptive Control of Discrete-time Systems Using Multiple
Models,” IEEE Trans. Auto. Control, Vol. 45, No. 9, pp. 1669-1686, 2000.

228

[60]

[61]
[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

E. Ferreiraand B. Krogh, “Switching Controllers Based on Neural Networks
Estimates of Stability Regions and Controller Performance,” Lecture Notes on
Computer Science, Special Issue: Hybrid Systems VI, Springer Verlag, 1998.

B. S. Kimand A. J. Calise, “Nonlinear Flight Control Using Neural Networks,” J.
Guidance, Control, and Dynamics, Vol. 20, No. 1, pp. 26-33, 1997.

A.J. Caliseand R. T. Rysdyk, “Nonlinear Adaptive Flight Control Using Neural
Networks,” |EEE Control Systems Magazine, pp. 14-25, December 1998.

K.A. Wisg, et d., “Direct Adaptive Reconfigurable Flight Control for a Tailless
Advanced Fighter Aircraft,” Int. J. Robust and Nonlinear Control, Vol. 9, pp.
999-1009, 1999.

R. F. Stengel, Flight Dynamics, (manuscript in preparation).

K. S. Narendra, “Neural Networks for Control: Theory and Practice”, Proc. of
The |EEE, Vol. 84, No.10, pp. 1385-1406, 1996.

R. F. Stengel and C. Marrison, “Design of Robust Control Systems for
Hypersonic Aircraft,” J. Guidance, Control, and Dynamics, Vol. 21, No.1, pp.58-
63, 1998.

R. F. Stengel and L. R. Ray, “ Stochastic Robustness of Linear-Time Invariant
Control Systems,” |EEE Trans. Automatic Control, Vol. 36, No. 1, pp. 82-87,
1993.

R. F. Stengel and L. R. Ray, “A Monte Carlo Approach to the Analysis of Control
System Robustness,” Automatica, Vol. 29, No. 1, pp. 229-236, 1993.

R. F. Stengel and C. Marrison, “Stochastic Robustness Synthesis Applied to a
Benchmark Control Problem,” Int’l. J. Robust and Nonlinear Control, Vol. 5, No.
1, pp. 13-31, 1995.

R. F. Stengel and C. Marrison, “Robust Control System Using Random Search
and Genetic Algorithms,” I1EEE Trans. Automatic Control, Vol. 42, No. 6, pp.
835-839, 1997.

A. N. Kolmogorov, “On the Representation of Continuous Functions of Several
Variables by Superposition of Continuous Functions of One Variable and
Addition,” Dokl. Akad. Nauk SSSR, Vol. 114, pp. 953-956, 1957.

D. Linseand R. F. Stengel, “Identification of Aerodynamic Coefficients Using
Computational Neural Networks,” J. Guidance, Control, and Dynamics, Vol. 16,
No. 6, pp. 1018-1025, 1993.

A. Graham, Kronecker Products and Matrix Calculus: with Applications, Ellis
Horwood Ltd, Chichester, UK, 1981.

G. Strang, Linear Algebra and Its Applications, 3 Ed., Harcourt, Brace,
Janovich, San Diego, 1988.

D. Nguyen and B. Widrow, “Improving the Learning Speed of 2-Layer Neural
Networks by Choosing Initial Values of the Adaptive Weights,” Proc. Intl. Joint
Conf. on Neural Networks, San Diego, CA, Vol. I11, pp. 21-26, 1990.

229

[76]

[77]

[78]
[79]
[80]
[81]

[82]

[83]
[84]

[85]

[86]

[87]
[88]
[89]
[90]

[91]

[92]

P. J. Werbos, “Backpropagation Through Time: What It Does and How To Do
It,” Proc. of the IEEE, Vol. 78, No. 10, pp. 1550-1560, 1990.

M. Reidmiller and H. Braun, “A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm,” Proc. |EEE Int. Conf. on
NN (ICNN), pp. 586-591, San Francisco, CA, 1993.

R. J. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer
Academic Publisher, Bostor/LondorvDordrecht, 1997.

D.E. Salane, “ Adaptive Routines for Forming Jacobians Numerically,” SAND86-
1319, Sandia National Laboratories, 1986.

J. J. D’Azzo and C. H. Houpis, “Nyquist, Bode, and Nichols Plots,” The Control
Handbook, W. S. Levine, Ed., pp. 173-181, CRC Press, Boca Raton, FL, 1996.

R. F. Stengel, Optimal Control and Estimation, Dover Publications, New Y ork,
NY, 1994.

C. Huang and R. F. Stengel, “Restructurable Control Using Proportional-1ntegral
Model Following,” J. Guidance, Control, and Dynamics, Vol. 13, No. 2, pp. 303-
309, 1990.

Flying Qualities of Piloted Airplanes, Military Specifications MIL-F-8785C,
USAF ASD, Wright Patterson AFB, November 1980.

R. F. Stengel, “A Unifying Framework for Longitudinal Flying Qualities
Criteria” J. Guidance, Control, and Dynamics, Vol. 6, No. 2, pp. 84-90, 1983.

H. Erzberger, “Analysis and Design of Model Following Control Systems by
State Space Techniques,” Proc. of the 1968 Joint Automatic Control Conf., pp.
572-581, June 1968.

L. S. Cicolani, B. Sridhar, and G. Meyer, “Configuration Management and
Automatic Control of an Augmentor Wing Aircraft with Vectored Thrust,” NASA
Technical Paper, TP-1222, 1979.

B. Etkin, Dynamics of Atmospheric Flight, John Wiley & Sons, Inc., Toronto,
1972.

R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc., New
York, NY, 1989.

J. Kalviste, “Spherical Mapping and Analysis of Aircraft Angles for Maneuvering
Flight,” J. Aircraft, Vol. 24, No. 8, pp. 523-530, 1987.

L. F. Shampine and M. K. Gordon, Computer Solutions of Ordinary Differential
Equations, W. H. Freeman & Co., 1975.

P. J. Werbos, “Approximate Dynamic Programming for Real-time Control and
Neural Modeling,” Handbook of Intelligent Control, D. A. Whiteand D. A.
Sofge, Eds., pp. 493-526, Van Nostrand Reinhold, New York, NY, 1992.

K. Narendraand A. M. Annaswamy, Stable Adaptive Systems, Prentice Hall,
Englewood Cliffs, NJ, 1989.

230

[93] B. Friedland, “Observers,” The Control Handbook, W. S. Levine, Ed., pp. 607-
618, CRC Press, Boca Raton, FL, 1996.

[94] T.H. Cormen, Introduction to Algorithms, 2™ Ed., MIT Press, Cambridge, MA,
2001.

[95] A. Gelb, Ed., Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.

[96] NSF Workshop on Learning and Dynamic Programming, Playacar, MX, April
2002.

231

Postscriptum

“Know thyself” is all science. Only when he will have finished Knowing all things man
will have Known himself. Things, in fact, are only man's limits.

[0 Friedrich Nietzsche, The Gay Science

232

