

Algebraic and Adaptive Learning in

Neural Control Systems

Silvia Ferrari

A DISSERTATION

PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY THE

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

NOVEMBER 2002

 iii

Abstract

A systematic approach is developed for designing adaptive and reconfigurable

nonlinear control systems that are applicable to plants modeled by ordinary differential

equations. The nonlinear controller comprising a network of neural networks is taught

using a two-phase learning procedure realized through novel techniques for initialization,

on-line training, and adaptive critic design. A critical observation is that the gradients of

the functions defined by the neural networks must equal corresponding linear gain

matrices at chosen operating points. On-line training is based on a dual heuristic adaptive

critic architecture that improves control for large, coupled motions by accounting for

actual plant dynamics and nonlinear effects. An action network computes the optimal

control law; a critic network predicts the derivative of the cost-to-go with respect to the

state. Both networks are algebraically initialized based on prior knowledge of

satisfactory pointwise linear controllers and continue to adapt on line during full-scale

simulations of the plant.

On-line training takes place sequentially over discrete periods of time and involves

several numerical procedures. A backpropagating algorithm called Resilient

Backpropagation is modified and successfully implemented to meet these objectives,

without excessive computational expense. This adaptive controller is as conservative as

the linear designs and as effective as a global nonlinear controller. The method is

successfully implemented for the full-envelope control of a six-degree-of-freedom

aircraft simulation. The results show that the on-line adaptation brings about improved

performance with respect to the initialization phase during aircraft maneuvers that

involve large-angle and coupled dynamics, and parameter variations.

 iv

Acknowledgments

I am especially grateful to my advisor, Professor Robert F. Stengel, for honoring me as

his protégéé during these past five years. He is the role model I wish to follow in my

future professional and personal life, because of his distinct creativity, wisdom, and

integrity. Thanks to him, my graduate experience has surpassed any of the dreams and

expectations I had as an incoming student. I thank Prof. Philip Holmes and Prof. Jeremy

Kasdin for serving as readers and for providing valuable insight and advice. The

completion of this dissertation would not have been possible without the literature

contributions cited herein. In particular, I wish to thank Dr. Paul Werbos, Prof. Andrew

Barto, Prof. Bernard Widrow, and Prof. Robert Vanderbei for inspiring me through their

work and conversations.

I am indebted to those institutions which contributed financially to my graduate

education: Princeton University provided support through its Wallace Memorial

Honorific Fellowship in Engineering; the Zonta Foundation supported me through the

Zonta Amelia Earhart Fellowship; the American Society of Mechanical Engineers

awarded me a Graduate Teaching Fellowship; the American Astronautical Society

contributed with a Donald K. “Deke” Slayton Memorial Fellowship; and the American

Institute of Aeronautics and Astronautics supported me by means of the Guidance,

Navigation, and Control Graduate Award. The funding for this research was provided by

the Federal Aviation Administration and the National Aeronautics and Space

Administration under FAA Grant No. 95-G-0011. It has been an honor and a privilege to

take part in the FAA/NASA Joint University Program.

 v

I owe a debt of gratitude to many members of the Princeton University community:

Etta Recke, Arla Dittrick, Sharon Matarese, Maureen Hickey, Barbara Myers, Jessica

Buchanan, Anna Marie Peloso, and many other members of our staff helped me in

countless ways, countless times. I wish to thank everyone in the LCA Laboratory, Dr.

Sai Gopisety, Prof. Qian Wang, Nilesh Kulkarni, and Russ Arrell for their help and

companionship. I am especially grateful to my friends Samaya Nissanke and Arron

Melvin, whose paths I have crossed here at Princeton and with whom I share a common

mind and soul. Together, with Giorgia Seghedoni, Fabio Raimondi, Fabio Bonvicini,

Samantha Rossi, Sharon Santos, and Daria Biancardi, they have nurtured my happiness

and peace of mind, all along.

I wish to dedicate this thesis to those who make any of my accomplishments possible:

my family. Kervin Johnson, my other half, took daily care of my health and spirit. He

always has been by my side, sharing every moment and emotion, and making them

evermore meaningful. Carlo Ferrari and Tina Serino, my parents, provided me with all

that in life is precious: love, empathy, liberty, and adventure. My love and appreciation

for them are simply endless.

This dissertation carries the number 3106-T in the records of the Department of

Mechanical and Aerospace Engineering of Princeton University.

Silvia Ferrari

Princeton, New Jersey

August, 2002

 vi

Tables of Contents

Abstract... iii

Acknowledgments..iv

Tables of Contents..vi

List of Figures...x

List of Tables ..xvii

Chapter 1

Introduction...1

1.1 Background and Motivation...2

1.1.1 Approximate Dynamic Programming and Reinforcement Learning.................3

1.1.2 Neural Networks as Universal Function Approximators..................................8

1.1.3 Adaptive Flight Control Systems...11

1.2 Research Objectives...12

1.3 Thesis Organization...14

1.3.1 Summary of Results..16

Chapter 2

Foundations of the Neural Control Design...18

2.1 The Nonlinear Optimal Control Problem..19

2.2 The Linear Quadratic Regulator ...22

2.3 Classical/Neural Synthesis of Nonlinear Control Systems....................................26

2.4 Dual Heuristic Programming Adaptive Critics...29

 vii

2.5 Chapter Summary ..32

Chapter 3

Advancements in Neural Network Learning Theory: Algebraic Training and Modified

Resilient Backpropagation Techniques..33

3.1 Algebraic Training...34

3.1.1 Exact Gradient-based Solution ..38

3.1.2 Exact Input/Output-based Solution..44

3.1.3 Approximate Input/Output-based Solution ..48

3.1.4 Approximate General Solution..52

3.2 Modified Resilient Backpropagation..56

3.3 Algebraically Constrained Supervised Training..60

3.4 Chapter Summary ..66

Chapter 4

Initial Specification of the Neural Network Control System by an Algebraic Training

Approach...67

4.1 Linear Design ..70

4.1.1 Proportional-Integral Control ..72

4.1.2 Ideal Model ...74

4.1.2.1 Longitudinal Aircraft Model...76

4.1.2.2 Aircraft Lateral-directional Model ..79

4.1.3 Implicit Model Following..82

 viii

4.2 Proportional-Integral Neural Network Control ...91

4.3 Feedback and Command-Integral Neural Networks...93

4.4 Forward Neural Network ...102

4.5 Critic Neural Network..115

4.6 Chapter Summary ..119

Chapter 5

Adaptation of the Neural Network Control System..121

5.1 Dual Heuristic Adaptive Critic Design...122

5.1.1 Action and Critic Network Initialization..125

5.1.2 Action and Critic Network On-line Adaptation..136

5.1.3 Neural Network On-line Training Algorithm...141

5.2 Adaptive Flight Control Results...147

5.2.1 Full-Envelope Maneuvers ...149

5.2.2 Control System Failure..159

5.2.3 Parameter Variations...166

5.3 Algebraically Constrained Adaptive Critic Architecture.....................................169

5.4 A Word on Computational Complexity: Execution Time of Algebraic and

Adaptive-Learning Algorithms..180

5.5 Chapter Summary ..183

Chapter 6

Conclusions...185

 ix

6.1 Summary ...185

6.2 Conclusions...187

6.3 Recommendations..189

Appendix A: Nomenclature...193

Appendix B: Algorithms..200

Appendix C: Proofs...207

Appendix D: Description of Trim Data Sets...210

Appendix E: Flight Control Software Architecture..216

Appendix F: Aircraft Model ..222

References...225

 x

List of Figures

Figure 1. The principle of optimality applied to a two-stage process................... 3

Figure 2. Discrete or backward dynamic programming approach. 4

Figure 3. Approximate or forward dynamic programming approach................... 5

Figure 4. Dual heuristic programming adaptive critic control design. 26

Figure 5. Sample scalar-output network with q inputs and s nodes in the
hidden layer. ... 35

Figure 6. Output surface of a two-node sigmoidal neural network
corresponding to the algebraic solution matching the training data
provided in the legend for two points. ... 44

Figure 7. Actual surface being approximated and corresponding training
samples, represented by the asterisks... 46

Figure 8. Final function approximation obtained with a neural network
algebraically trained using output weight equations............................. 47

Figure 9. Superposition of m sg-nodes neural networks into one equivalent s-
nodes neural network with same input, x, and the same output, u. 50

Figure 10. Actual surface being approximated and corresponding training
samples, superimposed as asterisks on the graph. 55

Figure 11. Neural network approximation obtained from output weight
equations... 55

Figure 12. Final neural network approximation obtained from the output and
gradient equations combined... 56

Figure 13. Two sg-node neural networks are combined into one s-node neural
network with the same output u and input a, and both inputs x1 and
x2; the dark lines represent the new connections being introduced. 62

Figure 14. Abstract representation of the full operating region OR and the
relevant operating subsets: the set OP of design operating points
(designated by crosses), its convex hull or interpolating region IR,
and the set ER of extrapolation points.. 68

Figure 15. Business jet aircraft steady-level flight envelope (IR) and set OP of
design operating points used for the neural network pre-training
phase... 70

Figure 16. Example of linear proportional-integral feedback control system.
(∆‘s are omitted for simplicity.)... 73

Figure 17. Characteristic roots of the longitudinal ideal model,
LmF , (a) and

of the lateral-directional ideal model,
LDmF , (b). 81

 xi

Figure 18. Characteristic roots of the longitudinal model (××××), open-loop
system (

�
), and closed-loop system (+), obtained with two

examples of weighting matrices sets:

LmQ = diag[0.01 0.01 0.01 0.01],
L0R = 0, and

L
�Q = diag[1 1]

(a), and
LmQ = diag[10-3 102 20 0.01],

L0R = diag[1 1], and

L
�Q = diag[0.1 0.1] (b)... 86

Figure 19. Characteristic roots comparison at the design point (V0, H0) =
(120 m/s, 3 000 m), achieved with the actual weighting matrices
used in all longitudinal PI designs. .. 87

Figure 20. Longitudinal state (a) and control (b) response to a 3-m/s velocity
and 4-deg path angle step command input, at the design point
(V0, H0) = (120 m/s, 3 000 m). The actual design (solid line) is
compared to a design with

LmQ = diag[0.01 0.01 0.01 0.01],

L0R = 0, and
L

�Q = diag[1 1] (dashed line), and to a design with

LmQ = diag[10−3 102 20 0.01],
L0R = diag[1 1], and

L
�Q = diag[0.1 0.1] (dashed-dotted line). ... 87

Figure 21. Characteristic roots of the lateral model (××××), open-loop system (
�
),

and closed-loop system (+), obtained with two examples of
weighting matrices sets:

LDmQ = diag[0.01 0.01 0.01 0.01],

LD0R = 0, and
LD

�Q = diag[1 1] [82] (a), and

LDmQ = diag[1 10 1 10-7],
LD0R = 0, and

LD
�Q = diag[0.1 0.1]

(b)... 89

Figure 22. Characteristic roots comparison at the design point (V0, H0) =
(120 m/s, 3 000 m), achieved with the actual weighting matrices
used in all lateral PI designs. ... 89

Figure 23. Lateral state (a) and control (b) response to a 5-deg bank angle and
3-deg sideslip step command input, at the design point (V0, H0) =
(120 m/s, 3 000 m). The actual design (solid line) is compared to
designs with weighting matrices

LDmQ = diag[0.01 0.01 0.01 0.01],
LD0R = 0, and

LD
�Q = diag[1 1] (dashed line), and

LDmQ = diag[1 10 1 10-7],

LD0R = 0, and
LD

�Q = diag[0.1 0.1] (dashed and dotted line). 90

Figure 24. Nonlinear proportional-integral neural network control system. 91

Figure 25. Final architecture for the pre-trained network
1LBNN . A similar

architecture is used for all scalar feedback neural networks (biases
d and b are not shown for simplicity). ... 96

 xii

Figure 26. Final architecture for the pre-trained network
1LINN . A similar

architecture is used for all scalar command-integral networks
(biases are not shown for simplicity). .. 98

Figure 27. Relevant aircraft state and control response to 2-deg path angle
step command, at the design point (V0, H0) = (200 m/s, 11 Km). 99

Figure 28. Relevant aircraft state and control response to 5-deg bank angle
and 3-deg sideslip step command, at the design point (V0, H0) =
(200 m/s, 11 Km). ... 100

Figure 29. Relevant aircraft state and control response to 97-m/s-velocity and
3-deg-path angle step command, at the interpolation point (V0, H0)
= (95 m/s, 2 Km)... 100

Figure 30. Relevant aircraft state and control response to 6-deg-roll angle step
command, at the interpolation point (V0, H0) = (140 m/s, 6 Km).......... 101

Figure 31. Steady-climbing coordinated turn, taken from [87].............................. 103

Figure 32. Body and inertial axes systems, adapted from [88]. 104

Figure 33. Search of reduced { V, H} envelope associated with one
combination of values (γ, µ, β) (dashed line), starting from the
steady-level envelope (solid line). The search process is
schematized for three sample altitudes. ... 107

Figure 34. { V, H, γ} envelope for (µ, β) = (20o, 5o) (a), and {V, H, µ}
envelope for (γ, β) = (0o, −5o) (a)... 107

Figure 35. Forward neural network architecture, with a generic number of
nodes. ... 108

Figure 36. Trim control surfaces modeled by the forward neural network,
plotted over a { Vc, Hc} -input space by holding the remaining
inputs fixed at (γc, µc, βc) = (3o, 14o, 4o)... 113

Figure 37. Actual trim control surfaces plotted over a { Vc, Hc} -input space by
holding the remaining inputs fixed at (γc, µc, βc) = (3o, 14o, 4o)............ 113

Figure 38. Trim control surfaces modeled by the forward neural network,
plotted over a { Vc, µc} -input space by holding the remaining inputs
fixed at (Hc, γc, βc) = (5 Km, 4o, 3o)... 114

Figure 39. Actual trim control surfaces plotted over a { Vc, µc} -input space by
holding the remaining inputs fixed at (Hc, γc, βc) = (5 Km, 4o, 3o)........ 114

Figure 40. Final architecture for the pre-trained network
1LCNN . A similar

architecture is used for all scalar critic networks (input biases are
omitted for simplicity)... 119

 xiii

Figure 41. Event sequence performed during the time interval ∆t = tk+1 − tk, by
the DHP adaptive critic architecture (the solid lines represent the
events that are taking place). ... 123

Figure 42. Sample vector-output network with q inputs, s hidden nodes, and r
outputs. ... 126

Figure 43. Two neural networks (with s1 and s2 nodes, respectively) are
combined into one s-node network with the same input x and a
combination of their outputs u1 and u2. The bold lines represent
the new connections being introduced. .. 127

Figure 44. Two neural networks (with s1 and s2 nodes) are combined into one
s-node network with a combination of inputs, x1 and x2, and
outputs, u1 and u2. The bold lines represent the new connections
being introduced. .. 129

Figure 45. Two neural networks (with s1 and s2 nodes) are summed to
produce one s-node network with inputs x1 and x2 and with output
(u1 + u2). The bold lines represent the new connections being
introduced... 129

Figure 46. Architecture of the feedback neural network NNB (input and output
biases are not shown, for simplicity). .. 130

Figure 47. Architecture of the command-integral neural network NNI (biases
not shown). ... 132

Figure 48. Architecture of the critic neural network NNC (input and output
biases are not shown, for simplicity). .. 134

Figure 49. Architecture of the action neural network NNA (input and output
biases are not shown, for simplicity). .. 136

Figure 50. Action critic neural network controller. The dashed lines represent
the flow of information for the adaptation, during the time interval
(tk+1 − tk).. 137

Figure 51. Dual heuristic programming action network adaptation, during ∆t
= tk+1 − tk. .. 139

Figure 52. Dual heuristic programming critic network adaptation, during ∆t =
tk+1 − tk. ... 140

Figure 53. Conceptual illustration of on-line training by a resilient
backpropagation algorithm that updates the weights through a
number of epochs (i), during ∆t = tk+1 − tk.. 142

Figure 54. Performance comparison between the MATLAB
�
 resilient

backpropagation algorithm and its modified version, for the action
network training at tk = 0.2 sec. ... 143

 xiv

Figure 55. Comparison of the action network’s weights trained with the
MATLAB

�
 resilient backpropagation algorithm and with its

modified version. The initial weights w(0) are selected at tk = 0.2
sec and trained for 150 epochs, producing the final weights. 145

Figure 56. Comparison between the on-line trained adaptive critic neural
network controller and the initialized neural network controller
subject to 5-deg climb angle and 30-deg roll angle step command,
at (V0, H0) = (95 m/s, 2 Km).. 150

Figure 57. Comparison between the on-line trained adaptive critic neural
network control history and the initialized neural network control
history subject to 5-deg climb angle and 30-deg roll angle step
command (Fig. 56), at (V0, H0) = (95 m/s, 2 Km). 152

Figure 58. Mean-squared network error for the action (a) and the critic (b)
versus the number of on-line training epochs, for the coupled
maneuver in Fig. 56-57, at tk = 0 sec.. 153

Figure 59. Mean-squared network error for the action (a) and the critic (b)
versus the number of on-line training epochs, for the coupled
maneuver in Fig. 56-57, at tk = 0.4 sec... 153

Figure 60. Comparison between the on-line trained adaptive critic neural
network controller and the initialized neural network controller
subject to −70-deg roll angle step command, at (V0, H0) = (160
m/s, 7 Km). ... 155

Figure 61. Exponential weighting on the throttle (a) and on the stabilator (b)
controls, producing the bounds represented by the dashed bars.
The weighting function in (b) also is used for the aileron and
rudder controls. ... 157

Figure 62. Comparison between the adaptive critic neural network control
history and the initialized neural network control history subject to
−70-deg roll angle step command, at (V0, H0) = (160 m/s, 7 Km). 158

Figure 63. Comparison of the trajectories obtained with the on-line trained
adaptive critic neural network controller and with the initialized
neural network controller subject to a −70-deg roll angle step
command, at (V0, H0) = (160 m/s, 7 Km)... 158

Figure 64. Uncoupled neural network controller response in the presence of
failed control inputs, with
yc = [90 (m/s) −6 (deg) 50 (deg) 0 (deg)]T and (V0, H0) = (100 m/s,
3 Km) ... 160

Figure 65. Uncoupled neural network control history in the presence of failed
control inputs, with yc = [90 (m/s) −6 (deg) 50 (deg) 0 (deg)]T and
(V0, H0) = (100 m/s, 3 Km).. 160

 xv

Figure 66. Comparison between the adaptive and the initialized neural
controllers in the presence of multiple control failures (Fig. 67). 162

Figure 67. Adaptive and initialized neural control histories with 50 %-
available thrust and the rudder stuck at −15 deg. 163

Figure 68. Adaptive controller response to a maneuver experienced for the
first and second time, in the presence of multiple control failures. 165

Figure 69. Adaptive control history for a maneuver experienced for the first
and second time, in the presence of multiple control failures.. 165

Figure 70. Initialized controller response for the perfectly-modeled aircraft
and in the presence of parameter variations, with
yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and at the design point
(V0, H0) = (200 m/s, 11 Km).. 167

Figure 71. Initialized control history for the perfectly-modeled aircraft and in
the presence of parameter variations, with
yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and at the design point
(V0, H0) = (200 m/s, 11 Km).. 167

Figure 72. Comparison between the adaptive neural network controller and
the initialized neural network controller in the presence of
parameter variations, with
yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and (V0, H0) = (200 m/s,
11 Km).. 168

Figure 73. Control history of the adaptive neural network controller and of the
initialized neural network controller in the presence of parameter
variations, with yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and (V0,
H0) = (200 m/s, 11 Km)... 168

Figure B.1. Sample code for the exact gradient-based algebraic training
algorithm. ... 201

Figure B.2. Sample code for the exact input/output-based algebraic training
algorithm. ... 202

Figure B.3. Sample code for the approximate general solution training
algorithm. ... 203

Figure B.4. Part (a) of a sample program based on the modified-resilient-
backpropagation (RPROP) on-line training algorithm. 205

Figure B.5. Part (b) of a sample program based on the modified-resilient-
backpropagation (RPROP) on-line training algorithm. 206

Figure D.1. Cell array structure “ENV” used to store the aircraft
multidimensional flight envelope, OR = { V, H, γ, µ, β} 212

Figure D.2. Cell array structure “ENVPAR” used to store the aircraft trim
map, Uc, i.e., the trim control settings, “TrimPar” , corresponding
to the multidimensional flight envelope, OR = { V, H, γ, µ, β} 213

 xvi

Figure E.1. Input/output structure of the user-defined functions used in the
dual-heuristic-programming adaptive-critic software
implementation. .. 218

Figure E.2. Sequence of events taking place during the time interval
∆t = tk+1 − tk, in the dual-heuristic-programming adaptive-critic
software architecture. The arrows indicate communication
between functions, whose inputs and outputs are described in Fig.
E.1. ... 221

Figure F.1. Definition of path angle, angle of attack, and sideslip, adapted
from [88]... 224

 xvii

List of Tables

Table 1. Performance comparison of algebraic training with two
optimization-based algorithm, for the approximation of a scalar
function by a 45-node neural network. .. 47

Table 2. Longitudinal and lateral military specifications for a Class I
airplane in a terminal flight phase (Category C), requiring Level 1
flying qualities [83]... 75

Table 3. Temporal behavior of the optimality condition at sample time
intervals, for the coupled maneuver in Fig. 56-57................................ 153

Table D.1. Sampled values of bank angle, µ, and the sideslip, β, used to
compute the aircraft trim map, Uc.. 211

 1

Chapter 1

Introduction

Recent advances in a variety of technologies and applications call for improved

performance and reliability, while exacerbating the complexity and uncertainty of

systems and their surroundings. In many instances, the operation of systems and devices

can be modified and, possibly, optimized by the intervention of a control system, that is,

an additional mechanism comprised of several components, such as sensors, computers,

and actuators, that act upon an available input. The dynamic characteristics and physical

properties of the system to be controlled (the plant) can be exploited to design automatic

control systems. Some of the main difficulties to be overcome by the designer are the

nonlinear plant dynamics and the uncertainties caused by differences between actual and

assumed dynamic models. A fixed control design whose performance remains

satisfactory in the presence of uncertainty is said to be robust. A controller whose

parameters vary on line during operation is considered to be adaptive and can be

expected to accommodate for a higher degree of uncertainty than a fixed control

structure. If it is capable of adapting to system failures that are reflected by the state of

the plant, then the controller also is reconfigurable.

The objective of this thesis is to develop a novel approach for the design of adaptive

control systems that are both robust and reconfigurable, and that apply to plants modeled

by nonlinear ordinary differential equations. The potential brought about by using post-

modern computational paradigms, such as neural networks and fuzzy logic, in

conjunction with conventional control techniques has been recognized in the past by

 2

several authors [1-4]. In some cases [5-7], a global controller was obtained by training a

neural network to approximate the linear gains provided by linear multivariable control.

In other applications [8-10], a conventional control system architecture was augmented

by a neural or fuzzy computational structure that provided for on-line adaptation. In this

thesis, classical and neural control systems are synthesized to combine the most effective

elements of old and new design concepts with the promise of producing better control

systems. The novel approach to nonlinear control design retains the characteristics of

stability and robustness of classical, linear control laws, while capitalizing on the broader

capabilities of a so-called adaptive critic neural network. First, the neural control

system’s architecture and parameters are determined from the initial specification of the

control law by solving algebraic linear systems of equations during a so-called pre-

training phase. Secondly, the neural parameters are modified during an on-line training

phase to account for uncertainties that were not captured in the linearizations, such as

nonlinear effects, control failures, and parameter variations.

1.1 Background and Motivation

The foundations of the nonlinear system design lie in the field of dynamic

programming [11], which is perhaps the most general approach for solving optimal

control problems. Its globally-convergent properties can be exploited in conjunction with

an approximating, parametric structure to solve for a near-optimal solution on line,

accounting for information about the state of the system as it arises. Neural networks are

the parametric structure of choice, because of their ability to approximate unknown

nonlinear mappings over high-dimensional compact spaces, and because of their potential

for on-line learning. A-priori knowledge of the system to be controlled is incorporated in

 3

the neural controller in the form of gain-scheduled linear designs. Gain scheduling is a

conventional approach to global control design that correlates the gains of a linear

multivariable control structure with a set of dynamically significant variables in the

system. It is widely used in the aerospace industry because it affords a straightforward

and effective procedure for applying linear control theory to the nonlinear aircraft

dynamics.

1.1.1 Approximate Dynamic Programming and Reinforcement Learning

Dynamic programming (DP) methods use the principle of optimality [11] to find a

strategy of action that optimizes a desired performance metric or cost subject to nonlinear

dynamical constraints. The cost, J, to be optimized typically is defined as a function that

measures performance with respect to quantities that are to be either minimized or

maximized by a given process. The principle of optimality states that given the initial

path a-b, and the optimal cost Jabc
* associated with going from a to c through b, then the

cost Jbc also is optimal for the path that goes from b to c. Figure 1 illustrates this

principle for a two-stage process, with (•)* denoting optimality. Backward or discrete

dynamic programming discretizes the state space and makes a direct comparison of the

cost associated with all feasible trajectories, guaranteeing a solution of the global optimal

control problem [12]. The space of admissible solutions is reduced by examining a multi-

stage decision process as a sequence of one-stage processes.

a b c

Jab

Jbc
*

Jabc
* = Jab + Jbc

*

Figure 1. The principle of optimality applied to a two-stage process.

 4

As an example, the discrete dynamic programming approach is applied to the process

shown in Fig. 2. The last stage’s optimal paths are computed for all possible intermediate

state values c, d, and e, thereby producing the optimal costs Jcf
*, Jdf

*, and Jef
*,

respectively. Then, by the principle of optimality, these paths also must be optimal for

the last stage of the optimal trajectories that go from b to f through the respective state

values, e.g., Jbcf
* = Jbc + Jcf

*, and so on. Comparing the optimal costs over the last stage

reveals which is the optimal (smallest or largest) among these costs, but does not

necessarily reveal which cost is associated with the globally-optimal path from b to f.

Instead, if the last-stage’s costs, Jcf
*, Jdf

*, and Jef
*, are stored, then the total costs Jbcf

*, Jbdf
*,

and Jbef
* can be computed and compared to find the globally-optimal path from b to f.

For a process with more than two stages, b is only one of many possible state values.

Hence, the same computation needs to be carried out for all other possible values at this

second-to-last stage (such as g, in Fig. 2), in order to determine all possible optimal paths

for the last two stages (e.g., Jbf
*, Jgf

*, and so on).

g

b

c

. .

d

e

f

Jbc

Jbd

Jbe

Jcf
*

Jdf
*

Jef
*

Figure 2. Discrete or backward dynamic programming approach.

Although the backward DP approach reduces the space of admissible solutions, it

remains computationally too expensive for higher dimensional systems, with a large

 5

number of stages. The required multiple generation and expansion of the state and the

storage of all optimal costs lead to a number of computations that grows exponentially

with the number of state variables, commonly referred to as the “curse of dimensionality”

or “expanding grid” [12]. Approximate dynamic programming (ADP) and temporal

difference methods use incremental optimization combined with a parametric structure to

reduce the computational complexity associated with evaluating the cost [13-15]. Unlike

discrete DP, ADP algorithms progress forward in time, and approximate both the optimal

policy and the cost in real time by considering only the present value of the state.

Suppose a is the initial state of the process shown in Fig. 3, then the cost for the first

stage, Jab, can be accurately computed based on present information. The optimal cost

over all future stages or cost-to-go, Jbf
*, is predicted, or estimated)ˆ(• in the presence of

uncertainty, by a function approximator or parametric structure. A parametric structure

consists of any functional relationship whose adjustable parameters allow it to

approximate different mappings. At the next stage, b-c, this procedure is repeated, only

now the policy and cost approximations have had a chance to improve based on the

information gathered during the first stage. Therefore the next path, from c to f, is closer

to the optimal trajectory.

b c f
Jbc Jab Jcf a

*
bf

Ĵ *
cf

Ĵ

Figure 3. Approximate or forward dynamic programming approach.

 6

Adaptive critic designs (ACD) reproduce the most general solution of ADP by

deriving recurrence relations for the optimal policy, the cost, and, possibly, their

derivatives. The goal is to overcome the curse of dimensionality, while ensuring

convergence to a near-optimal solution over time [4, 16]. Although they can be viewed

as “complex” or “ intimidating” [17], adaptive critics offer a unified approach to dealing

with the controller’s nonlinearity, robustness, and reconfiguration for a system whose

dynamics can be modeled by a general ordinary differential equation. Perhaps the most

critical aspects of ACD are found in the implementation. The simplest form of adaptive

critic design, Heuristic Dynamic Programming (HDP), uses a parametric structure called

an action network to approximate the control policy and another parametric structure

called a critic network to approximate the future cost or cost-to-go. In practice, since the

parameters of this architecture adapt only by means of the scalar cost, HDP has been

shown to converge very slowly [18].

An alternative approach referred to as Dual Heuristic Programming (DHP) has been

proposed [18, 19]. Here, the critic network approximates the derivatives of the future

cost with respect to the state, thereby correlating the adjustable parameters in the

architecture to a larger number of dependent variables. Although the advantages of DHP

over HDP have been discussed extensively in the literature from a theoretical point of

view, few successful implementations have been reported. Due to the use of derivative

information, the recurrence relations that can be obtained for DHP are more involved and

require an accurate model of the system to be controlled. The critic network

approximates a nonlinear mapping characterized by a much larger-dimensional output

 7

space. Therefore, practical aspects such as function approximation are more challenging

in DHP than they are in HDP.

Many other methodologies have been proposed over the years to alleviate some of the

difficulties mentioned above, producing more advanced designs. Globalized Dual

Heuristic Programming (GDHP), for example, has been developed with the purpose of

combining the advantages of both HDP and DHP architectures [14, 20, 21]. In this case,

the critic network approximates both the cost-to-go and its derivatives. Action-dependent

(AD) versions of all these approaches are obtained by designing a critic network that has

direct knowledge of the control policy (produced by the action network) through its

inputs, as opposed to only having knowledge of its derivatives through its adaptation (as

in the action-independent ACD designs). The motivation behind this [22] and other [23]

methodologies is to achieve faster learning by the parametric structures and faster

convergence of the overall scheme.

Aside from having common roots in ADP, these methods are related through the idea

of “ linking backpropagation with reinforcement learning via the critic network” [24].

The near-optimal trajectory is found and learned without having explicit knowledge of

the near-optimal control action, as normally would be required by supervised learning.

Reinforcement learning is based on the principle that knowledge of the ideal cost-to-go

suffices to modify the course of action accordingly, in real time. In other words the

control system is expected to learn from its own mistakes, or by anticipating them

through an indirect measure of performance, that is, the cost-to-go function. This is

reminiscent of the task faced by an animal in a Pavlovian or classical conditioning

experiment [3]. The “payoff” that is delivered to the animal as a result of its actions is

 8

referred to as primary reinforcement. Anticipation of events that would eventually

provide primary reinforcement is referred to as secondary reinforcement and constitutes a

framework similar to that of adaptive critic designs.

1.1.2 Neural Networks as Universal Function Approximators

Function approximation is a principal element of ADP methods. The recurrence

relations that satisfy existing convergence proofs [4, 16] imply global convergence of the

approximating schemes at every stage or time interval. The behavior of the adaptive

controller is closely related to the effectiveness of the function approximator of choice, as

it determines future performance. The adaptive critic approach also requires the

approximating tool to be flexible. In most practical problems, some a-priori knowledge

of the system is available from analytical studies, modeling, or experiments. Regardless

of how this information is obtained, it always can be gathered into one or more sets of

data and exploited to initialize the system. Additional information becomes available

over time, during the adaptation, and also needs to be incorporated in the control system.

Hence, the function approximators must be able to learn both in batch and incremental

mode and to deal with the multidimensional, nonlinear action and critic functionals.

Neural networks are the only class of universal function approximators that possess all

of these properties. Other parametric structures, such as splines and wavelets, have

become standard tools in regression and signal analysis involving input spaces that are up

to three dimensional [25-28]. However, much of univariate approximation theory does

not generalize well to multi-dimensional input and output spaces [29]. For example, the

majority of spline-based solutions for multivariate approximation problems involve

tensor product spaces that are highly dependent on the coordinate system of choice [30-

 9

32]. Artificial neural networks can easily deal with multivariate inputs and outputs

because of their inherent parallel architecture. Furthermore, given a sufficient number of

nonlinear units, they can approximate any continuous nonlinear function on a compact

space with an arbitrary error [33-35], and match any input/output or gradient data set

exactly [36, 37]. Because of their unique capabilities, neural networks likely are the best

candidate for ACD implementations. The mathematical investigation of their

approximation properties should be considered as an integral part of ACD.

An artificial neural architecture consists of one or more layers of nodes or transfer

functions. Each node is characterized by one scalar-input scalar-output function that can

be either linear or nonlinear and can take virtually any shape. Sigmoidal neural networks

are characterized by one or more layers of sigmoidal transfer functions with a fixed shape

dictated by an exponential or hyperbolic-tangent relationship. They are characterized by

global support, and are appropriate for modeling functionals that are expected to be

nonlinear but smooth. Another popular class of neural networks implements radial-basis

transfer functions whose shape (i.e., width and center) is customized, by varying the

parameters of each basis function. These networks have many desirable properties, such

as fast learning, but they do not generalize local information as well as sigmoidal

networks [8]. Therefore, they perform best when large data sets are available [38]. This

thesis deals exclusively with the class of single-hidden-layer sigmoidal neural networks.

Although, in some cases, multiple-nonlinear-layer architectures require a lesser number

of adjustable parameters to approximate the same function, it is not known if these results

are generally applicable.

 10

The typical search criterion, used in virtually all supervised learning algorithms,

consists of minimizing some measure of the error between the desired output (and/or

derivative) and the network’s actual performance. In particular, many backpropagation-

based techniques have been devised for this purpose [39]. Although the problem of

minimizing some form of sigmoidal-network error with respect to its adjustable

parameters appears computationally tractable, it is characterized by many local minima

whose number grows with the dimensions of the surface being approximated. This in

turns leads to problems such as overfitting, where the training algorithm converges to a

solution that minimizes the network error, but does not produce proper generalization

properties. In order to smooth the interpolating surface, the number of hidden nodes

typically is decreased until a satisfactory tradeoff between close matching of the training

set and good generalization properties is found. Another difficulty associated with this

approach is that optimization-based training algorithms that are robust and fast

converging, such as that due to Levenberg and Marquardt [40, 41], are too

computationally expensive for large, non-sparse problems (e.g., with large data sets, and

many adjustable parameters).

The philosophy advocated in the following chapters does not rely solely on a

parsimonious use of the adjustable parameters. In fact, a clear implication of all

parametric structures is that the class of functions they can approximate increases with

the number of parameters. Rather, it reveals that allowing for a certain degree of

redundancy in the approximating structures may be fruitful for on-line applications,

where the class of functions to be approximated should be minimally restricted a priori.

The limitations that arise with large architectures are associated with the training

 11

algorithms rather that with the neural networks themselves. Therefore, one aim of this

thesis is to investigate alternative neural network training techniques.

1.1.3 Adaptive Flight Control Systems

The control design approach developed in this thesis is applied to the adaptive control

of aircraft. This section provides an overview of other existing control designs that have

been proposed over the years to address uncertainties and nonlinearities in the aircraft

dynamics. Gain scheduling is by far the most commonly used design in actual

applications, such as digital ‘ fly-by-wire’ control systems. It consists of designing locally

optimal linear control laws for a selected number of nominal flight conditions or

equilibria. In between the chosen equilibria, the linear controllers are interpolated

through auxiliary variables that capture the most relevant system dynamics, also referred

to as scheduling variables, in order to produce a global design [42-44]. A disadvantage

of gain-scheduled controllers is that their performance may deteriorate when extreme

maneuvers and flight conditions that were not accounted for by the linear designs arise.

Also based on the principle of scheduling system linearizations are the extended

linearization [45, 46] and the nonlinear tracking approaches [47]. Both methods are

computationally intensive for multivariate aircraft models and prolonged time horizons,

and remain based on linearized dynamics.

In an effort to better account for nonlinearities, the broad class of techniques

commonly known as feedback linearization has been extensively investigated for

advanced flight control systems [48-50]. With this approach, accurate knowledge of the

aircraft nonlinear dynamics is required in order to represent it as an equivalent linear

system by means of a coordinate transformation. Robust nonlinear schemes that exploit

 12

nonlinear dynamic inversion for feedback linearization also have been developed [52-56]

to address uncertainties, such as unmodeled dynamics, as well as parametric and

nonlinear uncertainties.

Adaptive control systems that account for system dynamics as they take place aim at

improving performance while retaining a certain degree of robustness to unmodeled

dynamics and uncertainties. Sliding mode controllers [57], for example, switch control

laws to track a desired trajectory, combining both high precision and robustness. In many

recent designs, function-approximation tools are used in combination with one of the

conventional approaches mentioned above. For example, an adaptive controller can be

obtained by using B-splines to approximate aerodynamic data for use in a nonlinear

inverse dynamic architecture [58]. Another successful approach consists of using neural

networks for scheduling real-time switching controllers [59, 60]. Neural networks also

have been used extensively in conjunction with feedback linearization, to compensate for

unknown or unmodeled nonlinear dynamics, as well as control failures [61-63]. In

principle, adaptive critics allow for a more general approach to formulating the control

law and to incorporating prior control knowledge.

1.2 Research Objectives

The primary goal of this dissertation is to develop a control system that is as

conservative as the classical designs and as effective as a global nonlinear controller.

The nonlinear control system must retain the same characteristics of stability and

robustness of an equivalent gain-scheduled controller. Furthermore, it must adapt on line

to provide near-optimal performance for all operating conditions, as well as for possible

control failures and parameter variations, without that they are necessarily accounted for

 13

a priori. The controller can be assumed to operate in continuous time and to be based on

full-state feedback, with perfect measurements. Although the proposed design is

expected to offer dynamic compensation in the presence of constant and slowly-varying

disturbances, unmodeled inputs and stochastic effects are not investigated in this thesis.

An accurate model of the plant is obtainable from a full-scale simulation of the aircraft

that is built from mathematical models, full-scale wind tunnel data, and actual physical

and performance characteristics of an idealized twin-jet business aircraft [64]. However,

the model is not perfect; for example, it does not predict the control system failures and

the parameter variations simulated in this thesis.

An important objective is the development of a novel procedure for incorporating the

classical designs, i.e., gain-scheduled linear controllers, in an existing adaptive critic

architecture. Here, these linear designs are obtained for a subset of operating conditions

under assumptions of decoupled longitudinal and lateral-directional dynamics, small

perturbations, and small time-varying dynamic effects. The adaptation is expected to

improve performance with respect to the gain-scheduled designs for maneuvers and

conditions that do not meet the above assumptions, the first time that they are

encountered. Therefore, the simulation, which plays the role of the actual aircraft, is

allowed to explore the entire operational domain. Another objective of this dissertation is

to develop training techniques that allow adaptive controllers to retain prior global

information, while improving upon them locally. This often is recognized as a major

conundrum in adaptive control and constitutes a challenge to be overcome by the learning

algorithm.

 14

The most general approach for incorporating prior domain-specific knowledge

consists of initializing the neural parameters. This allows the designer to take into

consideration the known dynamics, without restricting the overall approach to their

particular structure. This thesis aims not only at investigating new and effective ways to

initialize the neural parameters, but also at devising methodologies to preserve a-priori

knowledge during adaptation. Finally, since the class of functions that can be

approximated by the action and the critic strictly depends on the number of nonlinear

units in these neural networks, a systematic procedure for determining their size also is

developed. Special consideration is dedicated to reducing the computational complexity

of the numerical solution.

1.3 Thesis Organization

The main body of the thesis is organized in four chapters. Chapter 2 lays the

foundations of the nonlinear adaptive control design. The proposed philosophy is

formalized by reviewing the Linear Quadratic Regulator (LQR) and by linking this

classical design to the adaptive critic architecture of choice, i.e., Dual Heuristic

Programming Adaptive Critics. This chapter provides a theoretical framework and

background, and suggests a general solution procedure that can be applied to a wide

range of nonlinear optimal control problems. The classical LQR solution is combined

with the neural network-based design in a novel idea referred to as Classical/Neural

Synthesis of Nonlinear Control Systems. Chapter 3 supplies a general introduction to the

new learning techniques that were specifically developed with the control design

objectives in mind. A sample architecture of a single-layer scalar-output sigmoidal

 15

network is introduced in Section 3.1, and used in the remainder of the chapter to illustrate

the algebraic training and modified resilient backpropagation algorithms.

Chapters 4 and 5 describe the control design procedure in a sequential fashion. Each

chapter begins with the most general formulation of the design objectives, and

progressively focuses on the specific application treated in this thesis, i.e., Proportional-

Integral Neural Network Control of Aircraft. Chapter 4 explains the pre-training phase,

where a well-established linear-design procedure, referred to as proportional-integral

control with implicit model following, is used to produce a set of linear controllers. The

novel algebraic training approach is used to incorporate the linear controllers in the

nonlinear neural networks by initializing their parameters, simultaneously determining

their architecture. The neural networks are pre-trained and tested in Sections 4.3-4.5,

based on the control knowledge obtained in Section 4.1. Section 4.2 describes the neural

network control structure motivated by the linear design and by the adaptive critic

architecture.

Chapter 5 shows how the neural controller that was pre-trained in Chapter 4 is adapted

on line. Section 5.1 deals with newly proposed adaptive critic implementation details and

algorithms that may prove useful for other ACD applications, as well. Section 5.2

presents the adaptive control results, and compares its performance to that of the pre-

trained control structure obtained in Chapter 4. The end of Chapter 5 (Sections 5.3-5.4)

is dedicated to preliminary results regarding the stability of the on-line training algorithm

(presented in Section 5.1.3) and the computation time required by the proposed numerical

schemes. Both sections are meant to consolidate the results of Section 5.2, as well as to

provide a stepping-stone for future work. Finally, the Appendices contain the

 16

nomenclature (Appendix A) and the key algorithms coded in MATLAB (Appendix B),

the proofs (Appendix C), the data sets (Appendix D), and the software architectures

(Appendix E) that were omitted from the main body of the thesis for sake of continuity.

1.3.1 Summary of Results

The adaptive controller improves performance with respect to the classical designs

during large angle and extreme maneuvers, when nonlinear and coupling dynamic effects

become significant. In the case of a large-bank-angle maneuver, it even is capable of

preventing loss of stability of the closed-loop system. The control design is applicable to

the general form of the governing ordinary differential equation, as the adaptation

accounts for those dynamics that were ignored or neglected by the conventional design.

The approach also exploits the reconfigurable nature of neural networks, and is able to

deal with unanticipated failures of the controls. The adaptation is sufficiently fast to

learn from unforeseen conditions soon after they arise, relative to the time scale of the

aircraft dynamics.

The results also show that convergence always is achieved by the adaptive critic

architecture, provided that the neural network inputs are bounded. The two-phase

approach to design and the novel training techniques together achieve the learning

objectives described in Section 1.2. It is demonstrated through both simulations and

analytical results that the adaptive neural networks improve their performance locally on

line, while preserving prior knowledge over the unexplored state space. They also are

capable of building upon performance that was assimilated or “ learned” on line, allowing

the control system to enhance its capabilities as it revisits the same maneuvers again and

again, over time.

 17

A systematic approach for designing adaptive control systems is developed and

demonstrated on a reasonable-sized problem. The adaptive critic methodology allows for

extensions that can address many aspects of the control design, such as robustness,

reconfiguration, system identification, and inequality constraints. The supervised and

reinforcement learning techniques developed are fairly general in nature and, thus, can be

used in many other neural network and adaptive critic applications. In particular, the

algebraic training technique shows great potential for investigating neural approximation

properties and for guaranteeing performance baselines both before and during on-line

training.

 18

Chapter 2

Foundations of the Neural Control Design

The problem of determining a functional that optimizes a desired metric over time is

one of comprehensive relevance, as it lies at the basis of many control and identification

schemes. Optimal control laws and satisfactory stability and robustness results can be

derived for linear systems, in particular when these systems also are time invariant. As a

consequence, a wide range of linear control and identification designs have been

developed and are commonly implemented in the industry. In actuality, all plants are

characterized by nonlinear dynamics and are subject to change due to both internal and

external effects. Furthermore, advances in a variety of technologies and applications

demand better performance, while exacerbating the complexity and uncertainty of

systems and their surroundings.

There is considerable precedent for applying gain-scheduled linear controllers to

nonlinear systems, especially those that can be locally approximated as linear-parameter-

varying systems. Gain-scheduled designs adapt to changing operating conditions, but

their performance typically deteriorates when rapid changes occur and when highly

nonlinear or unforeseen regimes are encountered. Artificial neural networks potentially

can compensate for these shortcomings, because of their ability to approximate unknown

nonlinear mappings with high-dimensional input spaces and their promise for real-time

learning. Extensive numerical studies [5, 33, 65] have shown that they are capable of

dealing with those difficulties typically associated with complex control applications,

such as nonlinearity and uncertainty. However, practical applications also call for a

 19

better understanding of the theoretical principles involved [65]. In particular, there is no

simple way to apply the insights afforded by classical control methods to the

specification and preliminary design of neural network controllers.

In this chapter, a novel approach for designing adaptive control systems is introduced.

The method, referred to as classical/neural synthesis of control systems, takes advantage

of prior knowledge and experience gained from scheduled linear controllers, while

capitalizing on the broader capabilities of adaptive, nonlinear control theory and

computational neural networks. The nonlinear control system, comprising a network of

networks, is motivated by a corresponding linear structure and specified using a two-

phase learning procedure. A key, novel observation is that the gradients of the functions

defined by the neural networks must equal corresponding linear gain matrices at chosen

operating points. On-line learning is based on a DHP adaptive-critic approach [18] that

improves control response by accounting for differences between actual and assumed

dynamic models and for nonlinear effects not captured in the linearizations. Control

theory provides a unifying framework for both design phases. The initial specification of

the control law is based on the linear quadratic regulator; the DHP approach is based on

approximate dynamic programming.

2.1 The Nonlinear Optimal Control Problem

An initial assumption is that a nonlinear differential equation that models the plant

dynamics is available in the form

() () ()[]ttt upxfx ,, m=
�

 (1)

 20

where x is the n × 1 plant state, pm is a l × 1 vector of plant and observation parameters,

and u is the m × 1 control vector. The equation may represent a “ lumped-parameter”

system, or it may be the approximation to an unsteady partial differential equation. Plant

motions, controls, and disturbances typically are sensed in the es × 1 output vector, ys:

() () () ()[]tttt ss upxhy ,, m= (2)

Here, it is assumed that perfect output measurements are available and that the output

views all elements of the state, i.e., ys(t) = x(t). The design objective is to specify a

control law of the general form

() () () ()[]tttt cs ypycu ,, m= (3)

that has two properties: it achieves mission goals, as expressed by the ec × 1 command

input, yc, and it furnishes adequate stability and transient response, assuring that

excursions from yc caused by disturbance or measurement error are acceptably small and

do not require excessive control use.

The command input, yc, can be viewed as some desirable combination of state and

control elements, and its dimension, ec, is less than or equal to the number of independent

controls, m:

() () ()[]ttt cccc uxhy ,= (4)

Equation 4 could be the result of external trajectory planning -- for example, a prescribed

path -- or it may be due to a loosely defined, subjective process such as the expression of

a human operator’s intent through command inputs. Hence, the control law can be

formulated as

() () () ()[]tttt cypxcu ,, m= (5)

 21

in terms of a functional, c[•], that may contain functions of its arguments such as

integrals and derivatives. For simplicity, the vector of parameters, pm, is assumed to be

known without error.

When the control law depends on parameters or command inputs explicitly [66], an

augmented state can be defined to include these additional elements, as will be shown in

Section 4.1.1. Therefore, the control can be viewed as a function solely of the state,

without loss of generality. Furthermore, eq. 5 always can be written as the sum of

nominal and perturbed effects:

() ()[] ()[] () ()ttttt uuxcxcu ∆+=∆+= 000 (6)

The anticipated nominal value of the state is x0, so the actual value can be written by

adding the respective perturbation, ∆x:

() () ()ttt xxx ∆+= 0 (7)

The control law can be expressed conveniently in these terms,

() ()[] () ()[]tttt xxcxcu ∆∆+= ,000 (8)

where, for sufficiently small state perturbations, the perturbed effect is linear in ∆x:

() [] ()[] xCxx
x
c

cu ∆−=∆
∂
∂=•∆=∆ tt 0 (9)

C contains the m gradients, or gains, of the control law evaluated at x0(t), as explained in

Section 2.2, and the minus sign is introduced for convention.

The design objectives are expressed by a scalar integral function of the state and

control and by a scalar terminal cost,

()[] () ()[]
�

+=
ft

t

f dt
0

,L�J τττ uxx (10)

 22

The cost function, J, is to be minimized with respect to the control, u, subject to the

dynamic constraint imposed by the model of the plant, eq. 1. In the nonlinear control

system explored here, the minimizing control law is modeled by a neural network that is

referred to as an action network. At any moment in time, t0 ≤ t ≤ tf, an optimal cost-to-go

or value function, V*(t), corresponding to eq. 10 can be defined,

()[]
()

()[] () ()[] �� �	

����
 −= � τττ dtt

t

t

f
t

f

uxxx
u

,L�minV **** (11)

where (•)* denotes the optimal solution. A critic network evaluates the action network

performance by approximating the derivative of the corresponding cost-to-go with

respect to the state:

()[] ()[]
()t

t
t

*

**
** V

x

x
x

�
∂

∂≡ (12)

λλλλ*[x*(t)], or simply λλλλ*(t), provides an indirect measure of performance that is used to

formulate an optimality criterion explicitly with respect to u, as will be explained in

Section 2.4.

2.2 The Linear Quadratic Regulator

The goal of the first learning phase is to incorporate gain-scheduled designs into

nonlinear neural networks. Gain scheduling is a design procedure that enjoys widespread

usage in a variety of industrial applications. While it requires considerable ad-hoc

practice, it also exploits linear control theory. Both the theory and heuristics of gain-

scheduled designs will be incorporated into the neural network controllers, by means of

the approach referred to as Classical/Neural Control Synthesis of Nonlinear Control

 23

Systems (Section 2.3). This section reviews the LQR theory that is relevant to gain-

scheduled controllers and, in particular, to the designs to be implemented in Section 4.1.

The basic assumption in gain scheduling is that the nonlinear system in eq. 1 has a

parametrized family of equilibrium points,

() () ()[]auapaxf0 0m0 ,,= (13)

where, a is a scheduling vector of dynamically significant variables in the system. The

set of equilibria, also referred to as operating points (or conditions), is denoted by OP and

indexed by κ = 1, 2, …, p. Linearized models of the plant can be obtained from the

nonlinear dynamic equation (eq. 1) by holding a fixed, assuming small perturbations

about corresponding equilibria, and ignoring time-varying effects:

() () ()ttt uGxFx ∆+∆=∆ � , ∆x(t0) given (14)

The optimization goals are expressed as a quadratic function of the state and control,

() () () () () ()[]�
∆∆+∆∆+∆∆=

ft

TTT d
0

2
2

1
J τττττττ uRuuMxxQx (15)

When the plant is subject to continuing disturbance inputs and tf becomes infinite in the

limit, the value of J may still be bounded by defining an average cost,

ft
A tf

J
limJ

∞→
= (16)

that has the same optimality conditions as J. As tf approaches infinity, it is reasonable to

let the terminal cost, ϕ[x(tf)], equal zero [66].

When the system dynamic is linear (eq. 14) and the cost function is quadratic (eq. 15),

an optimal closed-form solution can be obtained for the control perturbation ∆u. One

approach to this Linear Quadratic (LQ) problem derives from the Calculus of Variations

 24

[12]. In the general case, the Hamiltonian can be defined by adjoining the dynamic

constraint (eq. 1) to the Lagrangian, L[•], by the adjoint vector λλλλ:

() () ()[] () ()[] () () () ()[]ttttttttt m
T upxf

�
ux

�
ux ,,,L,,H +≡ (17)

Differentiating eq. 11 with respect to t, the following is found to hold on the optimal

trajectory:

()[] () ()[] ()[] () () ()[]

()
() () ()[]� ���� �

∂
∂−=

∂
∂−−=

∂
∂

ttt

ttttttt
t

t

m

*
*

*
*

*

*

*

V
,,Hmin

,,
V

,L
V

x
x

ux

upxfx
x

uxx

u

 (18)

The optimal adjoint vector, λλλλ*, is equal to the derivative of the optimal value function

with respect to the state, ∂V*/∂x*, which is approximated by the critic network (eq. 12) in

the nonlinear control system. This partial differential equation is known as the Hamilton-

Jacobi-Bellman (HJB) equation and is a sufficient condition for optimality that is used

here to derive the LQ control law.

It can be shown [12] that the following constitutes an optimal value function, for the

LQ problem of minimizing eq. 15 subject to the linear dynamic constraint in eq. 14:

()[] () () ()tttt
T ****

2

1
V xPxx ∆∆=∆ (19)

P(t) is a positive definite symmetric matrix which, for a linear time-invariant (LTI)

system (eq. 14), is guaranteed to approach a steady-state value, P, in the limit tf → ∞ [6].

The HJB equation is expressed in terms of the perturbations ∆x and ∆u. Its right side is

found by differentiating the corresponding Hamiltonian with respect to ∆u and setting it

equal to zero to solve for ∆u*. The remaining terms are found by differentiating eq. 19

with respect to ∆x* and t. Then, the HJB equation simplifies to,

 25

() () () 0PGxRuMx =∆+∆+∆ ttt
TTT *** (20)

producing the LQ optimal control law:

() [] () ()ttt *** xCxMPGRu TT1 ∆−=∆+−=∆ − (21)

Substituting in eq. 18 and canceling ∆x* from both sides leads to the Riccati equation,

() () () ()()
() () TT

TT

tt

ttt

MMRQPGGRP

MGRFPPMGRFP
11

11

−−

−−

+−+

−−−−=
�

, P(tf) = 0 (22)

LTI control laws that satisfy desired engineering criteria [66-70] are designed for the

family of linear systems { F, G} κ = 1, …, p, in order to provide a corresponding set of locally

optimal gains and Riccati matrices { C, P} κ = 1, …, p. Typically, the Riccati equation (eq.

22) corresponding to the κth linear system is solved for the steady-state value, Pκ, by

setting its right-hand side equal to zero; then, Pκ is used in eq. 21 to solve for Cκ. The

family { C, P} κ = 1, …, p is obtained by repeating the design at all equilibria in OP, i.e., for

all linear systems indexed by κ. In gain scheduling, a global controller for the nonlinear

system (eq. 1) is obtained by interpolating the local designs to intermediate operating

regions through the scheduling vector a. For this reason, in past applications, the number

of interpolating variables has been kept small. The novel approach introduced in the next

section, incorporates the family of linear gains { C, P} κ = 1, …, p, or simply { C, P} κ , into

nonlinear neural networks that automatically interpolate the designs for any dimension of

a. This affords an improvement with respect to earlier gain-scheduled controllers. More

importantly, it provides an excellent initialization point for the on-line learning phase,

whose foundations are presented in Section 2.4.

 26

2.3 Classical/Neural Synthesis of Nonlinear Control Systems

The nonlinear control system is comprised of a critic network and an action network

that approximates the global control based on the nonlinear plant and its model, as shown

in Fig. 4. A key, novel observation is that the gradients of these networks must equal

corresponding locally optimal gains obtained from the LQ solutions (Section 2.2). The

linear controllers establish appropriate performance targets that, later, are used to define

the nonlinear system architecture and initial parameters.

Actual
Plant

Action

Critic
Plant
Model

State
Prediction

Action
Update

Critic
Update

Actual
State Control

Figure 4. Dual heuristic programming adaptive critic control design.

An artificial neural network consists of a nonlinear mapping, denoted by NN, that

performs a nonlinear transformation of a q-dimensional input, p, into an r-dimensional

output, z:

()pNNz = (23)

The network architecture and parameters characterize the nature of this transformation

and can be determined based on input, output, and derivative information pertaining to

the function to be approximated. The common denominator among all neural

 27

architectures is the highly parallel and distributed computations they perform. As

anticipated in Section 2.1, the action network approximates the optimal control law (eq.

8). The critic network evaluates the action network performance by approximating the

derivative of the optimal value function with respect to the state (eq. 12):

() ()[] ()
() ()[] ()ttt

ttt

CC

AA

zpNN
� zpNNu

≡=
≡=

 (24)

The input to both networks includes the dynamically significant auxiliary inputs, a, as

they may or may not be contained explicitly by x, i.e., p(t) = [x(t)T a(t)T]T.

The objective of the first learning phase, or pre-training, is to incorporate the set of

locally optimal gains { C, P} κ = 1, …, p, typically used for gain scheduling, into the

nonlinear networks. The first step towards accomplishing this objective consists of

identifying appropriate performance requirements to be satisfied by the network

parameters. For every point in OP, the gradient of the action network can be found by

differentiating eq. 6 and eq. 9 with respect to x and ∆x, respectively:

()
() () ()[]

()
() () () ()

()
() () () κκκ aa0xaaxxaxp x

u
x
u

x
z

==∆=== ∆∂
∆∂=

∂
∂=

∂
∂

ttttttt

A

t

t

t

t

t

t
TTT

,
*

*

, **
0

*
0

 (25)

Hence, at the κth operating point, the action network gradient must equal the κth LQ gain,

()
()

κ

κ
C

x
z −=
∂

∂
t

tA (26)

where Cκ is known from eq. 21, and the subscript indicates at which operating conditions

the derivative is being evaluated.

In infinite-horizon problems, the structure of the value function is independent of time;

therefore, a single time-invariant critic network can be used to approximate λλλλ∗(t) (eq. 12).

 28

The LQ optimal value function, eq. 19, can be differentiated twice with respect to the

state to seek the derivative of the critic output with respect to the input x,

()
() () ()[]

()
()

() () ()

()[]
() () () κκκ aa0xaaxxaxp x

x
x

�
x

z

==∆=== ∆∂
∆∂=

∂
∂=

∂
∂

ttttttt

C

t

t

t

t

t

t
TTT

,
2*

**2

,
**

0
*
0

V
 (27)

revealing that, at the κth operating condition, the critic network gradient equals the κth LQ

Riccati matrix:

()
()

κ

κ
P

x

z
=

∂
∂

t

tC (28)

Pκ is known at all conditions considered in the linear design and, thus, is used to pre-train

the critic network.

Because the gains Cκ and Pκ can be designed for a family of equilibria OP, the

gradient, ∂z[p(t)]/∂x(t), of the action and critic networks is known at all points κ ∈ OP.

In addition, the following condition applies to the networks’ input/output relationship:

() ()[] () () () () ()[] 0axzaxz
aaxx

=≡== κκ
tttt

ttt
,,

,*
0

 (29)

The requirements in eq. 26, 28, and 29 state that the network control system must be

characterized by the same local performance as the LQ controllers at all conditions in

OP. The neural parameters that satisfy these performance targets will be obtained using

the novel algebraic initialization technique described in Section 3.1.1. Chapter 4 will

demonstrate the pre-training procedure for a representative control structure, the

proportional-integral controller. Thanks to their generalization abilities, the neural

networks interpolate the sampled data learned over OP to cover the intermediate regions

not considered by the linear designs. This new pre-training approach constitutes an

 29

excellent starting point for the on-line learning phase, while providing the stability,

performance, and robustness characteristics of the linear designs for small perturbations.

2.4 Dual Heuristic Programming Adaptive Critics

During the on-line learning phase, the pre-trained action and critic networks are

updated over time to more closely approximate the globally optimal control law, with the

critic evaluating the action network performance. The adaptation improves control

response for those conditions that were missed or unaccounted for by the linear gain-

scheduled designs, such as large, coupled motions, full-envelope maneuvers, and

unforeseen conditions. The adaptation (outlined in Fig. 4) takes place while the plant is

operating over the entire range of state and command-input elements, { x(yc), yc} , or some

suitably dense set in the space denoted by OR. The actual plant state, x, and the

command input, yc, are fed to the controller on-line and are unknown prior to operation.

The on-line logic is implemented in discrete time through an incremental optimization

scheme, dual heuristic programming [18-20], which is based on the recurrence relation of

dynamic programming reviewed in this section.

During each time interval ∆t = tk+1 − tk, the action and critic networks are adapted to

more closely approximate the optimal control law and value function derivatives,

respectively. The recurrence relation provides for adaptation criteria that, over time,

guarantee convergence to the optimal solution. Because the on-line adaptation utilizes

the actual state of the plant (eq. 1), the control system performance is improved with

respect to the initialized neural network controller. Prior knowledge, incorporated during

the pre-training phase, is retained during on-line learning thanks to the incremental

training algorithms that will be introduced in Section 3.2 and 3.3.

 30

The dual heuristic programming adaptation criteria are derived from the recurrence

relation by discretizing the infinite-horizon optimal control problem. With restriction to

piecewise-constant inputs and constant time intervals, the discrete or sampled-data model

equivalent of eq. 1 can be expressed as:

() () () ()[]kkmkSDk tttt upxfx ,,1 =+ , x(t0) given (30)

The same metric optimized during the initialization phase, eq. 15, is optimized in the on-

line phase, affording a systematic approach to the control design. The corresponding cost

function can be written as the sum of incremental costs accrued during the time intervals:

() ()[]� −

=
=

1

0
,0 ,LJ

N

k
kkSDN tt ux , N∆t → ∞ (31)

The cost of operation from the kth-instant, tk, to the final time, tN, i.e., Jk,N, corresponds to

the value function V(tk) or cost-to-go at tk and can be written as,

() () ()[] () () () ()[]1111 ,,,V,LV −++++= NkkkkkSDk ttttttt uuxux � (32)

since, from eq. 30, all future values of the state, x(tk+2), …, x(tN), depend on x(tk+1) and on

the future control history, u(tk), …, u(tN−1). Similarly, x(tk+1) depends on x(tk) and u(tk).

Therefore, the optimal cost for the (N − k)-stage policy is found by minimizing the

following functional with respect to the control history,

()[]
() ()

() () ()[]{ }1
*

,,

** ,,,VminV
1

−
−

≡ Nkk
tt

k tttt
Nk

uuxx
uu � (33)

By the Principle of Optimality [11], if a policy is optimal over (N − k) stages,

whatever the initial (kth) state and decision are, the remaining decisions also must

constitute an optimal policy with regard to the state resulting from the first decision, i.e.,

x*(tk+1):

 31

()[]
()

() ()[] ()[]{ }1
***** V,LminV ++= kkkSD

t
k tttt

k

xuxx
u

 (34)

This equation constitutes the recurrence relation of dynamic programming.

This recurrence relation can be used backwards in time, starting from the final time

tN, to obtain an approximate solution to the exact optimal control history [12]. This

approach is computationally intensive and not suitable for on-line solution [11]. In

approximate dynamic programming methods, Howard’s form of the recurrence relation

[16] is used to approximate the minimum value function on-line,

()[] () ()[] ()[]1V,LV ++= kkkSDk tttt xuxx (35)

where V[x(tk+1)] is necessarily a predicted value. The control u(tk) is defined as the

function of x(tk) that minimizes the right-hand side of eq. 35 for any x(tk). Howard shows

[16] that when the function V[x(tk)] is calculated from eq. 35 based on the current

control, and the control is adjusted to minimize this approximation to the optimal value

function, the method iteratively converges to an optimal strategy. The same is true in the

presence of random disturbances as long as expected values of the cost-to-go are

considered in eq. 35. For simplicity, the asterisks are omitted, and convergence to

optimality is implied in the remainder of the thesis.

At time tk, the control strategy for which the value function (eq. 35) is stationary

satisfies the following optimality condition:

()[]
()

() ()[]
() () ()

() 0
,LV 1

1 =
∂

∂
+

∂
∂

=
∂

∂ +
+

k

k
k

k

kkSD

k

k

t

t
t

t

tt

t

t

u

x!
u

ux

u

x
 (36)

Equation 35 is differentiated with respect to the state to obtain a recurrence relation for

the DHP critic, which approximates the functional λλλλ(t) in eq. 12:

 32

() ()[]
()

() ()[]
()

() ()[]
()

()[]
()

() ()
() () ()

()
()[]

()k

k

k

k
k

k

k
k

k

k

k

kkSD

k

kkSD

k

k
k

t

t

t

t
t

t

t
t

t

t

t

tt

t

tt

t

t
t

x
xu

u
x"

x
x" x

xu
u

ux
x

ux
x
x"

∂
∂

∂
∂

+
∂

∂

+
∂

∂
∂

∂
+

∂
∂

=
∂

∂
≡

+
+

+
+

1
1

1
1

,L,LV

 (37)

Once the prediction of the state, x(tk+1), is known from the model of the plant (eq. 30), the

critic can be used to compute λλλλ(tk+1) in eq. 36. Using the critic to approximate the value

function derivatives instead of the value function alone improves speed by giving an

indication of how individual control elements influence the overall cost. Equations 36

and 37 can be viewed as criteria for the action and critic on-line adaptation. Together

they lead the action network to converge to the optimal control functional. The

numerical schemes and the overall implementation that ensure the consecutive realization

of these requirements over time are discussed in the remaining chapters.

2.5 Chapter Summary

A two-phase approach is proposed for approximating the nonlinear optimal control

law of an infinite-horizon problem on line, subject to the actual dynamics of the plant.

During the first phase, the initial specification of the control law is determined from

classical linear control theory, and is realized in the form of a nonlinear neural controller.

The nonlinear controller is motivated by a corresponding linear structure, and is defined

by the architecture and parameters of a network of neural networks. A key, novel

observation is that the gradient of these networks must equal corresponding gain matrices

at selected operating points. During the second phase, the neural parameters are updated

on-line, through a dual heuristic programming adaptive critic architecture. The

recurrence relation of dynamic programming can be used to derive adaptation criteria that

guarantee convergence to the optimal solution, over time.

 33

Chapter 3

Advancements in Neural Network Learning Theory: Algebraic Training and

Modified Resilient Backpropagation Techniques

Computational neural networks are massively parallel computational paradigms

inspired by biological neural formations. They are used in a variety of applications

because they can learn by example and provide excellent universal function

approximation for multivariate input/output spaces. Particularly, they afford a general

approach for modeling, identification, and control of nonlinear systems that shows great

promise, as neural networks can potentially adjust to complex situations on line thanks to

their generalizing and adaptive capabilities.

Considerable effort has gone into the mathematical investigation of neural networks’

approximation properties [33-35, 39, 71]. Whereas these results appear attractive, they

provide little insight into practical, key questions such as, “What architecture should be

used”, and “How many nodes are required in each layer”? This chapter describes a novel

algebraic training approach that provides a general framework for answering these

questions as well as learning theory advancements that improve upon a number of

approximation characteristics. This method is used to derive training algorithms that can

achieve either exact or approximate matching of noise-free data with considerable

computational savings and better interpolation properties than classical, backpropagation-

based algorithms. Some of the results developed here were announced in [36, 37].

 34

3.1 Algebraic Training

The typical search criterion, used in virtually all supervised learning algorithms,

consists of minimizing some measure of the error between the desired input/output

(and/or derivative) information and the actual network’s performance. The approach

taken here consists of formulating training as a root-finding problem whose solution

achieves exact fitting of the training set. Although related in principle, the problems of

minimization and multidimensional root finding are substantially different in practice.

The problem of minimizing some form of neural network error appears computationally

more tractable, but it may not solve the problem of exact fitting. On the other hand,

solving the corresponding nonlinear equations appears virtually impossible for any

decent-sized network. So what is the reason behind attempting to solve a harder version

of the same problem? As it happens, these nonlinear equations can easily be transformed

into linear equations, bringing about much simplified training methods and affording

deep insight into neural approximators.

A set of nonlinear equations to be solved for the neural network adjustable parameters

is obtained by imposing the requirements derived from the training set on the neural

network input/output and gradient equations. The goal is to approximate a smooth scalar

function of q inputs, denoted by h : ℜq → ℜ, using a simply connected sigmoidal

network of the type shown in Fig. 5. The approach also can be extended to include

vector-output functions, as will be demonstrated in later chapters. Typically, the function

is not known analytically, but a set of input/output samples { yk, uk} k = 1, …, p can be

generated such that uk = h(yk), for all values of k. Using derivative information during

 35

training can improve upon the network’s generalization properties [72]. Therefore, when

the partial derivatives of the function h(•) are known with respect to e of its inputs,

T

e

k

kk y

u

y

u ##$
%&&'(

∂
∂

∂
∂≡

yy

c)
1

, e ≤ q (38)

they also are incorporated in the training set: { yk, uk, ck} k = 1, …, p.

p1

p2

.

.

pq

w11

wsq

1
z

.

. .
.

 d2

ns

1

1

1

 d1

 ds

n2

n1

.

.

.

.

Σ

Σ

Σ

Σ

v1

v2

vs

σ2

σs

σ1

 b

Figure 5. Sample scalar-output network with q inputs and s nodes in the hidden layer.

The output of the network is computed as the nonlinear transformation of the

weighted sum of the input, p, and a bias d, plus an output bias, b:

[] bz T ++= dWp*v (39)

σσσσ[•] is composed of sigmoidal functions, such as σ(n) = (en − 1)/(en + 1), evaluated at all

input-to-node variables, ni, with i = 1, …, s,

[] () ()[]T
sn+n+ ,

1≡n- (40)

where:

dWpn += (41)

W and v contain the input and output weights, respectively. Together with d and b they

constitute the adjustable parameters of the network. The order of differentiability of eq.

 36

39 is the same as that of the activation function, σ(•). Given that sigmoid functions are

infinitely differentiable, the derivative of the network output with respect to its inputs is:

()..
==

′=
∂
∂

∂
∂=

∂
∂ s

i
ijii

j

i
s

i ij

wn/v
p

n

n

z

p

z

11

, j = 1, …, q (42)

σ′(•) denotes the derivative of the sigmoidal function with respect to its scalar input. wi j

denotes the element in the i th-row and the j th-column of the matrix W, and it represents

the connection weight between the j th-input and the i th-node of the network.

The computational neural network achieves exact fitting of the input/output training

set, { yk, uk} k = 1, …, p, when given the input yk it produces uk as the output, for all k:

() kk uz =y (43)

This is equivalent to stating that the neural adjustable parameters must satisfy the

following nonlinear equations,

bu kTk ++=][dWy0v , k = 1, …, p (44)

that are referred to as output weight equations. When all the known output elements from

the training set are grouped in a vector,

[]Tpuu 11=u (45)

eq. 44 can be written using matrix notation:

bSvu += (46)

b is a s-dimensional vector composed of the scalar output bias, b. S is a matrix of

sigmoidal functions evaluated at input-to-node values, k
in , each representing the

magnitude of the input-to-node variable ni to the i th node, for the training pair k:

 37

() () ()
() () ()

() () () 222
223

4
555
55
6
7

≡

p
s

pp

s

s

n8n8n8
n8n8n8 n8n8n8

9 :;:: 99
21

22
2

2
1

11
2

1
1

S (47)

The nonlinearity of these equations arises purely from the implicit dependence of the

nonlinear function’s argument on the input weights, W, and bias, d.

The known gradients, ck, correspond to the partial derivatives of the neural network’s

output with its inputs evaluated at the training pair k. Exact matching of the gradient

training set, { yk, ck} k = 1, …, p, is achieved when the neural network gradient corresponding

to the input yk equals ck, for all k:

,k
j

j

c
p

z

k

=
∂
∂

y

 j = 1, …, e (48)

Therefore, the neural network adjustable parameters must satisfy the following gradient

weight equations,

() []{ }kTk e n<vWc ′⊗÷•= 1, , k = 1, …, p (49)

where the symbol “ ⊗ ” denotes element-wise vector multiplication, and W(•, 1÷e)

represents the first e columns of the input-weight matrix. Input-to-node weight equations

are obtained from the arguments of the nonlinear functions in eq. 46 and 49:

dWyn += kk , k = 1, …, p (50)

σσσσ′[•] is a vector-valued function whose elements consist of the function σ′(•) evaluated

component-wise at each element of its vector argument:

[] () ()[]T
sn=n= ′′≡′ >1n? (51)

Equation 49 can be written as,

 38

()[]Tkk e÷•= 1,WBc , (52)

with the matrix,

])()()([2211
k
ss

kkk n@vn@vn@v ′′′≡ AB (53)

explicitly containing only sigmoidal functions and output weights.

The full training set { yk, uk, ck} k = 1, …, p is matched exactly when the output and the

gradient weight equations are solved simultaneously for the neural network’s adjustable

parameters. If the derivative information, ck, is not available, the output equations are

solved and eq. 52 is ignored, conversely if the output information, uk, is not available eq.

46 is ignored. Algebraic training is based on the key observation that if all input-to-node

values, ni
k, are known, then the nonlinear transcendental weight equations, eq. 46 and 52,

become algebraic and linear. Based on this assumption, S is a known matrix and eq. 46

can be solved for v; then, all of the Bk matrices also are known and eq. 52 can be solved

for W(•, 1÷e). The following sections show four techniques based on this approach

whose effectiveness is demonstrated throughout the remaining chapters.

3.1.1 Exact Gradient-based Solution

A case that is particularly relevant for control applications is that in which some of

the neural network gradients are known. The neural network inputs can be divided into e

inputs for which the gradients are known, x, and into (q − e) inputs for which the

gradients are not known, a. Each training input yk can be partitioned into

TTkTkk][axy = . The input-weight matrix also is partitioned into weights

corresponding to x, Wx, and weights corresponding to a, Wa, as follows:

[]ax WWW = (54)

 39

In this case, the gradients, ck, are known when xk = 0, i.e., TTkk][a0y = , and uk = 0, for

all k. The resulting training set { TTk][a0 , 0, ck} k = 1, …, p is a special case for which the

weight equations always exhibit an exact solution.

The output weight equations, eq. 44, take the form,

bkT ++=][0 dyWBv a , k = 1, …, p (55)

and are independent of the Wx input weights, because xk equals zero in all p training

triads. The gradient weight equations, eq. 49, depend on the Wa input weights only

implicitly,

[]{ }dyWCvWc ax +′⊗= kTk , k = 1, …, p (56)

where eq. 50 simplifies to:

daWn a += kk , k = 1, …, p (57)

Therefore, if all sigmoidal arguments (or input-to-node values) in eq. 57 are known, the

system in eq. 55 becomes linear,

Svb −= (58)

and can be solved for the output weights v. b and S are defined as in eq. 47. When the

number of nodes is chosen equal to the number of training pairs, s = p, the matrix S is

square; provided it also is non-singular, eq. 55 admits a unique solution for v.

Once the output weights are known, v can be treated as a constant, and eq. 56 also can

be treated as linear:

xXwD = (59)

In this system of equations, the unknowns consist of the input weights associated with the

state deviations that, for convenience, have been reorganized in the vector wx,

 40

wx ≡ Vec(Wx). “Vec” indicates Vec Operation, which consists of columnwise

reorganization of matrix elements into a vector [73]. The vector ςςςς is obtained from the

known gradients in the training set,

[]TTpT
ccE F1≡ (60)

X denotes an ep × es sparse matrix composed of p block-diagonal sub-matrices of

dimensions e × es:

rows

rows

1

1

1

−

−

GGH
GGIJ
GGH
GGIJ

KKK
KKK
KKK
KKK

L

M

NNN
NNN
NNN
NNN

O

P

≡

e

e

p

p

p Q
QRQQ

Q
QRQQ

B000

00B0

000B

B000

00B0

000B

X (61)

Every block Bk, defined in eq. 53, is known when v and all input-to-node values, ni
k, are

known. Furthermore, when s = p, X is a square matrix, and the system in eq. 59 can be

solved uniquely for wx, provided X also is non-singular.

Finally, the third set of linear equations is obtained from the assumption that the

input-to-node values are known. For convenience, all ni
k values are reorganized into the

following array:

[]TTpT
nnS T1≡ (62)

With s = p, ηηηη becomes a known p2-dimensional column vector. The p2 linear equations

in eq. 57 can be written as:

aAwU = (63)

 41

A is a ps × (q − e + 1)s matrix that is computed from all ak-input vectors in the training

set. Each of these vectors contains (q − e) elements and the superscript indicates at which

training pair each element has been evaluated:

VVV
VV

W
X

YYY
YY
Z
[

≡

−

−

−

s

s

s

s
p

eq

seq

seq

s
p

s

s

a

a

a

a

a

a

I

I

I

I

I

I

I

I

I

A \\]\
)(

2
)(

1
)(

1

2
1

1
1

 (64)

The only parameters that are left unknown in eq. 63 are the input weights associated with

the scheduling variable, Wa, and the input bias, d. These are conveniently contained in

the vector wa that corresponds to the following rearrangement: wa ≡ Vec[Wa | d].

The third linear system, eq. 63, is the first to be solved, since the input-to-node values

are needed in order to obtain eq. 58 and eq. 59 from the nonlinear weight equations. In

principle, one could assign arbitrary values to the elements of ηηηη and then invert A to

obtain wa. However, this system usually is overdetermined and only a least-squares

estimate of wa can be obtained through the left-pseudoinverse of A, API [74]. If the

redundant information contained in eq. 63 is consistent, API produces the exact value of

wa. Otherwise, the left-pseudoinverse solution provides the estimate that minimizes the

mean-squared error of wa. A second alternative consists of choosing wa and solving for

ηηηη. This is equivalent to setting up consistent equations, such that an exact solution

always can be obtained for wa. It can be shown that the input-to-node values determine

the nature of S and X, for repetitive values in ηηηη will render their determinants zero. The

following algorithm determines an effective distribution for the elements in ηηηη so that the

weight equations can be solved for the neural parameters in one step.

 42

The solution order of the above linear equations is key. Using all the training set data

and choosing a number of nodes, s, equal to the number of training pairs, p, A and ςςςς are

determined from eq. 64 and 60, respectively. Next, the vector ηηηη is determined such that

the matrix S is well-conditioned, i.e., with condition number less than ε−1/2, where ε is the

smallest positive number such that ε + 1 > 1 on the computing machine. A strategy that

produces a well-conditioned S, with probability one, consists of generating ηηηη according

to the following rule,

^_a`
=
≠

=
kiif

kiifr
n

k
ik

i
,0

,
 (65)

where ri
k is chosen from a normal distribution with mean zero and variance one obtained

using a random number generator with a single seed. When i = k, ni
k is assigned a zero

value so that each sigmoid is centered at one of the training pairs. This is equivalent to

distributing the sigmoids across the input space as accomplished by the Nguyen-Widrow

initialization algorithm [75].

Equation 63 is solved for wa using the left pseudoinverse API: bAw a
PI=ˆ (66)

aŵ is the best approximation to the solution, as this overdetermined system is not likely

to have a solution. When this value for wa is substituted back in eq. 63, only an estimate

to the chosen values (eq. 65) is obtained for ηηηη:

awAc ˆˆ = (67)

However, nothing prevents us from using this value for ηηηη. Although overdetermined, this

system has a unique solution because the equations are now consistent.

 43

dˆ is computed on the basis of eq. 40; therefore, the sigmoids are very nearly

centered. While it is desirable for each sigmoid to be centered for a given input, yk, the

same sigmoid should be close to saturation for any other known input in order to prevent

ill-conditioning of S. Considering that the sigmoids come close to being saturated for an

input whose absolute value is greater than 5, it is found desirable for the input-to-node

values in ηηηη to have variance of about 10. A factor f can be obtained for this purpose from

the absolute value of the largest element in d ˆ ; then the final values for ηηηη and wa can be

obtained by multiplying both sides of eq. 67 by f:

aa ww

ee
ˆ

ˆ

f

f

=
=

 (68)

Subsequently, the matrix S can be computed from ηηηη, and the system in eq. 58 can be

solved for v. With the knowledge of v and ηηηη, the matrix X can be formed as stated in eq.

61, and the system eq. 59 can be solved for xw~ . The matrices S and X in eq. 58 and 59

are consistently well-conditioned, rendering the solution of these linear systems by matrix

inversion straight-forward as well as highly accurate. Thus, both output and gradient

weight equations, originally in the form of eq. 55 and 56, are solved exactly for the

network’s parameters in a non-iterative fashion.

A simple two-node neural network makes the point. The training set for a scalar

function with inputs x and a contains two training pairs, { Tka]0[, 0, ck} k = 1, 2, and is

shown in the legend of Fig. 6. The number of nodes in the network approximating this

function is chosen equal to the number of training pairs. For the known inputs, the

network output must equal zero and the gradient of the output surface must match the

corresponding values of c (Fig. 6). The method computes the weights of the network

 44

producing the minimal-order smooth interpolating surface shown in Fig. 6, and solves

problems such as network sizing and data over-fitting at their origin. The same approach

is used to initialize the neural network control system in Chapter 4.

−0.2

−0.1

0

0.1

0.2

5

10

15
−10

−5

0

5

10

15

z

p2
p1

1 2
c
a

k:

8 10
15 -8

Figure 6. Output surface of a two-node sigmoidal neural network corresponding to the
algebraic solution matching the training data provided in the legend for two points.

3.1.2 Exact Input/Output-based Solution

In neural network applications, it often is the case that the only knowledge available

about the function to be approximated consists of sampled input/output information. In

this case, the training set takes the form { yk, uk} k = 1, …, p and the output weight equations

alone (eq. 44) are to be solved for the neural parameters. Under the assumption of known

input-to-node values, S is again a p × s known matrix. The output system of weight

equations, eq. 46, can be written as,

Svu = (69)

letting the output bias, b, equal zero without loss of generality, and is to be solved for v.

This linear system admits a unique solution if and only if rank(S|u) = rank(S) = s, where

rank(•) represents the rank of the matrix [e.g., see 74], and it admits an [s − rank(S)]-

parameter family of solutions if and only if rank(S|u) = rank(S) < s.

 45

When the number of nodes, s, is chosen equal to the number of training pairs, p, S is

square. If it also is non-singular and the training data is consistent (e.g., different outputs

do not correspond to the same input), eq. 69 is a full-rank linear system for which a

unique solution always exists. The input parameters affect the solution of the output

initialization equations only through the input-to-node values and determine the nature of

S. Another strategy that produces a well-conditioned S consists of generating the input

weights according to the following rule,

ijij frw = (70)

where rij is chosen from the same distribution as ri
k, in eq. 65. Here, the scalar f is

arbitrary and of order O(10); it can be slightly varied based on how closely spaced the

training pairs are. The input bias, d, is computed to center each sigmoid at one of the

training pairs, { yk, uk} , from eq. 50, setting ni
k = 0 when i = k:

()TYWd diag−= (71)

Here, the “diag” operator extracts the diagonal of its argument (a square matrix) and

reshapes it into a column vector. If the argument is a vector, then “diag” places it on the

diagonal of a zero square matrix of appropriate dimensions. Y is a matrix composed of

all the input vectors in the training set:

[]TpyyY f1≡ (72)

The input elements, yk, from the training set are normalized, and d is computed based

on the input weights according to eq. 71. Thus, the scaling factor f scales the distribution

of the input-to-node values, establishing their order of magnitude. While p sigmoids are

centered, the remaining sigmoids come close to being saturated for inputs whose absolute

value is greater than 5. A variance of order O(10) allows a good fraction of the sigmoids

 46

to be highly saturated, contributing to a smooth approximating function and producing a

non-singular S. The approach is implemented to train a sigmoidal neural network that

approximates a nonlinear function having two inputs and one output, based on 45

input/output samples. Figure 7 shows the actual function being approximated; the

intersections of the solid lines on the surface delineate the input space grid being plotted

(the software interpolates between these points). The training samples, symbolized by

asterisks, are superimposed on the surface.

1
1.5

2
2.5

3

300

350

400

450

500
-3

-2.5

-2

-1.5

-1

-0.5

0

u

y1 y2

Figure 7. Actual surface being approximated and corresponding training samples,
represented by the asterisks.

The neural network is chosen to have 45 nodes and its parameters are determined in

one step using the algebraic procedure described above. The neural output surface is

plotted over a fine-grid input space in Fig. 8, to demonstrate the network’s interpolation

abilities. The training time is remarkable (a MATLAB code trained a 45-node network in

less than 0.16 sec on a 650 MHz computer). For comparison, the 45-node neural network

is trained to approximate the data in Fig. 7 using both the MATLAB 5.3 Levenberg-

Marquardt and Resilient Backpropagation functions. Table 1 shows that the performance

of the algebraic algorithm is superior to that of the two conventional algorithms in all

respects.

 47

1
1.5

2
2.5

3

3

4

5
-3

-2

-1

0

z

p1/100 p2

Figure 8. Final function approximation obtained with a neural network algebraically
trained using output weight equations.

Algorithm:
Time

(Scaled):
Flops:

Lines of code
(MATLAB):

Epochs:
Final
error:

Algebraic 1 2 × 105 8 1 0

Levenberg-
Marquardt

50 5 × 107 150 6 10-26

Resilient
Backprop.

150 1 × 107 100 150 0.006

Table 1. Performance comparison of algebraic training with two optimization-based
algorithm, for the approximation of a scalar function by a 45-node neural network.

The results also show that the algebraic approach manages data over-fitting even

when the network size is large, because it addresses the input-to-node values, and hence

the level of saturation of the sigmoids, directly. This is found to be particularly

challenging when many nodes are used to approximate a relatively flat surface, such as

one in Fig. 7. But, choosing the number of nodes equal to the number of training pairs

guarantees the existence of a solution that matches the training set exactly. In some

cases, it is possible to achieve exact matching using s < p, provided the rank condition is

satisfied. For instance, suppose s is chosen equal to p and the rank(S) is found to be less

than s. Then, the number of solutions for a given set of input-to-node values can be made

 48

unique simply by reducing the number of nodes in the network, eliminating the linearly-

dependent columns of S, until s = rank(S).

3.1.3 Approximate Input/Output-based Solution

The algebraic approach outlined in previous sections also can be used to seek

approximate solutions of the weight equations, and to obtain a parsimonious network

when the number of training pairs, p, is large. Section 3.1.2 showed how exact matching

of an input/output training set, { yk, uk} k = 1, …, p, can be achieved by choosing a number of

nodes, s, that equals p. An exact solution also could be obtained using less nodes than

there are training pairs, i.e., s < p, provided the rank condition rank(S|u) = rank(S) = s is

satisfied. When the linear system in eq. 69 is not square (s ≠ p), an inverse relationship

between u and v can be defined using the generalized inverse or pseudoinverse matrix,

denoted by SPI [74]. Typically, eq. 69 will be overdetermined, with more equations than

there are unknowns, therefore its solution will be given by,

() uSuSSSv PITT ==
−1

 (73)

where SPI constitutes the left pseudoinverse. If the equations all are consistent, eq. 73

provides the exact value for v. If they are not consistent, rank(S|u) ≠ rank(S), and the

system in eq. 69 has no solution. In the latter case, eq. 73 provides the estimate that

minimizes the mean-square error in the estimate of v and can be used to obtain an

approximate solution for the output weight equations.

Whenever a neural network is trained by a conventional algorithm (such as

backpropagation [76]) that does not achieve exact matching, the corresponding output

weight equations fall into the approximate case above. This is because, given a training

set, corresponding weight equations can be written for any network, whose parameters

 49

constitute either an exact or an approximate solution of these equations. Letting û

denote the best approximation to u obtained from the final neural parameters, the

following holds:

Svu =ˆ (74)

Regardless of how the actual network output weight vector v has been determined, it will

satisfy eq. 74, along with the actual value of S. Incidentally, eq. 74 minimizes the error

(u – û), which is the same error minimized by conventional optimization-based training

algorithms [76]. This observation completes the big picture by showing how the

algebraic approach deals with the case of s < p, typically found in the neural network

literature. More importantly, it can be exploited to develop approximate techniques of

solution that are computationally more efficient than the conventional iterative methods,

such as the one outlined below and implemented in Section 4.4.

Based on the ideas above, an algebraic technique that combines many networks into

one is developed. Suppose a neural network is needed to approximate a large training set

(i.e., p ~ O(105)) using a parsimonious number of nodes, s. Conventional methods, such

as Levenberg-Marquardt and Resilient Backpropagation [41, 77], can successfully train

networks with s < p, minimizing the error (u – û), but they quickly run out of memory if

a large set is used at once in what is referred to as batch training. If the training set is

divided into smaller subsets, training becomes particularly challenging as the neural

network is likely to forget previously learned subsets while it is being trained with new

ones. Furthermore, these difficulties are exacerbated by the problem of finding the

appropriate number of nodes. On the other hand, when a small subset is used, batch

training can be very effective. Many of the conventional algorithms converge rapidly and

 50

the network generalization abilities can be optimized by finding the “best” number of

nodes through a trial and error procedure.

The technique described here combines networks that individually map the scalar

function h : ℜq → ℜ over portions of its input space into one network that models h over

its entire input space. The full training set { yk, uk} k = 1, …, p, covering the full range of the

h input space, is divided into m subsets:
1,,1},{ pk

kk u g=y ,
21 ,,1},{ ppk

kk u h+=y , …,

mm ppk
kk u ,,11
},{ i+= −

y , where pm = p. Each subset is used to train a sigmoidal neural

network of the type shown in Fig. 5 whose parameters are indexed by g, where g = 1, …,

m. That is, each sg-node network, or subnetwork, models the gth subset

gg ppk
kk u ,,11
},{ j+= −

y , using the weights Wg, dg, and vg, and sg < pg. As suggested by

the schematic in Fig. 9, the m networks are superimposed to form a s-node network that

models the full training set using the weights W, d, and v, and s = s1 + … + sm.

. . .
.

.

1
k

1
l

s 1
1

u

b1 d1

v1 W1

x

. . .

. . .
.

.

ms
m

1
k

1
1

u

bm dm

vm Wm
x

. .
. .

1
n
. . .

.

.

s
o 1

1

u

b
d

v W

x

Figure 9. Superposition of m sg-nodes neural networks into one equivalent s-nodes
neural network with same input, x, and the same output, u.

 51

The output weight equations of each subnetwork fall into the approximate case

described above. Therefore, the gth neural network approximates the vector

ug ≡ Tpp gg uu][
11 p+− by the estimate,

ggg vSu =ˆ (75)

where vg is the actual output weight vector and rank(Sg| gû) = rank(Sg) = sg. The input

weights of the m networks are preserved in the full input weight matrix,

qqqr
s

tttu
v

=

mW

W

W w 1

 (76)

and input bias vector:

xxxy
z

{{{|
}

=

md

d

d ~ 1 (77)

As a consequence, the matrix of input-to-node values for the full network,

���
��

�
�

���
��
�
�

≡

p
s

pp

s

s

nnn

nnn

nnn

� ���� ��
21

22
2

2
1

11
2

1
1

N (78)

contains the input-to-node value matrices of the m networks along its main diagonal:

���
�����=

mm

m

NN

NN
N � ��� �

1

11
 (79)

From eq. 50, it can be shown that the off-diagonal terms, such as N1m and Nm1, are

columnwise linearly dependent on the elements in N1, N2, …, and Nm, so r(N) = r(N1) +

… + r(Nm) = s1 + … + sm = s. Also, it is found that in virtually all cases examined

 52

rank(S) = rank(N). Although a rigorous proof cannot be provided because of the

nonlinearity of the sigmoidal function, typically it follows that rank(S) = s.

Finally, the output weight equations are solved for the output weight vector that

approximates the full training set:

[]TT
m

TPI uuSv ˆˆ1 �= (80)

Because S was constructed to be of rank s, the rank of (S|]ˆˆ[1
T
m

T uu �) is s or, at most,

s + 1, bringing about a zero or small error during the superposition. More importantly,

because the error does not increase with m, several subnetworks can be algebraically

superimposed to model one large training set using a parsimonious number of nodes. In

practice, the vector]ˆˆ[1
T
m

T uu � in eq. 80 can be substituted by the vector][1
T
m

T uu � ,

that is directly obtained from the training set and, effectively, contains the output values

to be approximated. The method will be demonstrated in Section 4.4, where a neural

network is trained based on a large training set simply by superimposing several vector-

output subnetworks. Even in this case, the development is identical to the above because

the same S matrix appears in all neural outputs’ weight equations. Generally speaking,

the key to developing algebraic training techniques is to construct an S, through N, that

will display the desired characteristics. In the case of approximate input/output-based

solutions, S must be of rank s whereas s, the number of nodes, should be as small as

possible to produce a parsimonious neural approximator.

3.1.4 Approximate General Solution

Exact matching of both input/output and gradient information, i.e., { yk, uk, ck} k = 1, …, p,

is achieved by solving the output and gradient weight equations, eq. 46 and 52,

 53

simultaneously for the neural parameters W, d, and v. Without loss of generality, b can

be set equal to zero so that eq. 46 simplifies to eq. 69. It is possible to solve both

equations exactly when the dimension of the inputs for which the gradient is unspecified,

(q − e), equals p or in the special case described in Section 3.1.1. In general, it is found

that a suitable way to incorporate the gradient equations in the training process is to use

eq. 52 to obtain a more stringent criterion of formation for the input weights. The

approach of Section 3.1.2 has proven that there exist many p-node networks capable of

fitting input/output information exactly. Using derivative information during training

helps to choose the solution that has the best generalization properties among these

networks.

A first estimate of the output weights, v, and input-to-node values, ni
k, to be used in

eq. 52 can be obtained from the solution of eq. 69 based on the randomized W, as

outlined in Section 3.1.2. This solution already fits the input/output training data. The

input weights and the remaining parameters can be refined to more closely match the

known gradients using a p-step node-by-node update algorithm. The underlying concept

is that the input bias, di, and the input-to-node values associated with the ith node,

[]Tk
iii nn �1≡n (81)

can be computed solely from the input weights associated with it:

[]Tiqii ww �1≡w (82)

At each step, the ith sigmoid is centered at the kth training pair through the input bias

di, i.e., ni
k = 0, when i = k. The kth gradient equations are solved for the input weights

associated with the ith node, i.e., from eq. 52:

 54

()
()

() ����
�

����
�

′

′
−=′ �

�
l lq

k
ll

l l
k
ll

k
i

k
ii

wn�v

wn�v

n�v � 1

cw , l = 1,…, (i−1), (i+1),…, p and l ≠ i (83)

The remaining variables are obtained from the initial estimate of the weights. The ith

input bias is computed individually,

i
k

id wy−= (84)

and p of the input-to-node values are updated:

iii d Ywn += (85)

Y is a matrix composed of all the input vectors in the training set, as defined in eq. 72.

At the end of each step, eq. 69 is solved for a new value of v, based on the latest input-to-

node values.

The gradient equations are solved within a user-specified tolerance. At each iteration,

the error enters through v and through the input weights to be adjusted in later steps, wlj

with l = (i+1),…, p. The basic assumption is that the ith node input weights mainly

contribute to the kth partial derivatives, wi, because the ith sigmoid is centered and v can

be kept bounded for a well-conditioned S. As other sigmoids approach saturation their

slopes approach zero, decreasing the error associated with wlj. If the gradient with

respect to some inputs is unknown, the corresponding input weights can be treated

similarly to the input bias. In the limit of p “ free” inputs, all initialization equations can

be solved exactly for the network’s parameters.

Similarly to Section 3.1.2, the approach is demonstrated by training a sigmoidal

neural network to approximate a nonlinear function having two inputs and one output,

 55

based on 45 input/output and gradient samples. Figure 10 shows the function being

approximated along with the training samples used (symbolized by asterisks).

1
1.5

2
2.5

3

300

400

500
0.5

0.6

0.7

0.8

0.9

1

u

y1 y2

Figure 10. Actual surface being approximated and corresponding training samples,
superimposed as asterisks on the graph.

The neural network is chosen to have 45 nodes, and gradient tolerances are 0.05

(∂h/∂y1) and 0.5 (∂h/∂y1). The set of parameters initially obtained from the output

equations produces a lumpy surface (Fig. 11), and the gradient tolerances are not

satisfied.

1
1.5

2
2.5

3

3

4

5
0.5

0.6

0.7

0.8

0.9

1

z

p1/100 p2

Figure 11. Neural network approximation obtained from output weight equations.

Therefore, the weights are further refined using the p-step gradient algorithm, finally

producing the output surface in Fig. 12. This approximating function could be improved

by running the p-step algorithm again with smaller gradient tolerances. If gradient

information were not available, the function could be improved by increasing the number

 56

of training pairs, p, or by comparing the interpolation properties of different solutions to

pick the best one.

1
1.5

2
2.5

3

3

4

5
0.5

0.6

0.7

0.8

0.9

1

z

p1/100 p2

Figure 12. Final neural network approximation obtained from the output and gradient
equations combined.

3.2 Modified Resilient Backpropagation

The algebraic techniques are designed for off-line neural network training, where an

entire set of data is available at once and can be used in a batch mode. They are most

useful when a-priori knowledge is first incorporated into neural networks; thus, they also

are referred to as initialization techniques. In on-line training, new information is

obtained over time, and the neural parameters are incrementally updated without waiting

for all of the data to be available at once. This kind of incremental training improves

upon the network approximation properties using solely new training data, in order to

lower computational cost and complexity. Therefore, while the weights are continuously

modified, previously learned information must be preserved by the neural network.

Another important distinction to be made between batch training and incremental

training is that while the former can be performed globally, the latter is intrinsically local.

Global optimization techniques search the entire parameter space and, as a consequence,

they only are meaningful if they utilize information about the entire function’s input

 57

space. Instead, local optimization algorithms search only the neighborhood surrounding

the current parameter value and make good use of partial input/output information. In

order to be successful, they must begin searching within the vicinity of the optimizing

solution. When on-line training remains local, it also is likely to preserve knowledge by

not altering previously learned information.

In supervised learning, the approximating network performance is judged by

comparing the actual network output, z, to a desired output or target, uD, for the

corresponding input, yD. The training algorithm adjusts the network parameters in order

to produce a network output that is closer to that target. Algebraic training also is a form

of supervised learning, because it is based on p-input/output and, possibly, gradient

targets to be met. Because in incremental supervised learning there is only one

input/output training pair available, the training set takes the form { yD, uD} and indexing

of the pairs is not needed. For the architecture shown in Fig. 5, the training objective can

be formulated as the minimization of a performance function,

() ()[]2

2

1
ww zuE D −≡ (86)

with respect to a vector of ordered weights indexed by � :

() ()[] { } ¡¡
,2,1vecvec ==≡ wb

TTTT VdWw (87)

Given an initial set of neural parameters, w(0), at each epoch, i, the value of each

weight, w¢ (i), is modified by a small increment, ∆w¢ (i), based on corresponding derivative

information, ∂E(w)/∂w¢ , such that:

)()()1(iii www £££ ∆+=+ (88)

 58

The issues commonly associated with optimization-based training techniques include the

computational burden involved in computing and storing derivative information, and the

scaling effects associated with dissimilar parameter sizes. Normally, the search for the

optimal value of a parameter ceases when the corresponding derivative approaches zero.

In the case of sigmoidal neural networks, saturated processing functions also exhibit

small gradients, independently of how close to their optimal values the parameters really

are. Highly dissimilar parameter sizes may worsen these effects by causing the

derivatives to have very different orders of magnitude, blurring the role of the individual

parameters in the optimization process.

The resilient backpropagation (RPROP) training algorithm [77] eliminates the harmful

effects caused by the magnitudes of the partial derivatives and displays excellent

computation and memory requirements. It is, therefore, particularly suited for on-line

training, where efficiency and reliability are of special concern. In RPROP training, only

the temporal behavior of the sign of the gradients is used to determine the direction and

size of the weight increments. The magnitude of the derivative ∂E(w)/∂w¢ has no effect

on the w¢ weight update. The individual size of each increment, denoted by ∆¢ , is
adjusted at each epoch according to the following rule,

()

() () () () ()

() () () () ()

() () () () ()¤¤¤¥
¤¤¤¦
§

=
∂

∂
∂

∂∆

<
∂

∂
∂

∂∆

>
∂

∂
∂

∂∆

=∆

−
−

−
−−

−
−+

0if,

0if,

0if,

1
1

1
1

1
1

ii
i

ii
i

ii
i

i

w

E

w

E

w

E

w

E

w

E

w

E

¨¨¨ ¨¨¨ ¨¨¨
¨

ww

ww

ww

η

η

 (89)

where 0 < η− < 1 < η+. The increment size is increased by the factor η+ when the

algorithm is converging to a minimum and the derivative is not changing sign, while it is

 59

decreased by the factor η− when the algorithm is jumping over a local minimum and the

derivative is changing sign. This process accelerates convergence in shallow regions and

slows the search down when local minima are missed.

Once all ∆© are adjusted, each weight is modified in the direction of gradient descent,

()

() () () () () () ()

() () () () ()ªª«
ªª¬
­

<
∂

∂
∂

∂∆−

≥
∂

∂
∂

∂®¯°±²³
∂

∂∆
=∆ −

−

−

0if,

0if,sgn

1
1

1

ii
i

iii
i

i

w

E

w

E
w

w

E

w

E

w

E

w ´´´ ´´´´´
ww

www

 (90)

where sgn[•] represents the signum function. When the error derivative changes sign

indicating that a minimum was missed, the weight w© (i+1) is brought back to its previous

value w© (i−1) by a backtracking epoch [77]. In this case, the increment size does not need

adjustment in the next epoch; therefore ∂E(w)(i−1)/∂w© is set equal to zero until eq. 89 has

found the appropriate ∆© .
When the RPROP algorithm is used for on-line training, the initial increment value

∆© (0) is a crucial ingredient. Setting all initial increments equal to the same constant value

(e.g., 0.1) for weights of dissimilar sizes [77] is equivalent to disregarding prior network

weights. Instead, initial increments are chosen commensurate with a fraction, fw, of the

corresponding prior weights and perturbed by f0 to account for zero weights:

()
0

0 fwf w +=∆ µµ (91)

Backtracking also is an algorithmic feature that is key to on-line training. It allows the

search to remain local even when, due to the progress made by eq. 89, the increment size

becomes large enough to bring the search to further minima. The effectiveness of the

 60

modified RPROP algorithm will be demonstrated in Section 5.1.3, where the same neural

network is trained on line with and without the proposed modifications.

3.3 Algebraically Constrained Supervised Training

The local nature of on-line training implies that its effectiveness is largely dependent

upon the initial values of the parameters. In most neural network applications, some

knowledge about the function being approximated is available prior to their

implementation. On the other hand, assimilating information on line, while the neural

network is being implemented and the system is operating, translates into updating and

improving upon the network performance virtually in real time. To exploit both aspects

of learning, algebraic training is used to incorporate a-priori system knowledge into a

neural network, and RPROP training is used to continue adapting the same network on

line. The algebraic training procedure, in this case, is referred to as initialization and

provides an excellent starting point for the on-line training routine.

Initializing the neural network off line improves reliability and convergence during

the on-line phase, but, in order to maintain the characteristics acquired during

initialization, on-line learning must improve upon performance without unlearning prior

knowledge. Redundancy in the network parameters contributes to these objectives, as

some parameters may be used for preserving information and others for improving

performance. The RPROP-algorithm modifications of Section 3.2 also are useful in this

regard, but they do not guarantee continued matching of the initialization requirements,

eq. 43 and 48. Incorporating the weight equations in the on-line adaptation brings about

a constrained supervised training algorithm that minimizes E (eq. 86), subject to the

initialization requirements.

 61

In the following paragraphs, the algebraically constrained training technique is

explained for a simple scalar case. In Section 5.3, the same approach will be explained

for the on-line training of an adaptive critic control system. In this simple example, a

scalar-output neural network is initialized through the gradient-based approach of Section

3.1.1 and, subsequently, adapted on line. Suppose the training set for the function to be

modeled, u = h(y), is gradient based, { yk, 0, ck} k = 1, …, p with yk = TTkTk][ax

= TTk][a0 . When the xk training inputs are partitioned as in,

¶¶¶·
¸

¹¹¹º
»

=
k

k

k

k

a

x

x

y 2

1

 (92)

the known gradients, ck, can be written as,

¼¼¼
¼¼

½
¾

¿¿¿
¿¿
À
Á
∂
∂

∂
∂

=

k

k

u

u

k

y

y

x

x
c

2

1
 (93)

where ∂u/∂x1 and ∂u/∂x2 are defined as column vectors. a contains all inputs for which

no derivative information is available.

The training set can be partitioned into two independent sets with equivalent

information: { TTkTk][1 ax , 0, ∂u/∂x1|
k} k = 1, …, p and { TTkTk][2 ax , 0, ∂u/∂x2|

k} k = 1, …, p,

where x1
k = x2

k = 0 for ∀ k. Because these training sets also display the gradient-based

form described in Section 3.1.1, they can be used independently to initialize two p-nodes

scalar networks of the type shown in Fig. 5. The corresponding weight equations are

solved exactly using the gradient-based algebraic procedure. The parameters
1xW ,

1aW ,

 62

d1, v1, and b1 are obtained for the first network, and the parameters
2xW ,

2aW , d2, v2,

and b2 are obtained for the second network. This notation is consistent with the one used

in Section 3.1.1, with the addition of the subscript that indicates a parameter’s network.

. . .
. .

1
Â

1
Ã

s 1

1

u

b1

d1

v1 x1
1xW

1aW

a
. .

. . .
.

. . .
. .

1
Ä

2
Å

s 1

1

u

b2

d2

v2
2xW

2aW

a
. .

. . .
.

x2

. .
. . .

1

u

b

d

v

Wa

1

a

1
Æ

s
Ç

Wx
x1

. . .

1
È

sÉ
11+s

x2

. .

. .

. .

Figure 13. Two sg-node neural networks are combined into one s-node neural network
with the same output u and input a, and both inputs x1 and x2; the dark lines represent the

new connections being introduced.

A single scalar-output network that models all of the original data, is obtained by

combining these two networks, as suggested by Fig. 13. According to the procedure in

Section 3.1.1, each initialized network contains p nodes; therefore the final network

contains 2p nodes. Its input weight matrix, W, also is composed of weights associated

with the input x and of weights associated with the input a, i.e., W = [Wx | Wa]. In order

to preserve the exact matching of the training set, the new connection weights (shown in

Fig. 13) are initially set equal to zero:

ÊËÌÍÎÏ
=

2

1

x

x
x W0

0W
W (94)

Since a is an input to both p-node networks, there are no zero weights in Wa:

 63

ÐÑÒÓÔÕ
=

2

1

a

a
a W

W
W (95)

The input bias and the output weight vector are obtained in a similar fashion:

d = TTT][21 dd and v = TTT][21 vv . The output bias is computed from the initialized

biases, b = b1 + b2, to satisfy the output requirement z(yk) = 0. It is easily shown that

these parameters satisfy the weight equations of the 2p-node network exactly.

The 2p-node network obtained thus far approximates the function u = h(y) based on

the off-line training set, { TTk][a0 , 0, ck} k = 1, …, p. Assuming the network is

implemented in a scenario where further information about the function becomes

available over time, it can be periodically adapted on line to improve performance. When

the neural network is trained on line in a supervised fashion, it learns target input/output

data, { yD, uD} , as described in Section 3.2.

The weights that were initially set equal to zero now provide for the desired

redundancy and can be used to optimize the performance, E, in eq. 86. The remaining

parameters are used to satisfy the on-line constraints imposed by the weight equations, in

eq. 43 and 48. To emphasize this, Wx is partitioned into four matrices,

Ö×ØÙÚÛ
=

2221

1211

WW

WW
Wx (96)

where Wij contains the input weights connecting the xj-portion of the network input p to

the nodes indexed by [(i − 1)p + 1] through ip.

The weights W12 and W21 are used specifically to minimize E. Given the on-line

training set { yD, uD} , at each epoch, i, the on-line performance (eq. 86) is minimized with

respect to the vector,

 64

() ()[] { } ÜÝÝ
,2,12112 vecvec ==≡ w

TTT WWw (97)

by adding an increment ∆wÞ (i) to each weight value wÞ (i) in w, according to eq. 88-89.

While initially w(0) = 0, at any other epoch w(i) ≠ 0, as determined by the RPROP

algorithm. With new values for the parameters W12 and W21, the full weight equations,

eq. 55, 56, and 57 (with s = 2p), are no longer satisfied by the initialized values of W11,

W22, Wa, d, v, and b. Therefore, these parameters also must be determined at every

epoch, as described below.

The full weight equations represent the algebraic constraints that are imposed on the

minimization of E, in order to preserve knowledge of the off-line training set. They must

be satisfied at each epoch, i, without becoming a computational burden. The important

result is that new parameter values that satisfy the algebraic constraint when w(i) ≠ 0 can

be computed at each epoch, without solving eq. 55-57 in the manner used for

initialization. If Wa and d are kept constant throughout the on-line update, i.e.,

Wa
(i) = Wa

(0) and d(i) = d(0) for all i, then the input-to-node values, ni
k, also remain

constant as shown by eq. 57. In particular, it follows that S(i) = S(0), where S(0) is equal to

the p × 2p initialization matrix,

][21 SSS = (98)

composed of the p-node network sigmoidal matrices S1 and S2. Since S is unchanged, the

initialized values of the output weights and bias continue to satisfy the output equations

(eq. 55), hence v(i) = v(0) and b(i) = b(0).

The gradient weight equations (eq. 56) change at every epoch, because Wx
(i) ≠ Wx

(0).

For the 2p-node network, eq. 56 can be reformulated as two equations,

 65

)Vec()Vec(

)Vec()Vec(

222121
2

212111
1

WXWXß WXWXß
+=

+=
 (99)

where ςςςςi ≡ [(∂u/∂xi|
1)T … (∂u/∂xi|

k)T]T. The X1 and X2 matrices are defined similarly to X

in eq. 61. Except that for X1, B
k = [v1σ′(n1

k) … vpσ′(np
k)] and e equals the dimension of

x1; for X2, B
k = [vp+1σ′(np+1

k) … v2pσ′(n2p
k)] and e equals the dimension of x2. At each

epoch, W12 and W21 are known from w, so eq. 99 can be solved for the W11 and W22:

() ()
() ()][

][

)Vec(Vec

)Vec(Vec

121
21

222

212
11

111

WXàXW

WXàXW

−=

−=
−

−

 (100)

Both v and all input-node-values, ni
k, remain constant during the on-line update. Thus,

the X1 and X2 matrices also remain unchanged and their inverse can be computed a priori.

In fact, all four matrices K11 ≡ (X1)
-1ςςςς1, K12 ≡ (X1)

-1X2, K22 ≡ (X2)
-1ςςςς2, and K21 ≡ (X2)

-1X1

can be determined off-line and stored for on-line usage. In summary, at each epoch the

network parameters are updated according to the following rule,

() ()
() ()

áááâ
áááã
ä

−=

−=

==

==

→∆+=

++

++

++

++

+++

)1(
122122

)1(
22

)1(
211211

)1(
11

)()1()()1(

)()1()()1(

)1(
12

)1(
21

)()()1(

VecVec

VecVec

,

,

,

ii

ii

iiii

iiii

iiiii

bb

www

WKKW

WKKW

vv

ddWW

WW

aa

ååå
 (101)

where wæ is defined in eq. 97 and ∆wæ is given by eq. 89 and 90. The values W11
(0),

W12
(0), W21

(0), W22
(0), Wa

(0), d(0), v(0), and b(0) all correspond to the initialization weights

described in the previous paragraphs. The algorithm locally searches for the optimal set

of weights and, simultaneously, satisfies the algebraic constraints expressed by eq. 55-57.

Convergence is achieved when ∂E(w)/∂wæ → 0 for ∀ ç .

 66

Similar results are achieved when redundant output weights are present, as for the case

in which vector-output neural networks are obtained by joining initialized scalar

networks. The procedure is very similar to the one described above for the 2p-node

scalar-output neural network. The main difference is that part of the output weights also

are modified by the RPROP rule. Therefore, the output weight equations must be

satisfied adjusting the remaining output weights. The computation involved can still be

kept to a minimum by means similar to the above. The vector-output extension of the

algebraically constrained learning technique is demonstrated in Section 5.3.

3.4 Chapter Summary

Neural networks are massively parallel computational paradigms that are used for

function approximation or identification in a variety of applications. They are considered

to be more powerful than other universal function approximators, because they are

intrinsically capable of dealing with nonlinearities and multi-dimensional input and

output spaces. A novel algebraic training approach is developed that consists of

formulating the training set as requirements to be imposed on the network equations. It

can produce exact or approximate solutions, depending on the number of nodes in the

nonlinear layer. In particular, it is found that an exact input/output or gradient-based

solution always can be obtained by using as many nodes as there are training pairs. Also,

the resilient backpropagation approach is modified to obtain an algorithm that has faster

convergence and better preserves the initial parameters. When this backpropagation-

based algorithm is combined with the algebraic training approach, a scheme that allows

for incremental learning and guarantees preservation of a-priori information is obtained.

 67

Chapter 4

Initial Specification of the Neural Network Control System by an Algebraic

Training Approach

In this chapter, the neural network controller structure and initial parameters are

specified in what is referred to as the pre-training phase. In this stage of the design, the

system architecture and appropriate performance baselines are identified based on

classical/modern feedback, inner/outer loop, proportional-integral-derivative control

formulations. Appropriate system requirements are estimated by considering the

performance of an equivalent linear controller at a set of operating points OP, and are

imposed on the neural network control structure. The neural networks’ size and

parameters that meet these requirements are determined solely by solving linear systems

of equations, using the algebraic training techniques introduced in Section 3.1, in what is

also referred to as initialization.

The results show that the pre-training phase alone defines a global neural network

controller that is capable of performing at least as well as an equivalent gain-scheduled

controller. In fact, the algebraic training techniques aim not only at meeting the desired

performance targets at the chosen design set OP, but also at warranting satisfactory

approximation properties over the entire input space corresponding to the convex hull

[78] of OP, i.e., the interpolating region IR, illustrated in Fig. 14. The on-line training

phase, that will be described in Chapter 5, improves control response for large-angle

amplitude and coupled motions, fast transitions between equilibria, and unforeseen

conditions, throughout the operating region OR. The full operating region OR includes

 68

IR, as well as a set ER of extrapolating conditions excluded by IR, ER ∩ IR = ∅, such

that ER ∪ IR = OR (Fig. 14).

 OR

IR ER

: OP

Figure 14. Abstract representation of the full operating region OR and the relevant
operating subsets: the set OP of design operating points (designated by crosses), its

convex hull or interpolating region IR, and the set ER of extrapolation points.

The two-phase learning approach is demonstrated by designing a neural network

controller for a business jet aircraft model. The nonlinear control system always is

motivated by a multivariable linear control structure; the Proportional-Integral (PI)

controller is chosen for illustration. The corresponding nonlinear controller is obtained

by replacing the linear gains of a PI controller with nonlinear neural networks: a forward

neural network, a feedback neural network, and a command-integral neural network

replace the respective gains. In addition to these control networks, a critic network is

introduced in order to evaluate their performance, as anticipated in Section 2.1.

A full six-degree-of-freedom simulation of the business jet aircraft is available in the

form of a nonlinear differential equation:

() () ()[]ttt upxfx ,, m=
è

 (1)

It is based on mathematical models, full-scale wind tunnel data, and actual physical and

performance characteristics of an early twin-jet configuration [64]. The control design

 69

takes into account the full state vector, x = [V γ q θ r β p µ]T, comprising airspeed

V (m/s), path angle γ (rad), pitch rate q (rad), pitch angle θ (rad), yaw rate r (rad/s),

sideslip angle β (rad), roll rate p (rad/s), and bank angle µ (rad). The altitude and

velocity also are specified through the scheduling vector a = [V H]T. The independent

controls being generated are throttle δT (%), stabilator δS (rad), aileron δA (rad), and

rudder δR (rad); i.e., u = [δT δS δA δR]T. A description of the simulated equations of

motion will be provided in Section 4.4 and in Appendix F.

During the on-line phase, the simulation is allowed to explore the entire operational

domain, OR, defined as the envelope for which there exist control settings uc capable of

trimming the aircraft at corresponding values of state and command input (xc, yc). The

command input, yc = [Vc γc µc βc]
T, contains the state elements that, given the altitude

Hc (m), uniquely specify a longitudinal-lateral-directional steady maneuver (e.g., a

coordinated turn), postulating 0== cc θφ éé with φ as the Euler roll angle. For simplicity,

the commanded altitude, Hc, is approximated by the aircraft altitude, H. Trim control

settings, uc, that realize the commanded maneuver can be defined solely in terms of yc:

()[]ccmc yupxf0 ,,= (102)

In fact, the commanded state, xc, and corresponding flight conditions, pm, also are defined

exclusively by yc, as their elements either correspond to elements in yc (i.e., Vc, γc, µc, βc)

or can be computed from yc (i.e., qc, θc, rc, pc) such that they do not oppose the

commanded maneuver, as shown in Section 4.4.

 70

4.1 Linear Design

Linear controllers that satisfy established engineering criteria [67-66] are designed for

a family of linearized models obtained at the set OP of equilibria, providing for the

desired performance targets to be matched by the neural network controller. The

nonlinear aircraft model is approximated as a linear-parameter-varying system over the

two-dimensional flight envelope, shown in Fig. 15, assuming steady-level flight, i.e.,

γ0 = µ0 = β0 = 0.

60 80 100 120 140 160 180 200 220 240 260
0

2000

4000

6000

8000

10000

12000

14000

16000

: Design Point

Velocity, m/s

A
lt

it
ud

e,
 m

Figure 15. Business jet aircraft steady-level flight envelope (IR) and set OP of design
operating points used for the neural network pre-training phase.

The flight envelope is designed by considering the stall speed, the thrust/power required

and available, compressibility effects, and the maximum allowable dynamic pressure to

prevent structural damage [64]. The set OP consists of thirty-four design points chosen

from the boundaries and the interior of the flight envelope, corresponding to the region

IR, and both sets are shown in Fig. 15. As introduced in Section 2.2, eq. 1 can be

 71

linearized about each equilibrium or operating point in OP by holding the scheduling

vector, a0 = [V0 H0]
T, fixed.

Given the dynamic system of eq. 1, a first-degree expansion can be written:

() () ()
() () ()[] () () () () ()[]
() () ()[] () ()

[] () ()tt

ttttt

tttttttt

ttt

m

mm

uGxFf

u
u
f

x
x
f

upxf

uxupxfupxf

xxx

∆+∆+•=

∆
∂
∂+∆

∂
∂+≈

∆∆∆+=
∆+=

0

000

00000

0

,,

,,,,,,

êêê
 (103)

The perturbation model is:

() () () ()[] () () () ()[] ()ttttttttt mm uupxGxupxFx ∆+∆=∆ 0000 ,,,,
ë

 (104)

This model is almost a linear, parameter-varying (LPV) plant, “almost” because the

system matrices depend on x0(t), as well as the remaining variables. In most applications,

effects of parameter variations are ignored because time-varying effects are small.

Therefore, { F, G} κ = 1, …, 34 can be treated as a set of LTI plant models of the type in eq.

14. The Jacobian matrices, F and G, are evaluated numerically at all thirty-four points in

OP, using a MATLAB built-in function, numjac, that is based on the algorithm proposed

in [79]. The nonlinear control system is pre-trained by deriving performance targets from

the linear control laws corresponding to this set of LTI models and by incorporating these

targets into the neural networks.

The perturbation models obtained for the aircraft state and control can be written as

longitudinal, (•)L, and lateral-directional, (•)LD, reduced, fourth-order independent

models,

() () ()
() () ()ttt

ttt

LDLDLDLDLD

LLLLL

uGxFx

uGxFx

∆+∆=∆
∆+∆=∆ ìì

 (105)

 72

by neglecting the cross-coupling terms in the Jacobian matrices that typically are of

comparatively small magnitude [64]. The longitudinal state and control vectors are

xL = [V γ q θ]T and uL = [δT δS]T, respectively; and, the lateral-directional state and

control are xLD = [r β p µ]T and uLD = [δA δR]T, respectively (as indicated by the

respective subscripts). As a result, the family of longitudinal LTI models,

{ FL, GL} κ = 1, …, 34, can be considered separately from the family of lateral-directional LTI

models, { FLD, GLD} κ = 1, …, 34. Longitudinal and lateral-directional linear control gains are

computed and their performance evaluated independently for each of the two families, as

described in the following sections. In Sections 4.3 and 4.5. these gains are used to

initialize decoupled longitudinal and lateral-directional feedback, command-integral, and

critic networks.

4.1.1 Proportional-Integral Control

The Proportional-Integral (PI) controller is the multivariable linear control structure

chosen to motivate the nonlinear neural network control system. A PI controller, shown

in Fig. 16, modifies the stability and transient response of the system through the

feedback gain matrix, CB, and it provides Type-1 response [80] to command inputs

through the proportional gain matrix, CF, and the command-integral gain matrix CI. Hu

and Hx are Jacobian matrices obtained from a first-degree expansion of eq. 2, resulting

into the following linearized output equation:

() () ()ttts uHxHy ux ∆+∆=∆ (106)

The objectives of the control system can be expressed in terms of the quadratic cost

function,

 73

() ()[]

() ()[() () () ()] τττττττ

τττ

d

d

a
T

a
T

a

t

aa
T

at

t

a
t

f

f

f

f

uRuuMxxQx

ux

~~~2
2

1
lim

~,L
2

1
limJ

0

0

++=

= í
í

∞→

∞→

 (107) 

which is minimized with respect to u~ .  xa represents an augmented state that includes 

both the deviation, x~ , from the commanded state, 

( ) ( ) cc xxxxxxx −=−−−≡ 00
~  (108) 

and the time integral of the output error, î , i.e., TTT
a ]~[ ïxx ≡ . 

 
ys(t) + 

yc(t) Linear 
Plant 

CI 

CF 

Hu Hx 

CB 

u(t) x(t) + 

− 

+ + 

− 

− 

ð( )ty~

 

Figure 16. Example of linear proportional-integral feedback control system. (∆‘s are 
omitted for simplicity.) 

Similarly, the output error and the minimizing control are defined as deviations from 

the set point commanded by yc, i.e., y~  ≡ ys − yc and u~  ≡ u − uc.  When the minimization 

of a quadratic cost function (eq. 107) is subject to a linear dynamic constraint, such as eq. 

14, the LQ law eq. 21 provides for the optimal control in terms of the newly defined 

deviations: 

( ) ( ) [ ] ( ) ( ) ( )ttttt IBaIBaa ñCxCxCCxCu −−=−=−= ~~  (109) 



 74

The forward gain matrix, CF, can be obtained from the feedback gain matrix and set point 

matrices defined below [81]: 

1222 BCBC BF +=  (110) 

For the linearized system (eq. 14 and 106), the set point is defined by letting the state-

rate perturbation, xò∆ , equal zero: 

óôõö÷ø
∆
∆óôõö÷ø

=
óôõö÷ø

∆ c

c

c u

x

HH

GF

y

0

ux

 (111) 

The longitudinal-set-point state and control perturbations can be obtained from the 

command-input perturbation, ∆yc ≡ yc − y0, through the following relation [81]: 

ùúûüýþ
∆
∆

=ùúûüýþ
∆

ùúûüýþ≡ùúûüýþ
∆

ùúûüýþ=ùúûüýþ
∆
∆ −

c

c

ccc

c

yB

yB

y

0

BB

BB

y

0

HH

GF

u

x

ux 22

12

2221

1211
1

 (112) 

The PI gains and corresponding Riccati matrix, Pa, are obtained by solving a matrix 

Riccati equation [81] formulated in terms of the augmented state, xa, and the control 

deviation, u~ .  The weighting matrices Qa, Ma, and Ra, are designed using implicit model 

following (IMF), to induce the closed-loop system to follow the response of a model that 

satisfies established design criteria [82].  For simplicity, the ideal model, the augmented 

weighting matrices, and the corresponding gain matrices are obtained separately for the 

longitudinal and the lateral-directional models, as shown in Sections 4.1.2 and 4.1.3.  The 

remainder of Chapter 4 deals with the initial specification of the PI neural network 

controller and its initialization. 

4.1.2 Ideal Model 

In implicit model following, the LQ law is used to induce the actual plant to follow the 

behavior of an ideal model specified by a linear system of the same order as the 



 75

linearized plant.  The model displays desired performance characteristics that can be 

replicated using reasonable control usage, provided they are sufficiently close to those of 

the actual plant.  In the case of an aircraft, the ideal performance is defined by stability 

and control characteristics, and handling qualities that allow the vehicle to perform its 

intended mission safely and in a manner that the pilot finds satisfactory.  The extensive 

experimental studies conducted in this field have lead to findings that have been 

quantified into approved military specifications for different aircraft types and flight 

phases [83].  Table 2 summarizes the specifications pertaining to a light aircraft in a 

terminal flight phase (such as takeoff, approach, and landing) that requires accurate 

flight-path control and flying qualities that are adequate to accomplish the mission at 

hand.  These criteria are taken into account in designing the ideal model to be followed 

by the business jet aircraft. 

Table 2. Longitudinal and lateral military specifications for a Class I airplane in a 
terminal flight phase (Category C), requiring Level 1 flying qualities [83]. 

Longitudinal flying qualities Lateral flying qualities 

Phugoid mode Roll mode 

ζP > 0.04 τroll ≤ 1.0 

Short-period mode Dutch roll mode 

0.35 ≤ ζSP ≤ 1.30 

ζDR ≥ 0.08 
ζDR ⋅ 

DRnω  ≥ 0.15 rad/s 

DRnω  ≥ 0.4 rad/s 

 

The process of defining the ideal system is not an exact one; it can, however, be a 

decisive step in the linear control system design.  As suggested by the flying qualities 



 76

specifications, it is convenient to consider the longitudinal and lateral-directional 

dynamics separately.  Subsequently (Section 4.1.3), the longitudinal ideal model, 
LmF , 

and the lateral-directional ideal model, 
LDmF , can be used to design the linear control 

gains for the reduced systems { FL, GL} κ and { FLD, GLD} κ, respectively.  Both models are 

obtained based on aircraft linearized equations of motion and must meet the established 

flying qualities.  Normally, the aircraft equations of motion are expressed in terms of 

stability derivatives which are a function of the aircraft’s geometric and aerodynamic 

characteristics.  In the case of the ideal model, the stability derivatives are chosen by 

considering the tradeoff between meeting desired specifications and abiding by the 

business jet characteristics. 

4.1.2.1 Longitudinal Aircraft Model 

The aircraft longitudinal dynamics are characterized by two basic modes of motion: 

the lightly-damped Phugoid mode and the highly-damped short period mode.  The 

linearized longitudinal equations of motion of an airplane with fixed controls can be 

derived with respect to an inertial frame of reference and then expressed with respect to 

the state perturbation 
αLx∆  = [∆V ∆γ ∆q ∆α]T in a simplified state space form: 

( )

( ) ( ) ÿÿÿ
ÿÿ�

�
���
��
�
�

−−−−

−

=

00000

00000

0

//1sin//

0

//sin//

cos

VLVLVgVL

MMM

VLVLVgVL

TDTDgTD

qV

qV

qV

qV

L

α

α

α

α

γ

γ
γ

αF  (113) 

The coefficients of the state space model, referred to as stability derivatives, are defined 

according to an established convention.  LV represents the normalized derivative of the 

lift force with respect to velocity, TDV represents the difference between the thrust and 

the drag derivatives with respect to velocity, (TV − DV), and so on [84].  g is the 



 77

gravitational acceleration, α is the angle of attack, γ0 and V0 are the nominal path angle 

and velocity, respectively.  The above is the most convenient form for investigating 

flying qualities based on the Jacobian matrices, because 
αLF  is in the most nearly block 

diagonal form and, hence, can be partitioned into Phugoid parameters and short-period 

parameters by neglecting off-block-diagonal terms [84]. 

As a result,  the Phugoid and short period natural frequencies and damping ratios can 

be approximated by these conventional formulas, 

[ ] 2/1
0/VgLVnP

≈ω  (114) 

PnVP TD ωζ 2/−≈  (115) 

( )[ ] 2/1
00 //1 VLMVLM qqn SP ααω −−−≈  (116) 

( )
SPnqSP MVL ωζ α 2// 0 −≈  (117) 

where ωn is the mode’s natural frequency.  The approximations represent a more accurate 

depiction of the fourth-order model’s (eq. 113) characteristics if the ideal model is 

assumed to be in level flight, i.e., γ0 = 0, and the remaining cross-coupling terms 

approach zero.  The following estimates can be obtained from the thirty-four linearized 

systems computed for the aircraft simulation over OP (Section4.1) : Lq/V0 = 0, TDq = 0, 

MV = 0, and LV/V0 = 2 10-4 (m-1).  As a consequence, the approximations in eq. 114-117 

hold even when TDα and Lα/V0 are not zero. 

The flying qualities specifications in Table 2 impose limitations on what can be 

considered acceptable Phugoid and short period damping ratios, ζP and ζSP; however, 

they are not stringent enough to determine the values of the remaining stability 

derivatives in eq. 113.  From experience, it is known that good values for ζP and ζSP are 



 78

0.1 and 0.45, respectively.  Based on these values and on eq. 114, 
Pnω  is found to equal 

0.0802 rad/s; thus, eq. 115 can be solved for the value of TDV that produces ζP = 0.1, i.e., 

−0.016 (s-1).  For the short period mode, the approximations leave more room for 

inference.  A possible approach consists of letting the following stability derivatives 

equal to the median values of their respective distributions (obtained from { FL, GL} κ): 

Mα = -5, Lα/V0 = -5, and TDα = -8.  In particular, TDα affects neither the short period 

natural frequency nor the damping ratio; therefore, it can be chosen solely based on the 

aircraft’s linearized models.  The value of Mq varies considerably across the flight 

envelope; therefore, its ideal value is computed based on the short period specifications.  

Equation 116 is substituted into eq. 117 and, after a few iterations, it is found that 

Mq = 1.7 produces a damping ratio, ζSP, close to 0.45. 

The ideal stability derivatives determined above are used with eq. 113 to form the 

longitudinal ideal model.  However, 
LmF  must be formulated in terms of the same state 

vector as the system to be controlled: ∆xL.  In purely longitudinal motion (level flight) the 

following relationship holds for the aircraft path angle, pitch angle, and angle of attack: 

αθγ −=  (118) 

Therefore, the following matrix defines the desired transformation, 
αLL L

xTx x ∆=∆ , 

����
�

���	



=
1010
0100
0010
0001

LxT  (119) 

and the stick-fixed equations of motion can be formulated with respect to the original 

state: 

( ) LLL LL
xTFTx xx ∆=∆ −1

α

�
 (120) 



 79

Finally, the ideal longitudinal model used in the IMF design is, 

���

�

����
�

−−
−⋅

−−−
=

−

0100
57.150
5.005.0102
808066.1016.0

4

LmF  (121) 

and its roots are plotted in Fig. 17a.  Although the coefficients of the equations of 

motions depend on V0, for simplicity this ideal model is held fixed throughout the flight 

envelope and is used to design the PI gains for all thirty-four linearized systems. 

4.1.2.2 Aircraft Lateral-directional Model 

Three characteristic motions can be identified in the lateral dynamics of the aircraft; 

they are the slowly convergent or divergent spiral mode, the highly convergent rolling 

mode, and the lightly damped, low-frequency Dutch roll mode.  Table 2 summarizes the 

limitations imposed on the lateral modes’ characteristics.  Furthermore, from experience, 

it is known that desirable values of Dutch roll natural frequency, 
DRnω , and damping 

ratio, ζDR, are 3.6 rad/s and 0.6, respectively.  The specifications for the spiral stability 

involve the minimum time to double the bank angle amplitude following an initial 

disturbance in bank angle, µ, of up to 20 deg, and can be verified following the model 

design.  The linearized stick-fixed lateral equations of motion are used to construct 
LDmF .  

They are expressed directly in terms of ∆xLD, using the state-space matrix, 

( ) ���
��

�
�

���
��
�
�

−−
=

0100
0

cos///1

0

0
0

000

pr

pr

pr

LD

LLL
V

g
VYVYVY

NNN

β

β

β

γ
F  (122) 

in a form that already is suitable for investigating lateral-directional flying qualities.  The 

coefficients of the Jacobian matrix also are defined according to convention [84]. 



 80

If the lateral dynamics are approximated by further reduced first and second-order 

models, natural frequency and damping ratio approximations can be obtained for the 

relevant modes of motion from the roots of the corresponding characteristic equations.  

The undamped Dutch roll parameters are given by the following expressions: 

ββ
βω NN

V

Y
N

V

Y
r

rnDR
+−=

00

 (123) 

�������� +−= r
n

DR N
V

Y

DR 02

1 β

ω
ζ  (124) 

The rolling mode can be approximated by a single-degree-of-freedom motion (or first-

order ordinary differential equation), such that the roll time constant, τroll, is obtained in 

terms of the roll damping Lp: 

pL

1
roll −=τ  (125) 

From the characteristic equation of the system in eq. 122, it is easily shown that the above 

approximations also hold for the full, fourth-order lateral system, provided Lr, Np, and 

g/V0 approach zero.  This can be considered as a reasonable assumption, because the 

same coefficients also are small for the matrices in the set { FLD} κ. 

Since the desired value of 
DRnω  is known, eq. 124 can be used to determine the 

desired value of the sum (Yβ/V0 + Nr), i.e., −4.32 rad/s.  A second condition can be 

derived from eq. 123: Yr/V0 usually is small or equal to zero, thus (NrYβ/V0 + Nβ) = 

12.96 (rad/s)2.  Nβ varies considerably across the flight envelope and is purposely chosen 

larger than that of the actual linearized systems, i.e., Nβ = 8 s-2, to provide greater 

directional stability.  Subsequently, the values of Yβ/V0 and Nr that satisfy both the natural 



 81

frequency and the damping ratio conditions are uniquely determined as Nr = -2.4 s-1 and 

Yβ/V0 = -1.8 s-1.  The high absolute value of the yaw rate damping, Nr, improves the 

aircraft response; also, as is true for most airplanes, the following holds for the chosen 

coefficients: |Nr| > |Yβ/V0|.  This set of stability derivatives not only satisfies the Dutch 

roll specifications, but also produces a model that has a more stable directional motion, 

without differing considerably from the actual systems. 

-1 -0.8 -0.6 -0.4 -0.2 0
-3

-2

-1

0

1

2

3

-2.5 -2 -1.5 -1 -0.5 0
-3

-2

-1

0

1

2

3

 

Im
ag

in
ar

y 
P

ar
t 

Im
ag

in
ar

y 
P

ar
t 

Real Part Real Part 

Short period 

Phugoid 

Dutch roll 

Roll Spiral 

(a) (b) 
 

Figure 17. Characteristic roots of the longitudinal ideal model, 
LmF , (a) and of the lateral-

directional ideal model, 
LDmF , (b). 

The remaining coefficients are chosen equal to the best values in { FLD} κ, that is, the 

dihedral effect is chosen as small as possible, i.e., Lβ = −2 s-2, since with Nr it provides for 

sufficient spiral stability.  Lp is chosen equal to –2 s-1 to provide for the largest roll 

damping.  Thus, the lateral-directional ideal model consists of the following matrix, 

����
 

!!!"
#

−−
−−

−
=

0100
0220
008.11
0084.2

LDmF  (126) 



 82

whose roots are shown in Fig. 17b.  The next section demonstrates how these models are 

used to establish the control system’s objectives through the weighting matrices Qa, Ma, 

and Ra, in eq. 107.  The described procedure constitutes an efficient approach to 

designing these weighting matrices that involves both engineering practice and intuition.  

Other established methods and criteria also are acceptable and can be directly substituted 

to the next design step, without influencing the remainder of the design process. 

4.1.3 Implicit Model Following 

In order for the actual system to follow the behavior of the ideal model, defined in 

terms of the Jacobian matrix Fm, its state rate must approach that of the model: 

( ) ( )tt mmm xFx ∆=∆ $  (127) 

The cost function to be minimized can be formulated in terms of the state rate of both 

systems, 

( ) ( )[ ] ( ) ( )[ ]{ } τττττ dJ
f

f

t

mm
T

m
t

%
∆−∆∆−∆=

∞→
0

2

1
lim xxQxx &&&&  (128) 

and is equivalent to eq. 15, provided the following weighting matrices are used: 

( ) ( )mm
T

m FFQFFQ −−=  (129) 

( ) GQFFM m
T

m−=  (130) 

0RGQGR += m
T  (131) 

F and G refer to the state space matrices of the system to be controlled.  R0 is a constant 

matrix that represents the separate cost of control, and Qm is a weighting matrix for the 

state-rate errors.  Perfect model following can be accomplished only when the following 

condition is satisfied, 



 83

( )( ) 0=−− mn
PI FFIGG  (132) 

as shown in [85].  This criterion formalizes the pragmatism followed in Section 4.1.2 for 

the ideal model design.  From eq. 132, it is easily seen that the closer Fm is to F, the less 

control usage is needed to follow the model closely. 

Since the longitudinal and lateral-directional dynamics can be decoupled, eq. 129-131 

are used to compute longitudinal weighting matrices, 

( ) ( )
LLL mLm

T
mLL FFQFFQ −−=  (133) 

( ) Lm
T

mLL LL
GQFFM −=  (134) 

LL Lm
T
LL 0RGQGR +=  (135) 

and lateral weighting matrices, 

( ) ( )
LDLDLD mLDm

T
mLDLD FFQFFQ −−=  (136) 

( ) LDm
T

mLDLD LDLD
GQFFM −=  (137) 

LDLD LDm
T
LDLD 0RGQGR +=  (138) 

based on the respective models, 
LmF  and 

LDmF , designed in Section 4.1.2.  When the 

perfect model following criteria (eq. 132) cannot be satisfied exactly, as is the case here, 

the weighting matrices 
LmQ , 

L0R , 
LDmQ , and 

LD0R  are chosen by the designer to 

achieve the best possible response, as described below. 

In order to achieve PI compensation, an augmented state that includes the output error 

integral, ' , is considered in the cost function (eq. 107) to be minimized.  Reference [82] 

shows that the PI augmented weighting matrices can be defined in terms of the implicit 

model following matrices, eq.129-131, as 



 84

()*+,-
= .

Q0

0Q
Qa  (139) 

/01234=
0

M
M a  (140) 

and Ra = R.  The weighting on the output error integral is represented by Qξξξξ.  It follows 

that the longitudinal augmented matrices, 
LaQ , 

LaM , and 
LaR  are formulated in terms 

of QL, L
5Q , ML, and RL, and that the lateral augmented matrices can be similarly 

defined.  ξξξξL and ξξξξLD are the time integrals of the longitudinal and lateral output errors, 

T
L V ]~~

[~ γ≡y  and T
LD ]

~~[~ βµ≡y , respectively. 

The PI gains for every system in the longitudinal design set { FL, GL} κ are computed 

by solving a Riccati equation (eq. 22), using the MATLAB built-in function lqr (part of 

the Control Systems Toolbox).  The longitudinal PI gains
LaC  and 

LaP  are computed 

based on the weighting matrices, 
LaQ , 

LaM , and 
LaR , and on the corresponding 

longitudinal state space model defined by FL, GL, LxH , and 
LuH .  According to the 

longitudinal output definition, the output matrices are, 

6789:;=
0010

0001
LxH  (141) 

and 
LuH  = 0.  The longitudinal feedback and command-integral gain matrices, 

LBC  and 

LIC , are determined from 
LaC , as indicated by eq. 109.  Subsequently, eq. 110 can be 

used to compute the longitudinal forward gain matrix 
LFC . 

The above procedure implies that the outcome of the linear design is completely 

specified by the set of matrices 
LmQ , 

L0R , and 
L

<Q .  Typically, these are diagonal 



 85

matrices whose elements are chosen by considering the role and the magnitude of the 

variables they weigh.  The control laws corresponding to different sets of matrices are 

tested by simulating the following closed-loop system, 

( )
( )

( ) ( )
( )

( ) ( )t
t

t

t

t
c

LBL

L

LILBLL

L

L

L

L

LL

LL y
BH

BFCG= x
HH

CGCGF= x
xux

∆
>?@ABC

−
−

+>?@ABC ∆>?@ABC −−
=>?@ABC ∆

12

12D D
(142) 

obtained by applying the PI control law (eq. 109) to the longitudinal linearized system for 

which the gains have been designed.  Because the same matrices 
LmQ , 

L0R , and 
L

EQ  

are used for all points in OP, the designs they produce are tested throughout the envelope 

in Fig. 15.  The flight condition (V0, H0) = (120 m/s, 3 000 m) is considered for 

illustration.  The roots of eq. 142 are compared to those of the ideal model, 
LmF , and to 

those of the open loop system, FL, to consider the effectiveness of the implicit model 

following design.  The step-input aircraft response also is used to evaluate the 

performance of the resulting controller. 

Figure 18 shows the root comparison for two possible designs obtained with different 

weighting matrices; “diag[•]”  denotes the placement of a vector on the diagonal of a zero 

matrix.  The closed-loop system possesses two additional characteristic roots that 

correspond to the integral compensation.  In the first example (Fig. 18.a), the short-period 

roots are almost unaffected by the closed-loop design, while the phugoid roots are 

worsen, as they are further from the ideal roots than the open-loop system’s roots.  The 

second design (Fig. 18.b), improves the short-period roots by pushing them closer to 

those of the ideal model, and leaves the phugoid roots almost unaffected.  However, both 

examples require excessive control usage, as shown in Fig. 20.  After carefully 

comparing the characteristic roots and the step-command-input response of the closed-



 86

loop system (eq. 142) obtained with several choices of the weighting matrices (including 

the examples shown in Fig.s 18 and 20) the following weighting matrices were chosen: 

][ 15105.0diag=
LmQ  (143) 

][ 55.0diag0 =
L

R  (144) 

][ 3101diag=
L

FQ  (145) 

The roots of the corresponding closed-loop system are shown in Fig. 19. 

-3 -2.5 -2 -1.5 -1 -0.5 0
-4

-3

-2

-1

0

1

2

3

4

-2 -1.5 -1 -0.5 0
-4

-3

-2

-1

0

1

2

3

4

 

Short period 

Phugoid Phugoid 

Short period 

Im
ag

in
ar

y 
P

ar
t 

Im
ag

in
ar

y 
P

ar
t 

Real Part Real Part 
(a) (b) 

 

Figure 18. Characteristic roots of the longitudinal model (××××), open-loop system ( G ), and 
closed-loop system (+), obtained with two examples of weighting matrices sets: 

LmQ  = diag[0.01 0.01 0.01 0.01], 
L0R  = 0, and 

L
HQ  = diag[1 1] (a), and 

LmQ  = diag[10-3 102 20 0.01], 
L0R  = diag[1 1], and 

L
HQ  = diag[0.1 0.1] (b). 

The rate at which the command-input error is suppressed also plays a role.  The 

chosen set of matrices accomplishes the best compromise between matching the ideal 

model behavior and achieving feasible dynamic compensation.  Figure 20 shows the 

controlled system’s response to a common step command input.  These results show that 

while the first example achieves relatively close matching of the short period root (Fig. 

18a), it requires unreasonable control usage (Fig. 20b).  The second example also requires 



 87

an excessive amount of throttle (Fig. 20b) and only matches the phugoid root closely 

(Fig. 18b).  The chosen set of matrices (eq. 143-145) produce both a relatively close 

matching of the ideal roots and a reasonable command-input response. 

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
-4

-3

-2

-1

0

1

2

3

4

 

Phugoid 

Short period 

Im
ag

in
ar

y 
P

ar
t 

Real Part 

×××× : Model 
   : Open-loop System 
+ : Closed-loop  System 
 

 

Figure 19. Characteristic roots comparison at the design point (V0, H0) = (120 m/s, 
3 000 m), achieved with the actual weighting matrices used in all longitudinal PI designs. 

 

0 1 2 3 4 5 6 7 8 9 10
120

121

122

123

124

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

 

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

-4

-2

0

2

4

 
 Time, s Time, s 

V
, m

/s
 

γ, 
de

g 

δT
, d

eg
 

δS
, d

eg
 

(a) (b) 

 

Figure 20. Longitudinal state (a) and control (b) response to a 3-m/s velocity and 4-deg 
path angle step command input, at the design point (V0, H0) = (120 m/s, 3 000 m).  The 

actual design (solid line) is compared to a design with 
LmQ  = diag[0.01 0.01 0.01 0.01], 

L0R  = 0, and 
L

IQ  = diag[1 1] (dashed line), and to a design with 
LmQ  

= diag[10−3 102 20 0.01], 
L0R  = diag[1 1], and 

L
IQ  = diag[0.1 0.1] (dashed-dotted line). 



 88

The lateral PI gains are determined through the same methodology used for the 

longitudinal gains, except they are based on the weighting matrices 
LDaQ , 

LDaM , and 

LDaR  and on the systems { FLD, GLD} κ. The lateral-directional output matrices are, 

JKLMNO=
0010

1000
LDxH  (146) 

and 
LDuH  = 0.  Therefore, once the model 

LDmF  has been specified, as in Section 4.1.2, 

the lateral linear controllers depend exclusively on the choice of 
LDmQ , 

LD0R , and 
LD

PQ .  

The lateral equivalent of eq. 142 is used to compare designs obtained with different 

weighting matrices.  Figures 21 and 22 show that, at a given operating point, the 

matrices, 

][ 110110diag=
LDmQ  (147) 

0R =
LD0  (148) 

][ 1.010diag=
LD

QQ  (149) 

offers adequate matching of the model roots and good output-error damping.  The linear 

gains based on the chosen set of weighting matrices (eq. 147-149) provide for appropriate 

command-input response with reasonable control usage, as shown in Fig. 23.  The results 

shown in Fig. 21 and 22 for a representative point (V0, H0) = (120 m/s, 3 000 m), are 

typical throughout OP (Fig. 15). 



 89

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

-2.5 -2 -1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

 

Im
ag

in
ar

y 
P

ar
t 

Im
ag

in
ar

y 
P

ar
t 

Real Part Real Part 
(a) (b) 

Dutch roll 

Roll Spiral 

Dutch roll 

Roll Spiral 

 

Figure 21. Characteristic roots of the lateral model (××××), open-loop system ( R ), and closed-
loop system (+), obtained with two examples of weighting matrices sets: 

LDmQ  = diag[0.01 0.01 0.01 0.01], 
LD0R  = 0, and 

LD
SQ  = diag[1 1] [82] (a), and 

LDmQ  = diag[1 10 1 10-7], 
LD0R  = 0, and 

LD
SQ  = diag[0.1 0.1] (b). 

-2.5 -2 -1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

 

Im
ag

in
ar

y 
P

ar
t 

Real Part 

Dutch roll 

Roll Spiral 

×××× : Model 
   : Open-loop System 
+ : Closed-loop  System 
 

 

Figure 22. Characteristic roots comparison at the design point (V0, H0) = (120 m/s, 
3 000 m), achieved with the actual weighting matrices used in all lateral PI designs. 



 90

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

 Time, s Time, s 

µ,
 d

eg
 

β,
 d

eg
 

δR
, d

eg
 

(a) (b) 

δA
, d

eg
 

 

Figure 23. Lateral state (a) and control (b) response to a 5-deg bank angle and 3-deg 
sideslip step command input, at the design point (V0, H0) = (120 m/s, 3 000 m).  The 

actual design (solid line) is compared to designs with weighting matrices 

LDmQ  = diag[0.01 0.01 0.01 0.01], 
LD0R  = 0, and 

LD
TQ  = diag[1 1] (dashed line), and 

LDmQ  = diag[1 10 1 10-7], 
LD0R  = 0, and 

LD
TQ  = diag[0.1 0.1] (dashed and dotted line). 

After the decoupled PI controllers have been tested for both reduced linear systems, 

they can be used to initialize the neural network controller described in the following 

section.  The linear control laws designed above can be summarized by the longitudinal 

set of matrices {
LBC , 

LIC , 
LFC , 

LaP } κ  and by the lateral set of matrices 

{
LDBC , 

LDIC , 
LDFC , 

LDaP } κ  corresponding to the linear systems { FL, GL} κ and 

{ FLD, GLD} κ, respectively (where κ = 1, …, 34).  Producing the linear design is, in itself, 

a time-consuming and often challenging task.  Considering that many of these designs 

already are available in the industry and that they do entail considerable engineering 

knowledge and wisdom, it certainly seems important to incorporate them in the adaptive 

control system. 



 91

4.2 Proportional-Integral Neural Network Control 

The PI Neural Network Controller (PINN) is the nonlinear structure motivated by the 

linear PI Controller.  It is obtained by replacing each linear gain with a nonlinear neural 

network, NNB for CB, NNF for CF, and NNI for CI, as shown in Fig. 24.  The input-output 

structure is unchanged, and the command error is integrated, as in the linear system, to 

produce Type-1 response [80].  Performance targets for these networks are established 

locally by the respective linear gains that the networks replace.  The output, ys, and set 

point, (xc, uc), are computed for the fully-coupled nonlinear system.  The Scheduling 

Variable Generator (SVG) contains algebraic equations that produce auxiliary inputs to 

the neural networks based on the command input and an exogenous vector, e, of 

measured variables.  The Command State Generator (CSG) uses the aircraft’ s kinematic 

equations to provide secondary elements of the state that are compatible with yc.  It will 

be described in Section 4.4, because it closely interacts with the forward neural network, 

NNF. 

 

+ 

+ 

− 

+ 

+ 

− 

U
ys(t) 

u(t) 

( )tx~  

yc(t) x(t) Nonlinear
Plant 

( ) ( )[ ]tts uxh ,  

NNI 

NNB 

NNF 

SVG 

CSG 

a(t) 

e 

xc(t) 

∆uB(t) 

∆uI(t) 

+ 

( )ty~ ξξξξ(t) 

uc(t) 

 

Figure 24. Nonlinear proportional-integral neural network control system. 



 92

All auxiliary inputs to the neural networks are included in the scheduling vector and 

can be updated in real time by the on-board instrumentation, i.e., a(t) = [V(t) H(t)]T.  In 

addition, the networks NNB, NNF, and NNI are provided with the state deviation, )(~ tx , 

the command input, yc(t), and the command-error integral, )(t
V

, respectively.  Each of 

these vector-output networks contributes to the total control, u(t), 

( ) ( ) ( ) ( )tttt IBc uuuu ∆+∆+=  (150) 

where, 

( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )tttt

tttt

tttt

III

BBB

ccFc

za
W

NNu

zaxNNu

zayNNu

≡=∆
≡=∆
≡=

,

,~
,

 (151) 

As previously indicated, z denotes the network output.  In order to perform as well as an 

equivalent linear structure, the nonlinear controller must satisfy a set of requirements that 

are imposed on the neural network equations. 

As anticipated in Section 2.3, the classical and neural control systems can be 

synthesized by recognizing that the gradients of the nonlinear neural networks must 

correspond to the linear gains they replace, at selected nominal conditions (e.g., OP).  

Computational feedforward neural networks of the type shown in Fig. 5 with one hidden-

layer of sigmoidal functions are employed for all neural blocks.  Each vector-output 

neural network is obtained by joining scalar-output networks, as inferred by the 

input/output relation being modeled.  The remainder of this chapter shows how each 

neural block is algebraically designed and trained, based on requirements generated from 

the linear PI control laws designed in Section 4.1. 



 93

4.3 Feedback and Command-Integral Neural Networks 

The feedback neural network must provide for regulation in the control system and 

produce zero output when the state, x(t), approaches the commanded state, xc(t), i.e., 

)(~ tx  → 0.  Therefore, at each nominal operating point κ ∈ OP considered in the linear 

control design, the following must hold:  

( ) ( )[ ] ( ) 0a0zaxz == κ
κ ,,~

BB tt  (152) 

The deviation from the commanded control, uc(t), equals the sum of the feedback and 

command-integral neural networks’  outputs, from eq. 150: 

( ) ( ) ( ) ( ) ( )ttttt IBIB zzuuu +=∆+∆=~  (153) 

Differentiating eq. 109 and eq. 153 with respect to the neural network input )(~ tx  reveals 

that, at the κth nominal flight conditions, the gradients of the feedback neural network, 

NNB, can be obtained from the feedback matrix designed for those conditions, 

( )
( )

( )
( )

κ

κκ
B

B

t

t

t

t
C

x
u

x

z
−=

∂
∂=

∂
∂

~

~

~  (154) 

where )(~ tx  = 0 and a(t) = aκ. 

A total of four scalar neural networks, of the type shown in Fig. 5, is used to form 

NNB, i.e., one for each control element: 

( )
( )
( )
( )

( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ] XXX

XX
Y
Z

[[[
[[
\
]

=XXX
X

Y
Z

[[[
[
\
]
∆
∆
∆
∆

ttNN

ttNN

ttNN

ttNN

tR

tA

tS

tT

LDB

LDB

LB

LB

B LD

LD

L

L

ax

ax

ax

ax

,~
,~

,~
,~

2

1

2

1

δ
δ
δ
δ

 (155) 

Initially, these neural networks are decoupled and compute their respective outputs 

independently of each others.  In Section 5.1.1, they will be joined algebraically to form a 



 94

vector-output network with equivalent off-line performance, that is further trained on-

line.  The two longitudinal feedback neural networks are fed with the same input, which 

includes the longitudinal state deviation, Lx~ , defined in Section 4.1.  The lateral-

directional state deviation, LDx~ , is part of the input to the lateral feedback networks that 

produce the lateral portion of the control vector ∆uB in eq. 155. 

A gradient-based training set can be obtained for each of the scalar networks in eq. 

155, from the feedback requirements in eq. 152 and 154.  Clearly, the output condition in 

eq. 152 extends to all feedback scalar neural networks, because x~  = [ T
Lx~  T

LDx~ ]T: 

zB(0, aκ) = 0, for ∀ κ.  Also, known gradient vectors can be obtained from the 

longitudinal and lateral feedback gain matrices computed in Section 4.1.3, 

( )

( )
( )

( )TBB

T
BB

T
BB

T
BB

LDLD

LDLD

LL

LL

•=

•=

•=

•=

,2

,1

,2

,1

2

1

2

1

κκ

κκ

κκ

κκ

Cc

Cc

Cc

Cc

 (156) 

where the argument (l, •) refers to the lth-row in the matrix.  These vectors contain the 

partial-derivative information defined by ck in eq. 38, pertaining to 
1LBNN , 

2LBNN , 

1LDBNN , and 
2LDBNN , respectively.  It follows that a training set of the type described in 

Section 3.1.1 can be defined for each feedback scalar neural network.  Every training set 

is formed using the gradient vectors in eq. 156 and the scheduling vectors { a} κ 

corresponding to all thirty-four points in OP.  For example, the training set for 
1LBNN  

can be formulated as {
TT

][ κa0 , 0, κ
1LBc } κ = 1, …, 34. 



 95

Therefore, the gradient-based algebraic procedure described in Section 3.1.1 can be 

used to determine the weights of the neural networks in eq. 155.  Exact matching of the 

training data is obtained by designing each scalar network with thirty-four nodes in its 

hidden layer.  For each of these networks, the parameters to be determined consist of the 

input weights associated with the state-deviation input (such as Lx~ or LDx~ ), xW~ , the 

input weights associated with the scheduling-vector input, Wa, the output weights, v, and 

the biases, d and b.  The linear systems in eq. 58, 59, and 63 are used to determine these 

weights, according to the algorithm detailed in Appendix B.  Figure 25 shows the final 

architecture used for 
1LBNN , where W = [ ax WW~ ]; a similar one is used for all scalar 

feedback neural networks, with inputs and outputs defined as in eq. 155. 

The final architecture is motivated by the pre-training phase, always providing zero 

output for zero state deviations.  The direct contribution of the scheduling variables to the 

output is subtracted using a mirror image of the initialized network (with zero state 

perturbations), in order to eliminate any bias they might produce away from nominal 

training conditions.  However, the effect of the scheduling variables with respect to the 

network gradients remains unaltered and, as expected, a schedules the gain interpolation 

across the flight envelope.  Depending on the units of the input and output elements, the 

neural network gradients may be too sensitive to deviations from the nominal x~ -input, 

i.e. 0.  In this case, x~  and u~  can be rescaled simply by multiplying xW~  by a small 

factor, e.g., x~f  = 10-7, and v by its inverse, 1/ x~f .  From the weight equations, it can be 

seen that this factor cancels out, leaving their solution unaltered. 



 96

 

Wa 

. . . 
+ 

_ 

^  

^  

^  

^  

W 

v 

v 

∆δTB 

V 
H 

. . . 

. . 

. . 
. . 

. . 

V 
γ 
q 
θ 
V 
H 

~ 

~ 
~ 
~ 

xL ~ 

a 

a 

 

Figure 25. Final architecture for the pre-trained network 
1LBNN .  A similar architecture is 

used for all scalar feedback neural networks (biases d and b are not shown for simplicity). 

The command-integral neural network, NNI, is expected to minimize integrals of the 

command-vector error in order to reduce the long-term effect of uncertain parameters or 

constant disturbances on the set point.  It is pre-trained based on the approach introduced 

above for the feedback neural network.  The contribution it provides, ∆uI, must vanish 

when the command-error integrals do so as well: 

( ) ( )[ ] ( ) 0a0za
_

z == κ
κ ,, II tt  (157) 

A relationship between the gradients of the command-integral neural network, NNI, and 

CI can be found by differentiating eq. 109 and eq. 153 with respect to ξξξξ(t) and evaluating 

the derivative at the κth nominal flight condition, 

( )
( )

( )
( )

κ

κκ
I

I

t

t

t

t
C`u`z −=

∂
∂=

∂
∂ ~

 (158) 

where ξξξξ(t) = 0 and a(t) = aκ. 

Initially, NNI is composed of four independent scalar neural networks (Fig. 5), 



 97

( )
( )
( )
( )

( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ] aaa

aa
b
c

ddd
dd
e
f

=aaa
a

b
c

ddd
d
e
f
∆
∆
∆
∆

ttNN

ttNN

ttNN

ttNN

tR

tA

tS

tT

LDI

LDI

LI

LI

I LD

LD

L

L

a
g a
g a

g a
g

,

,

,

,

2

1

2

1

δ
δ
δ
δ

 (159) 

where ξξξξL(t) and ξξξξLD(t) are defined as in Section 4.1.  Although perfectly capable of 

operating in this configuration, they later are coupled to form a unique vector-output 

network that learns from the full aircraft dynamics on line.  The command-integral 

training set also is of the form described in Section 3.1.1.  The output condition 

zI(0, aκ) = 0 for ∀ κ is implied by eq. 157 , since ξξξξ = [ T
L

h
 T

LD

i
]T.  The gradient 

information is obtained from the longitudinal and lateral command-integral gain matrices 

computed in Section 4.1.3, 

( )

( )
( )

( )T
II

T
II

T
II

T
II

LDLD

LDLD

LL

LL

•=

•=

•=

•=

,2

,1

,2

,1

2

1

2

1

κκ

κκ

κκ

κκ

Cc

Cc

Cc

Cc

 (160) 

with each vector’s subscript designating the corresponding scalar network. 

This gradient-based training data is used to initialize the command-integral scalar 

networks.  For each NNI, the algebraic technique introduced in Section 3.1.1 computes 

the input weights associated with the command-integral input (such as ξξξξL or ξξξξLD), jW , as 

well as the remaining weights: Wa, v, and d.  Figure 26 shows the final architecture used 

for 
1LINN , where W = [ a

k WW ].  At this point, both NNB and NNI have been initialized 

and can be implemented in the PINN controller of Fig. 24.  The pre-trained neural 

network controller performs identically to its linear counterpart when operating in the 



 98

neighborhood of one of the equilibria in OP.  When operating between design equilibria, 

in IR, the pre-trained controller automatically interpolates between known gains, thanks 

to the neural networks’  generalization abilities. 

 

Wa 

. . . 
+ 

_ 

l  

l  

l  

l  

W 

v 

v 

∆δTI 

V 

H 

V 

H 
. . . 

. . 

. . 
. . 

. . 
mm t
t

d

dV

0

0

~

~

τγ

τ
ξξξξL 
~ 

a 

a 

 

Figure 26. Final architecture for the pre-trained network 
1LINN .  A similar architecture is 

used for all scalar command-integral networks (biases are not shown for simplicity). 

The neural networks’  performance is tested by applying the PINN structure for the 

control of the step-command-input aircraft response, over the steady-level flight envelope 

IR (Fig. 15).  Three cases are illustrated; in each case, the same command input is 

provided to the full nonlinear simulation of the aircraft (eq. 1) flying at either a design or 

an interpolation operating point.  The time histories of the relevant state elements and of 

the control deflections subject to yc are used as performance evaluations and are plotted 

with a solid line.  The state response is judged against that of a linear-PI-controller (Fig. 

16), represented by a dashed line, that is specifically designed for the operating point 

under consideration.  Prior to pre-training the forward neural network (Section 4.4), the 

set point (xc, uc) can be determined from linearized dynamic and output equations as 

shown in eq. 112, considering that xc = ∆xc + x0. 



 99

Case 1: Response at a Design Point 

The neural controller response is tested for a longitudinal and a lateral-directional 

command input at the design point (V0, H0) = (200 m/s, 11, 000 m), considered in the pre-

training phase, to demonstrate the effectiveness of the algebraic technique implemented.  

Both the state and control time histories are plotted in Fig. 27 for a 2-deg-path angle 

command, and in Fig. 28 for a 5-deg-bank angle and 3-deg sideslip command.  As 

expected, the response obtained with the neural controller (represented by a dashed line) 

is identical to that obtained with the linear controller (represented by a solid line), 

because all linear gains designed for OP are matched exactly. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
199.8

200

200.2

200.4

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

4

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

 
 

Time, s 
Time, s 

V
, m

/s
 

γ, 
de

g 

δT 
C

on
tr

ol
 d

ef
le

ct
io

ns
, d

eg
 

δS 

NN Controller 
Linear Controller 

 

Figure 27. Relevant aircraft state and control response to 2-deg path angle step command, 
at the design point (V0, H0) = (200 m/s, 11 Km). 



 100 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

 
 

Time, s 
Time, s 

µ,
 d

eg
 

β,
 d

eg
 

δA 

C
on

tr
ol

 d
ef

le
ct

io
ns

, d
eg

 

δR 

NN Controller 
Linear Controller 

 

Figure 28. Relevant aircraft state and control response to 5-deg bank angle and 3-deg 
sideslip step command, at the design point (V0, H0) = (200 m/s, 11 Km). 

Case 2: Longitudinal Response at an Interpolation Point 

The response of the aircraft flying at an interpolation point, (V0, H0) = (95 m/s, 

2 000 m), subject to a 97-m/s-velocity and 3-deg-path angle command input is shown in 

Fig. 29.  The neural controller performance is compared to that of a linear controller 

specifically designed for these flight conditions. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
95

96

97

98

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

4

6

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-6

-5

-4

-3

-2

-1

0

1

 

 

Time, s 
Time, s 

V
, m

/s
 

γ, 
de

g 

δT 

C
on

tr
ol

 d
ef

le
ct

io
ns

, d
eg

 

δS 

NN Controller 
Linear Controller 

 

Figure 29. Relevant aircraft state and control response to 97-m/s-velocity and 3-deg-path 
angle step command, at the interpolation point (V0, H0) = (95 m/s, 2 Km). 



 101 

Because this operating point was not considered in the pre-training phase, the neural 

networks must interpolate between the available linear controllers to produce the control.  

Nevertheless, the response is very close to that of a linear controller that is specifically 

designed for these flight conditions. 

Case 3: Lateral-Directional Response at an Interpolation Point 

The aircraft response is evaluated for a second interpolation point, (V0, H0) = (140 m/s, 

6 000 m), and a purely-lateral command input of 6-deg-roll angle, to demonstrate the 

consistency of the results for different flight conditions.  This case also shows that the 

pre-training phase is effective for both the longitudinal and the lateral-directional neural 

network controllers.  The response of the same neural control structure and that of a 

linear controller computed for the operating point are plotted in Fig. 30, for comparison. 

0 1 2 3 4 5 6 7 8 9 10
0

5

10

 

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

 

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

3

4

5

 
 

Time, s 
Time, s 

µ,
 d

eg
 

β,
 d

eg
 

δA 

C
on

tr
ol

 d
ef

le
ct

io
ns

, d
eg

 

δR 

NN Controller 
Linear Controller 

 

Figure 30. Relevant aircraft state and control response to 6-deg-roll angle step command, 
at the interpolation point (V0, H0) = (140 m/s, 6 Km). 

The network’s generalized response is again seen to be close to the linear one.  While it 

only is feasible to design linear controllers for a finite set OP ⊂ IR, the neural controller 

handles the entire envelope, IR, with a performance analogous to that of a linear 



 102 

controller specifically generated for the given flight condition.  If the match at any given 

test point is not satisfactory, the neural network control response can be improved by 

adding that point to the design set. 

4.4 Forward Neural Network 

The role of the forward neural network in the nonlinear control system (Fig. 24) is to 

approximate the trim map of the business jet aircraft.  The trim map represents an 

inversion of the aircraft nonlinear model (eq. 1) and, in series with the aircraft, it provides 

a feed-forward path [86].  Given the command input, yc, NNF must produce 

corresponding control settings, uc, that trim the aircraft about the desired steady 

maneuver.  Under perfect conditions of exact coincidence between the nonlinear model 

and the actual plant, the control is provided solely by the forward network (i.e., u~  = 0).  

Perturbation feedback signals, ∆uB and ∆uI, that compensate for inaccuracy in the aircraft 

model and for external disturbances are processed by feedback and command-integral 

neural networks, as accomplished in Section 4.3. 

Trim control settings can be defined for a given command input, 

( ) ( )[ ]tt ccc ygu =  (161) 

such that: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ][ ] 0ygpxfupxf == tttttt ccmccmc ,,,,  (162) 

The command values, Vc, γc, µc, and βc, in xc are directly specified by yc.  The remaining 

secondary values of the state, qc, θc, rc, and pc, are computed so as not to oppose the 

steady maneuver commanded by yc.  In the present context, a steady maneuver always is 

defined by zero Euler roll and pitch rates, i.e., 0== cc θφ nn , and by zero body 



 103 

accelerations.  Hence, it may correspond to cruising flight, steady climb or descent, or a 

coordinated (possibly helical) turn, such as the one illustrated in Fig. 31.  The body axes 

system, fixed to the airplane, is shown in Fig. 32 together with an inertial reference frame 

that is fixed to the Earth.  The latter is denoted by the subscript r and the former by the 

subscript b. 

 

xb 

yb 

zb 

mg 

θ φ V 

ψ 
. 

 

Figure 31. Steady-climbing coordinated turn, taken from [87]. 

The airplane velocity can be resolved into three components, u, v, and w, along the xb, 

yb, and zb body axes, respectively.  The angular velocities about these axes are referred to 

as roll rate, p, pitch rate, q, and yaw rate, r.  Thus, in a steady maneuver, the following 

must hold: 0=== ccc wvu ooo  and 0=== ccc rqp ppp .  Through conventional rotations [88], 

defined in terms of the three Euler angles, φ, θ, and ψ, the transformation between these 

two frames of reference can be derived [88] and the relationship between the Euler and 

the body angular rates identified as: 



 104 

qqqr
s

tttu
v
qqqr

s
tttu
v

−

−
=qqqr

s
tttu
v

ψ
θ
φ

φθφ
φθφ

θ

w w
w

coscossin0

sincoscos0

sin01

r

q

p

 (163) 

The body velocities can be expressed in terms of the aerodynamic angles, β and α, and 

the airspeed, V [88] to relate them to the elements of the state x: 

xxxy
z

{{{|
}

=xxxy
z

{{{|
}

βα
β

βα

cossin

sin

coscos

V

V

V

w

v

u

 (164) 

 

xb 

yb 

zb 

yr 
zr 

xr 

Inertial Frame 

Earth 

Body Frame 

 

Figure 32. Body and inertial axes systems, adapted from [88]. 

Given the value of the command input, yc, at a specified altitude, the settings uc, θc, 

and cψ~ , capable of trimming the aircraft (i.e., satisfying eq. 13) are obtained numerically 

from the equations of motion, by setting the body velocities and angular rates equal to 

zero and employing the transformations above.  For three-dimensional maneuvering 

flight, the commanded angle of attack and Euler roll angle are fully specified by yc and 

θc, as suggested by the following spherical trigonometric relationships [89]: 



 105 

�������� += −

β
θγθγα

cos

sinsincoscos
cos 1  (165) 

������ −= −

θ
βγβµγφ

cos

sinsincossincos
sin 1  (166) 

Subsequently, the commanded body axes and angular rates (including the secondary 

values of the state, qc, rc, and pc) can be obtained from eq. 164 and eq. 163, respectively, 

with eq. 163 simplifying to, 

����
�

����
�

−
=����

�
����
�

φθψ
φθψ

θψ

coscos

sincos

sin

� �
�

r

q

p

 (167) 

under the assumption that 0== cc θφ �� . 

Following the above procedure, the control settings uc, the state xc, and parameters pm 

that satisfy eq. 161–162 for the command input yc and altitude Hc can be determined.  

The aircraft trim map, Uc, is defined as the sampled set of control settings that trim the 

aircraft over its full operational domain, OR: 

( ) ( ) ( ){ }�,2,1,,,,,:, ==∈= kORU k
c

k
m

k
c

k
m

k
c

k
cmcc 0upxfpxupx  (168) 

The mapping from OR to Uc can be assumed to be bounded and one to one.  In practice, 

Uc is obtained by solving the steady-state equation (eq. 13) for values of the command 

input sampled over OR.  For the airplane, OR is defined as the set of all possible 

maneuvers, i.e., OR = { V, H, γ, µ, β} , and is initially estimated based on what is already 

known about the vehicle’s capabilities, the passengers’  comfort, and other operational 

constraints.  Ultimately, the operating domain is defined as the state and parameter space 

for which there exists a trim solution.  Therefore, its boundaries can be determined by 

solving the same steady-state equation that defines the aircraft trim map, eq. 161–162. 



 106 

Computing the trim map is a task that is computationally challenging in itself and 

whose algorithmic details are omitted for simplicity.  The approach taken here consists of 

specifying limits for what are known to be reasonable ranges of γ, µ, and β: 

������
≤≤−
≤≤−
≤≤−

deg5deg5

deg21deg21

deg6deg6

:

β
µ
γ

OR  (169) 

Several combinations, { γ, µ, β} , are considered within these limits to sample the space in 

a non-symmetrical fashion, as explained in Appendix D.  The maximum allowable flight 

envelope is taken to be that for steady-level flight.  Where the flight path angle is 

negative, the envelope could be expanded; however, we do not allow that to happen.  In 

other cases, such as increased flight path angle, non-zero roll or sideslip angles, the 

{ V, H}  envelope is decreased.  Trim solutions are sought below an estimated ceiling of 

15, 000 m, progressing downwards to sea level (0 m) in 1, 000 m intervals (Fig. 15).  For 

each of these altitudes, the lower and upper bounds on velocity are determined based on 

the existence of trim solutions, as schematized in Fig. 33. 

Because there are many control variables and the equilibrium is quite sensitive, 

numerical problems may be encountered in solving eq. 162, particularly along the low-

velocity boundary.  For some combinations of path angle and bank angle, (γ, µ), the 

amount of throttle required to trim the aircraft at a given altitude does not vary 

monotonically with respect to airspeed.  Hence, the MATLAB fsolve routine fails to 

provide reliable results.  For example, it may not identify valid solutions at some interior 

points, and it may not provide a smooth boundary at other flight conditions.  The 

conservative approach taken here is to define a reduced flight envelope that eliminates 

the problem points.  The collection of the { V, H}  envelopes corresponding to all chosen 



 107 

combinations of path angle, bank angle, and sideslip, { γ, µ, β} , constitutes the five-

dimensional flight envelope OR = { V, H, γ, µ, β} , whose boundaries are partly projected 

onto the three-dimensional space in Fig. 34, for illustration. 

60 80 100 120 140 160 180 200 220 240 260
0

2000

4000

6000

8000

10000

12000

14000

16000

 Velocity, m/s 

A
lt

it
ud

e,
 m

 

 

Figure 33. Search of reduced { V, H}  envelope associated with one combination of values 
(γ, µ, β) (dashed line), starting from the steady-level envelope (solid line).  The search 

process is schematized for three sample altitudes. 

-10

0

10

50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000

16000

50 100 150 200 250-20
0

20
0

5000

10000

15000

 V, m/s 

(a) (b) 

µ, deg 
V, m/s 

H, m H, m 

γ, deg 

 

Figure 34. { V, H, γ}  envelope for (µ, β) = (20o, 5o) (a), and {V, H, µ}  envelope for 
(γ, β) = (0o, −5o) (a) 



 108 

The trim map, Uc, and the corresponding points in OR are stored in the multi-

dimensional array structures described in Appendix D.  Uc is used to pre-train the forward 

neural network, NNF, whose objective is to approximate the nonlinear mapping in eq. 

161 over the compact input space OR.  To every value of the trim-control vector, uc, there 

corresponds a unique pair of values θc and cψ�  that, together with uc, specify the 

maneuver commanded by yc.  These two parameters are needed by the Command State 

Generator (CSG) in Fig. 24, in order for it to provide the control system with the 

secondary values of the state, qc, θc, rc, and pc, that are compatible with yc.  Hence, the 

forward neural network, characterized by the architecture shown in Fig. 35, must learn 

the following trim data: 

2696,,1

, ��
=

��
���� �¡�¢ £££¤

¥
¦¦¦§
¨£¤¥¦§¨

k

k
c

k
c

k
c

k
c

k
c

H ψ
θ
u

y
 (170) 

This equation expresses the trim data to be used for training in a form that is equivalent to 

the input/output training set treated in Section 3.1.2-3.1.3.  The only difference is that it 

refers to a vector output network and, thus, can be generalized by a set of the form 

{ yk, uk} k = 1, …, p. 

 
W  V Vc 

γc 
µc 
βc 
Hc 

©  ©  

. . . . . . 

. . 
 1 

 d 

δTc 
δSc 
δAc 
δRc 
θc 
ψc 
 . 

 

Figure 35. Forward neural network architecture, with a generic number of nodes. 



 109 

Because there is a total of 2, 696 training pairs in eq. 170, it is convenient to seek only 

an approximate matching of the data, synthesizing this information by using less nodes 

than there are operating points.  Also, since the multi-dimensional surface in eq. 161 is 

only slightly nonlinear, gradient information (CF) is not required to achieve good 

interpolation properties, as demonstrated below.  Optimization-based algorithms, such as 

the Levenberg-Marquardt (LM) and the Resilient Backpropagation (RPROP), are not 

easily implemented for a training set this large, as explained in Section 3.1.3.  Therefore, 

NNF is pre-trained based on all of the trim data available, following the algebraic 

approach introduced in Section 3.1.3.  The full set (eq. 170) is divided into smaller 

subsets that are individually used to train small neural networks with the same 

input/output structure as NNF.  These small networks, with less nodes than there are 

operating points, are trained using an optimization-based algorithm and, later, combined 

algebraically to obtain the final forward neural network parameters. 

The LM algorithm generally displays excellent performance for a number of training 

pairs of order ~O(100) [41].  Twenty subsets are obtained from all twenty (µ, β) 

combinations described in the Appendix D.  Each subset contains approximately 135 trim 

points corresponding to the three-dimensional envelope { V, H, γ}  and to one combination 

(µ, β).  Then, the LM algorithm is used to train twenty vector-output neural networks 

(each with an input/output structure shown in Fig. 35), based on the individual subsets.  It 

is easily found that each subset can be approximated by a ten-node network, achieving 

excellent generalization properties and, typically, a final mean-square error of 5 × 10-6 

rad or rad/s.  For each training pair the network error is defined as the difference between 

the ideal output vector and the actual neural network output.  Because the values of µ and 



 110 

β are held constant within each training subset, the inputs µc and βc are essentially 

equivalent to input biases for the corresponding ten-node network.  However, their values 

varying across the subsets renders them equivalent to the inputs Vc, Hc, and γc within the 

full network, obtained by superimposing all twenty ten-node networks. 

Using the notation introduced in Section 3.1.3, it can be deduced that 

s1 = … = sm = 10, and that the full network must have a number of nodes, s, equal to 200.  

Also, according to the procedure described in this section, the full network’s input 

weights, W and d, are obtained algebraically from the input weights of the m ten-node 

networks (m = 20), as indicated by eq. 76-77.  In the case of a vector-output network, the 

matrix V of output weights is obtained from the vector-output equivalent of eq. 80: 

( )TPI USV =  (171) 

vli denotes the element in the lth-row and the ith-column of V and represents the 

interconnection weight between the ith-node and the lth-output in the network.  The 

sigmoidal matrix S is defined in the usual fashion, based on eq.47, and U contains all of 

the output training data from eq. 170, 

T

p
cc

p
cc

p
cc ªªª«

¬
­­­®
¯

=
ψψ
θθ °±° ±±

1

1

1 uu

U  (172) 

with a number of training pairs, p, equal to 2, 696.  In this case, the error brought about 

by this superposition is not zero, but amounts to a mean-square error of 2 × 10-5 rad or 

rad/s, which is an acceptable error for this application.  This full network, with 

architecture shown in Fig. 35 and parameters W, d, and V, constitutes NNF, as it 



 111 

approximates the full trim-data training set (eq. 170), corresponding to the full envelope 

OR = { V, H, γ, µ, β} . 

The generalization capabilities of the forward neural network are tested throughout OR 

by computing the mean-square error at points not included in the training set, and by 

projecting the neural mapping onto three-dimensional space.  Two sets of additional trim 

data are produced for validation purposes: one with 39, 764 points and one with 2, 629 

points, all from conditions in OR that were excluded from the set in eq. 170 (Appendix 

D).  The trim settings at the validation points are compared to those computed by the pre-

trained forward neural network; the mean-square error is found to be approximately 

3×10-5 rad or rad/s for both sets.  Hence, good generalization properties are obtained 

consistently across OR, indicating that overfitting does not occur.  Furthermore, the 

surface approximated by NNF is plotted in Fig. 36 and compared to trim data from the 

first validation set (Fig. 37) by holding γc, µc, and βc constant and computing the output 

over a fine-grid Vc-Hc input space.  Figures 38 and 39 show a similar comparison 

obtained by holding the inputs Hc, γc, and βc constant. 

These results show that the neural surfaces obtained through algebraic superposition 

are smooth and that the approximation error is concentrated in areas corresponding to 

zero outputs, such as µc = βc, to which there corresponds an output cψ²  = 0, for any value 

of the inputs Vc, Hc, and γc.  This can also be observed from the linear system in eq. 171, 

where the trim data produces an inconsistency [74] that is reflected on the rank condition.  

If the input/output training data were fully consistent, eq. 171 would possess an exact 

solution and the algebraic superposition would bring about zero error (although some 

error would likely persist from the optimization-based training of the small m networks).  



 112 

The pre-trained forward neural network is implemented in the nonlinear control system to 

compute the trim settings corresponding to the desired command input.  Its parameters 

are held fixed during the on-line adaptation, with the remaining neural networks 

accounting for possible parameter variations.  It is conceivable that the forward neural 

network also be adapted to account for changes or parameter variations in the plant to be 

controlled.  In which case, it is recommended that a model network also be used, as 

explained in Section 6.3. 

Given yc and the corresponding values of θc and cψ²  approximated by the forward 

neural network (Fig. 35), the Command State Generator computes the secondary 

elements of the state that are consistent with the commanded maneuver.  The altitude at 

which the maneuver is to take place, Hc, is approximated by the current altitude, H.  The 

exact value of Hc is virtually impossible to compute, because the trajectory and the time 

required to bring the aircraft from the present altitude, H, to the commanded one, Hc, are 

not known a priori.  Based on the available information, the CSG computes the Euler roll 

angle, φc, from eq. 166 and, subsequently, all body rates, pc, qc, and rc, from eq. 167.  The 

combination of NNF and CSG is responsible for computing the set point (xc, uc) for the 

nonlinear aircraft, as anticipated by the block diagram in Fig. 24. 



 113 

 

δTc, % δSc, deg δAc, deg 

δRc, deg δθc, deg δψc, deg/s 
. 

Hc, m 
Vc, m/s 

 

Figure 36. Trim control surfaces modeled by the forward neural network, plotted over a 
{ Vc, Hc} -input space by holding the remaining inputs fixed at (γc, µc, βc) = (3o, 14o, 4o). 

 

δTc, % δSc, deg δAc, deg 

δRc, deg δθc, deg δψc, deg/s 
. 

Hc, m Vc, m/s 

 

Figure 37. Actual trim control surfaces plotted over a { Vc, Hc} -input space by holding the 
remaining inputs fixed at (γc, µc, βc) = (3o, 14o, 4o). 



 114 

 

δTc, % δSc, deg δAc, deg 

δRc, deg δθc, deg δψc, deg/s 
. 

Vc, m µc, deg 

 

Figure 38. Trim control surfaces modeled by the forward neural network, plotted over a 
{ Vc, µc} -input space by holding the remaining inputs fixed at (Hc, γc, βc) = (5 Km, 4o, 3o). 

 

δTc, % δSc, deg δAc, deg 

δRc, deg δθc, deg δψc, deg/s 
. 

Vc, m µc, deg 

 

Figure 39. Actual trim control surfaces plotted over a { Vc, µc} -input space by holding the 
remaining inputs fixed at (Hc, γc, βc) = (5 Km, 4o, 3o). 



 115 

4.5 Critic Neural Network 

As anticipated in Section 2.1, a critic network is used to evaluate the neural controller 

performance on line, within the DHP adaptive critic architecture.  In particular, the critic 

approximates the derivative of the value function with respect to the state in the 

optimality condition criterion (eq. 36), which is to be minimized by the control strategy.  

The critic network, NNC, also is pre-trained based on knowledge available from the 

corresponding linear control design.  In fact, it was first established in Section 2.3 that 

there exists a correspondence between the critic network gradient and the Riccati matrix, 

at nominal operating conditions.  In the LQ optimal control problem, the Riccati matrices 

are used to obtained the feedback and command-integral gains, but they do not appear 

explicitly in the PI control structure (Fig. 16).  Similarly, the critic needs not be 

implemented for the pre-trained PINN controller (Fig. 24) to operate based on linear 

control knowledge.  It is, however, required during the on-line phase (Chapter 5), where 

it aids the control networks (NNB and NNI) in their adaptation to improve performance 

for large-angle and coupled maneuvers, new operating conditions, and unforeseen 

failures that were unaccounted for by the pre-training phase. 

The same PI cost function, eq. 107, optimized in the pre-training phase, is optimized 

during the on-line phase.  Therefore, the corresponding optimal cost-to-go or value 

function can be defined as in eq. 11, based on the PI Lagrangian L[xa(t), u~ (t)], and 

minimized with respect to the control deviation, u~ .  For an infinite-horizon problem, the 

terminal cost can be assumed to be equal to zero (as explained in Section 2.1).  Hence, 

the value function can be differentiated with respect to the augmented state, xa, to obtain 

the PI performance measure equivalent to eq. 12, 



 116 

( )[ ] ( )[ ]
( )t

tV
t

a

a
aa x

x
x

³
∂

∂
≡  (173) 

(omitting the asterisks for simplicity) that is to be approximated by the critic network: 

( ) ( ) ( )[ ] ( )tttt CaCa zaxNN
´

≡= ,  (174) 

The vector a(t) contains all relevant auxiliary inputs identified during the pre-training 

phase and used for all other neural networks (eq. 151). 

The linear designs obtained in Section 4.1 for the set OP of operating points, shown in 

Fig. 15, are used to pre-train the critic network.  At every design point indexed by 

κ ∈ OP, the critic output must equal the locally optimal value function derivative, 

( )[ ]
( ) ( ) ( )tt
t

tV
a

T
a

a

a Px
x

x
=

∂
∂

 (175) 

obtained by reformulating eq. 19 in terms of the PI augmented state and Riccati matrix, 

and by differentiating it with respect to xa.  Furthermore, when the flight conditions are 

truly nominal, by definition both the state deviation x~  and the output-error integral ξξξξ are 

identically equal to zero; hence, from eq. 175, the following must hold: 

( ) ( )[ ] ( ) 0a0zaxz == κ
κ ,, CaC tt  (176) 

The gradient of NNC at the κth operating point is found to correspond to the Riccati 

matrix κ
aP  by differentiating both eq. 175 and eq. 174 with respect to xa: 

( )
( )

( )
( )

κ

κκ
a

a

a

a

C

t

t

t

t
P

x

µ
x
z

=
∂
∂

=
∂
∂

 (177) 

Initially, each element in λa is modeled by a scalar sigmoidal network of the type 

shown in Fig. 5.  Based on the decoupled linear designs of Section 4.1, these networks 

can be characterized as longitudinal critic networks, 



 117 

( )[ ] ( )
( )[ ] ( )
( )[ ] ( )
( )[ ] ( )

( )[ ] ( )( )
( )[ ] ( )( )

( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ] ¶¶¶

¶¶¶
¶¶

·

¸

¹¹¹
¹¹¹
¹¹

º

»
=

¶¶¶
¶¶¶
¶

·

¸

¹¹¹
¹¹¹
¹

º

»

∂∂

∂∂
∂∂
∂∂
∂∂
∂∂

¼¼
ttNN

ttNN

ttNN

ttNN

ttNN

ttNN

dt

dVt

tt

tqt
tt
tVt

LL

LL

LL

LL

LL

LL

aC

aC

aC

aC

aC

aC

a

a

a

a

a

a

ax

ax

ax

ax

ax

ax

x

x
x
x
x
x

,

,

,

,

,

,

~/V

~
/V

~
/V

~/V

~/V

~
/V

6

5

4

3

2

1

ττγ
ττ

θ

γ

 (178) 

or as lateral-directional critic networks: 

( )[ ] ( )
( )[ ] ( )
( )[ ] ( )
( )[ ] ( )

( )[ ] ( )( )
( )[ ] ( )( )

( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ] ½½½

½½½
½½

¾

¿

ÀÀÀ
ÀÀÀ
ÀÀ

Á

Â
=

½½½
½½½
½

¾

¿

ÀÀÀ
ÀÀÀ
À

Á

Â

∂∂

∂∂
∂∂
∂∂
∂∂
∂∂

Ã Ã
ttNN

ttNN

ttNN

ttNN

ttNN

ttNN

dt

dt

tt
tpt
tt
trt

LDLD

LDLD

LDLD

LDLD

LDLD

LDLD

aC

aC

aC

aC

aC

aC

a

a

a

a

a

a

ax

ax

ax

ax

ax

ax

x

x
x
x
x
x

,

,

,

,

,

,

~
/V

~/V

~/V

~/V

~
/V

~/V

6

5

4

3

2

1

ττβ
ττµ

µ

β

 (179) 

Similarly, the augmented state input xa can be partitioned into the longitudinal vector 

[ ]TT
L

T
LaL Äxx ~=  and the lateral-directional vector [ ]TT

LD
T
LDaLD Åxx ~= .  Prior to the on-

line phase, these neural networks can be algebraically joined into a single vector-output 

network, NNC, with equivalent off-line performance, as will be shown in Section 5.1.1. 

The critic requirements in eq. 176-177 are equivalent to those obtained for the 

feedback and command-integral neural networks, eq. 152-154 and eq. 157-158, 

respectively.  Equation 176 is extended to all scalar critic networks that must satisfy an 

equivalent requirement: zC(0, aκ) = 0.  Gradient information can be obtained from the 

longitudinal and lateral Riccati matrices designed in Section 4.1.3 and organized such 

that they provide known gradient vectors for the corresponding longitudinal critic 

networks (eq. 178), 



 118 

( )
( )
( )
( )
( )
( )•=

•=

•=

•=

•=

•=

,6

,5

,4

,3

,2

,1

6

5

4

3

2

1

κκ

κκ

κκ

κκ

κκ

κκ

LL

LL

LL

LL

LL

LL

aC

aC

aC

aC

aC

aC

Pc

Pc

Pc

Pc

Pc

Pc

 (180) 

and for the corresponding lateral critic networks (eq. 179): 

( )
( )
( )
( )
( )
( )•=

•=

•=

•=

•=

•=

,6

,5

,4

,3

,2

,1

6

5

4

3

2

1

κκ

κκ

κκ

κκ

κκ

κκ

LDLD

LDLD

LDLD

LDLD

LDLD

LDLD

aC

aC

aC

aC

aC

aC

Pc

Pc

Pc

Pc

Pc

Pc

 (181) 

It follows that a gradient-based training set of the type described in Section 3.1.1 can 

be obtained for each scalar critic network.  According to the procedure described in 

Section 3.1.1, a number of nodes equal to the number of design points (thirty-four) allows 

for exact matching of the training data.  All network parameters are determined 

algebraically, in one step, using the algorithm in Appendix B.  For each scalar critic 

network NNC, the initialized parameters consist of the weights associated with the state-

deviation input ( Lx~  or LDx~ ), xW~ , the weights associated with the command-integral 

input (ξξξξL or ξξξξLD), Wξξξξ, the weights associated with the scheduling-vector input, Wa, the 

output weights, v, and the biases, b and d.  The final architecture of one critic network, 

1LCNN , is shown in Figure 40, where W = [ a
Æ

x WWW~ ].  This type of architecture 

always provides zero output for zero augmented state input and is representative of all 



 119 

critic networks, whose input/output structure is detailed in eq. 178-179.  The performance 

of these algebraically pre-trained critic networks can be tested by comparing their 

gradients to corresponding Riccati matrices specifically designed for any of the 

interpolating points in IR (Fig. 15).  However, this step is not necessary as the gradient-

based algorithm always provides excellent generalization properties, thanks to the strict 

formulation of the requirements it satisfies. 

 V 

γ 

q 

θ 

ÇÇ t
t

d

dV

0

0

~

~

τγ

τ
 

V 

H 

Wa 

. . . 

+ 

_ È  È  

 v 

 v 

∂V/∂V 

. . . 
. . 

. . 

. . 

~ 

V 

H 

 W È  

È  

. 

. 

. 

~ 

~ 
~ 
~ 

xL ~ 

ξξξξL 
~ 

a 

a 

 

Figure 40. Final architecture for the pre-trained network 
1LCNN .  A similar architecture is 

used for all scalar critic networks (input biases are omitted for simplicity). 

4.6 Chapter Summary 

The initial specification of the nonlinear control law is obtained from a set of linear 

controllers that are designed at thirty-four nominal conditions, chosen from the steady-

level flight envelope of the aircraft.  These controllers are computed for the motivating 

linear control structure, the proportional-integral controller, by implicit model following, 

which is a well-established procedure that prescribes desired handling qualities and 

criteria by means of ideal linear models.  This phase of the design can be carried out 



 120 

independently for the longitudinal and the lateral-directional dynamics, simplifying the 

computation and testing of the control gains.  The nonlinear controller is obtained by 

substituting the linear gains of the proportional-integral controller with nonlinear neural 

networks that bear the same name and the same input/output structure.  As a 

consequence, an exact correspondence is found between the gradient of the nonlinear 

neural networks and the linear gains they are replacing. 

An algebraic approach is used to determine the neural architectures and parameters 

that match the set of control gains exactly in one step, by solving linear systems of 

equations.  Subsequently, the neural network controller with the initialized parameters 

held fixed is tested throughout the aircraft flight envelope.  At the design points, its 

performance is identical to that of the corresponding linear controller; at the interpolation 

points, its performance is very close to that of a linear controller that is specifically 

designed for the given flight conditions.  This demonstrates that the algebraic gradient-

based technique not only matches the training set exactly, but also provides excellent 

generalization properties.  A forward neural network also is trained based on the full trim 

map of the airplane using an approximate, input/output-based algebraic algorithm. 



 121 

Chapter 5 

Adaptation of the Neural Network Control System 

In this chapter, the neural network controller adapts to large-angle maneuvers, control 

failures, and parameter variations, learning to deal with new system dynamics as they 

arise.  The on-line adaptation is based on an approximate dynamic programming (ADP) 

approach. Neural networks are the parametric structures used to predict the control 

system’s performance into the future, in an effort to reduce computational complexity.  

Unlike most dynamic programming algorithms, where convergence to the optimal control 

law and evaluation function requires multiple generation and expansion of the state 

vector, ADP iterates only on one value of the state and incorporates results at the 

corresponding time step. By using this iterative successive-approximation concept and 

Bellman’s optimality conditions, it can be shown that, over time, the solution converges 

to the optimal trajectory [16]. 

In practice, it has been observed that when the neural control system learns by means 

of a scalar evaluation function (such as the cost-to-go or value function) convergence to 

the globally optimizing solution is slow for any reasonable-sized state vector [18, 91].  

Instead, approximating the gradient of the value function by a neural network accelerates 

convergence, and it alleviates the need for persistence of excitation [92].  The Dual 

Heuristic Programming (DHP) approach [18-20] also guarantees convergence to the 

optimal solution over time, provided that the control law (action) and the value function 

gradient (critic) are adapted according to criteria that can be derived from the recurrence 

relation of Dynamic Programming (Section 2.4). 



 122 

The use of neural networks as function approximators for the action and the critic 

functionals allows both for incremental adaptation and efficient system initialization.  

Prior control knowledge is incorporated off line solely by initializing the neural network 

parameters, as explained in Chapter 4.  On line, a plant model also is used within the 

DHP adaptive critic architecture to predict the state and the transition matrices one step 

into the future.  In the following sections, both theory and simulations show that the on-

line learning algorithm can retain and benefit from a-priori knowledge, while improving 

system performance incrementally over time when subject to unforeseen conditions.  A 

necessary assumption is that the action and critic functionals to be approximated belong 

to the class of functions that the respective neural networks can generate for different 

values of their adjustable parameters.  While it can be shown that the number of nodes in 

these networks is sufficient for approximating prior knowledge as well as additional on-

line information, a proof that guarantees the latter statement to hold under all possible 

circumstances (e.g., for all values of the state, parameter variations, and control failures) 

is not available.  In some sense, it seems unlikely that such a guarantee be provided for 

truly unforeseen conditions. 

5.1 Dual Heuristic Adaptive Critic Design 

The DHP adaptive critic design introduced in Section 2.3 is recaptured in Fig. 41, 

where the sequence of events suggested by the successive approximation approach is 

emphasized.  This on-line logic is implemented in discrete time, with the events 

illustrated in Fig. 41 taking place during every time interval ∆t = tk+1 − tk. 



 123 

 

Actual 
Plant 

Model Critic 

Action 
State 

Critic 
Update 

“ Control 
Action”  

“ Action 
Adaptation”  

“ Critic 
Adaptation”  

Actual 
Plant 

Model Critic 

Action 
State Control 

State 

Prediction 

Actual 
Plant 

Critic 

Action 
State 

State 

Prediction 

Action 
Update 

Model 

State 

Prediction 

 

Figure 41. Event sequence performed during the time interval ∆t = tk+1 − tk, by the DHP 
adaptive critic architecture (the solid lines represent the events that are taking place). 

The DHP approach can be related to the pre-trained neural control architecture specified 

in Chapter 4 by realizing that the same metric optimized by the linear control designs is 

to be optimized during the on-line adaptation.  Subsequently, the input/output structure of 

the action and critic networks can be identified, and any other details of the adaptive 

critic architecture can be defined.  The sampled-data utility function or Lagrangian 

introduced in Section 2.4 can be obtained from the PI cost function in eq. 107: 

( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]kak
T

kak
T
akaak

T
akkaSD tttttttt uRuuMxxQxux ~~~2

2

1~,L ++=  

(182) 

The utility can also be viewed as the cost that accrues during one time interval or stage. 



 124 

The augmented state xa and the control deviation u~  are defined as in Section 4.1.1, 

with respect to the full state and control of the plant, x and u, respectively.  Since these 

vectors can be partitioned into their longitudinal and lateral-directional components, as 

xa = [ T
LD

T
L

T
LD

T
L ÉÉxx ~~ ]T and u~  = [ T

LD
T
L uu ~~ ]T, the weighting matrices in eq. 182 can be 

composed from the longitudinal and lateral-directional matrices obtained in Section 4.1.3: 

ÊÊÊ
Ê

Ë
Ì

ÍÍÍ
Í
Î
Ï

=

LD

L

LD

L

a

ξ

ξ
Q000

0Q00
00Q0
000Q

Q  (183) 

ÐÐÐÑ
Ò

ÓÓÓÔ
Õ

=

00
00

M0
0M

M LD

L

a  (184) 

Ö×ØÙÚÛ=
LD

L
a R0

0R
R  (185) 

Since these matrices are designed for the set of operating points OP (Fig. 15), their value 

throughout OR is decided using a look-up table approach based on the scheduling vector 

a. 

Following the development in Section 2.4, with eq. 182 as the utility function, the 

recurrence relation (eq. 34) can be formulated in terms of the augmented state and control 

deviation: 

( )[ ] ( ) ( )[ ] ( )[ ]1V~,LV ++= kakkaSDka tttt xuxx  (186) 

It follows that the criteria, 

( )[ ]
( )

( ) ( )[ ]
( ) ( ) ( )

( ) 0~~

~,L
~

V 1
1 =

∂
∂

+
∂

∂
=

∂
∂ +

+
k

ka
ka

k

kkaSD

k

ka

t

t
t

t

tt

t

t

u

xÜ
u

ux

u

x
 (187) 

and, 



 125 

( ) ( )[ ]
( )

( ) ( )[ ]
( )

( ) ( )[ ]
( )

( )[ ]
( )

( ) ( )
( ) ( ) ( )

( )
( )[ ]

( )ka

ka

k

ka
ka

ka

ka
ka

ka

ka

k

kkaSD

ka

kkaSD

ka

ka
ka

t

t

t

t
t

t

t
t

t

t

t

tt

t

tt

t

t
t

x
xu

u
xÝ

x
xÝ x

xu
u

ux
x

ux
x
xÝ

∂
∂

∂
∂

+
∂

∂

+
∂

∂
∂

∂
+

∂
∂

=
∂

∂
≡

+
+

+
+

~

~

~

~

~,L~,LV

1
1

1
1

 

(188) 

can be used for the on-line adaptation of the PI neural network control system, provided 

the action and critic networks approximate the following input/output relations: 

( ) ( )[ ]
( ) ( )[ ]kaCka

kaAk

tt

tt

pNN
Þ pNNu

=
=~

 (189) 

As anticipated in Section 2.3, the input to both networks includes the state and the 

scheduling vector; thus pa(tk) = [xa(tk)
T a(tk)

T]T.  Sections 5.1.2 and 5.1.3 describe the 

implementation of the on-line adaptation scheme derived thus far.  In the following 

section, the architecture and the initial parameters of the action and critic networks are 

obtained based on the results from Sections 4.3 and 4.4. 

5.1.1 Action and Critic Network Initialization 

The initial parameters of the action and critic networks can be determined 

algebraically from the weights of the pre-trained neural networks described in Sections 

4.3 and 4.4.  Because of the decoupled nature of the linear designs, the pre-trained 

feedback, the command-integral, and the critic scalar networks were initialized 

independently.  During testing (Section 4.3), their scalar outputs were grouped together, 

as in eq. 155, 159, 178, and 179, to form the desired vector outputs.  The initialized 

action and critic networks (eq. 189) are expected to perform equivalently to these 

decoupled networks; also, they must have coupled inputs and outputs to, potentially, 

capture any possible form of the functionals in eq. 189, during on-line training.  This 



 126 

means that all q inputs and r outputs of the action and critic networks must be connected 

to all of their s hidden nodes.  This approach to initializing the neural networks 

guarantees that they will be capable of assimilating on-line information while preserving 

a-priori knowledge, as will be demonstrated in Section 5.3. 

The vector-output sigmoidal architecture shown in Fig. 42 is used for the full action 

and critic networks, NNA and NNC.  The output of the network is computed similarly to 

eq. 39, as: 

[ ] bdWpV ßz ++=  (190) 

The derivative of each output with respect to each of the inputs is given by: 

( )àà
==

′=
∂
∂

∂
∂

=
∂
∂ s

i
ijili

j

i
s

i i

l

j

l wnáv
p

n

n

z

p

z

11

  j = 1, …, q and l = 1, …, r (191) 

The vector-output neural network notation is the same as that introduced in Section 3.1, 

except for the output weights that are organized into a matrix V = { vli} , where vli 

represents the connection weight between the ith-node and the lth-output of the network. 

 

1 

p1 

p2 

. 

. 

pq 

w11 

wsq 

1 

z1

. 

. . 
. 

 d2 

ns 

1 

1 

1 

 d1 

 ds 

n2 

n1 

. 

. 

. 

. 

Σ 

Σ 

Σ 

Σ 

v11 

vr1 

v1s 

σ2

σs 

σ1 

zr 
Σ 

. 

. 

 b1 

 br 

v12 

vr2 

vrs 

 

Figure 42. Sample vector-output network with q inputs, s hidden nodes, and r outputs. 

Algebraic operations that combine networks with the same output and different inputs, 

or that superimpose networks with the same input/output structure are presented in 

Sections 3.2 and 3.1.3.  Similarly, networks with the same input and different outputs or 



 127 

with different inputs and outputs can be combined and summed together, ultimately 

producing an architecture such as that in Fig. 42, as illustrated below.  Suppose two 

networks with a common input x and with outputs u1 and u2, respectively, have been 

trained (or algebraically initialized) based on corresponding training sets, producing the 

parameters W1, d1, V1, and b1 for the first network and the parameters W2, d2, V2, and b2 

for the second network.  Then, a neural network with input x and output [u1
T u2

T]T, that 

performs identically to the two decoupled networks (i.e., that approximates both training 

sets) can be obtained, as suggested by Fig. 43. 

 
 

. . . 
. . 

2 
â  s 1 

1 

u2 

b2 

. 

. 
x . . 

. . . 
. . 

1 
â  s 1 

1 

u1 

b1 

x . . 
. 
. 

. . . 

1 

x 

b d 

V 

1 

W 

u1 

. . . 

u2 

. . 

. . . . 

. . 

. . 

. . 

W1 

W2 

d2 

d1 

V2 

V1 

â
1 

â
1 

1 
â  s 
â

1 

â  1 1 + s 

â  s 
 

Figure 43. Two neural networks (with s1 and s2 nodes, respectively) are combined into 
one s-node network with the same input x and a combination of their outputs u1 and u2.  

The bold lines represent the new connections being introduced. 

The number of nodes in the new network, s, is equal to the sum of the nodes in the 

original networks, s1 and s2, respectively (s = s1 + s2).  Its initial input-weight matrix is 

obtained from W1 and W2, 

ãäåæçè=
2

1
W
W

W  (192) 

and its initial output weight matrix is obtained from the weight matrices V1 and V2: 



 128 

éêëìíî=
2

1
V0
0V

V  (193) 

The new network biases are d = [d1
T d2

T]T and b = [b1
T b2

T]T.  The weight equations of 

these networks can be used to prove that the above operation preserves performance (as 

shown in Appendix C). 

A similar operation can be performed to combine two (or more) networks with 

different inputs, x1 and x2, and different outputs, u1 and u2, as sketched in Fig. 44.  Again, 

the number of nodes in the new network equals the sum of the nodes in the original 

networks.  The initial input weight matrix can be formed from the original parameters as 

follows, 

ïðñòóô=
2

1
W0
0W

W  (194) 

and the relations used in the previous case hold for the remaining weights, V, d, and b.  A 

neural network whose input is the combination of x1 and x2, and whose output is the sum 

of u1 and u2, also can be obtained algebraically from the decoupled networks’  parameters 

(Fig. 45), provided z1 = z2.  The summing network’s output weight matrix is V = [V1 V2].  

The input-weight matrix can be computed as in eq. 194, and the new biases are 

d = [d1
T d2

T]T and b = b1 + b2. 



 129 

 
 

. . . 
. . 

2 
õ  s 1 

1 

u2 

b2 

. 

. x2 . . 

. . . 
. . 

1 
õ  s 1 

1 

u1 

b1 

. . 
. 
. 

. . . 

1 

b d 

V 

1 

W 

u1 

. . . 

u2 

. . 

. . . . 

. . 

W1 

W2 

d2 

d1 

V2 

V1 

õ
1 

õ
1 

1 
õ  s 
õ

1 

õ  1 1 + s 

õ  s 

x1 

x2 

x1 

 

Figure 44. Two neural networks (with s1 and s2 nodes) are combined into one s-node 
network with a combination of inputs, x1 and x2, and outputs, u1 and u2.  The bold lines 

represent the new connections being introduced. 

 
 

. . 

. . 
. . . 

. . 

2 
õ  s 1 

1 

u2 

b2 

. 

. x2 . . 

. . . 
. . 

1 
õ  s 1 

1 

u1 

b1 

. . 
. 
. 

. . . 

1 

b d 

V 

1 

W 

u1 + u2 
 

. . . 
. . 

. . 

. . 

W1 

W2 

d2 

d1 

V2 

V1 

õ
1 

õ
1 

1 
õ  s 
õ

1 

õ  1 1 + s 

õ  s 

x1 

x2 

x1 

 

Figure 45. Two neural networks (with s1 and s2 nodes) are summed to produce one s-node 
network with inputs x1 and x2 and with output (u1 + u2).  The bold lines represent the new 

connections being introduced. 

These algebraic operations can be used to obtain the parameters of NNA and NNC, 

such that, their performance is initially equivalent to that of the pre-trained neural 

networks.  That is, the initialized NNA and NNC in eq. 189 also satisfy the linear-control 

requirements in eq. 152, 154, 157, 158, 176, and 177.  Hence, their initial performance 

will be satisfactory with respect to the design criteria established in Section 4.1.  A full, 



 130 

feedback neural network NNB that has the required input/output structure (eq. 151) and 

an architecture of the type in Fig. 42 can be obtained from the scalar feedback networks 

in eq. 155.  This neural network can be abbreviated as ∆uB = NNB[ x~ , a], and is shown in 

Fig. 46. 

 

. . . 

+ 

_ ö  ö  

WB 

V 
H . . . 

. . 
. . 

. . 

V 
γ 
q 
θ 
r 
β 
p 
µ 
V 
H 

~ 

~ 
~ 
~ 

VB 

−−−−VB 

ö  ö  

. . 
~ 
~ 
~ 
~ 

BaW  

∆δTB 
∆δSB 
∆δAB 
∆δRB 

x ~ 

a 

a 

∆uB = 

 

Figure 46. Architecture of the feedback neural network NNB (input and output biases are 
not shown, for simplicity). 

The initialized parameters of the scalar networks carry an homonymous subscript 

(according to the notation of eq. 155) and are known from Section 4.3.  According to the 

above network operations, the initial weight matrices of NNB are given by, 

÷÷÷
÷÷

ø
ù

úúú
úú
û
ü

=

22

11

22

11

~

~

~

~

LDBLDB

LDBLDB

LBLB

LBLB

B

ax

ax

ax

ax

WW0

WW0

W0W

W0W

W  (195) 

and 



 131 

ýýý
ýý

þ

ÿ
��
��
�

�

�
=

T
B

T
B

T
B

T
B

B

LD

LD

L

L

2

1

2

1

v000

0v00

00v0

000v

V  (196) 

The full feedback network’s input and output biases are, 

��
��
�

�

�

��
��
�

�

�
=

2

1

2

1

LD

LD

L

L

B

B

B

B

B

d

d

d

d

d  (197) 

and, 

		
		
	




�

��
��
�




�
=

2

1

2

1

LD

LD

L

L

B

B

B

B

B

b

b

b

b

b  (198) 

respectively. 

Similarly, a full, command-integral neural network NNI that models the desired 

mapping (eq. 151) and has coupled inputs and outputs, is obtained from the scalar 

command-integral networks in eq. 159.  Its architecture can be abbreviated by 

∆uI = NNI[ξξξξ, a] (Fig. 47).  Its initial input and output weight matrices are obtained from 

those of the scalar networks, initialized in Section 4.3, as follows, 

��
��
�

�

�

��
��
�

�

�
=

22

11

22

11

LDILDI

LDILDI

LILI

LILI

I

a
� a

� a
� a

�

WW0

WW0

W0W

W0W

W  (199) 

and 



 132 

��
��
�

�

�

��
��
�

�

�
=

T
I

T
I

T
I

T
I

I

LD

LD

L

L

2

1

2

1

v000

0v00

00v0

000v

V  (200) 

The full, command-integral input and output biases are, 

��
��
�

�

�

��
��
�

 

!
=

2

1

2

1

LD

LD

L

L

I

I

I

I

I

d

d

d

d

d  (201) 

and, 

""
""
"

#

$

%%
%%
%

&

'
=

2

1

2

1

LD

LD

L

L

I

I

I

I

I

b

b

b

b

b  (202) 

respectively.  They, too, are obtained from the command-integral pre-trained neural 

networks in Section 4.3, as indicated by the algebraic operations illustrated in Figs. 43 

and 44. 

 

. . . 

+ 

_ 

(  

(  

(  

WI 

V 

H 

V 

H 
. . . 

. . 

. . 
. . 

. . )
)
)
)

t

t

t

t

d

d

d

dV

0

0

0

0

~

~

~

~

τβ

τµ

τγ

τ

 

VI 

IaW

−−−−VI 

*  

∆δTI 
∆δSI 
∆δAI 
∆δRI 

ξξξξ 
~ 

a 

a 

∆uI = 

 

Figure 47. Architecture of the command-integral neural network NNI (biases not shown). 



 133 

A full critic network that models the input/output relation in eq. 174 also can be 

obtained from the scalar, decoupled critic networks initialized in Section 4.5.  Its weights 

can be computed from those of the networks in eq. 178-179.  The initial input-weight 

matrix is: 

++
++
++
++
++
++
++
++
++
++

,

-

..
..
..
..
..
..
..
..
..
..

/

0

=

666

555

666

555

444

333

222

111

444

333

222

111

~

~

~

~

~

~

~

~

~

~

~

~

LDCLDCLDC

LDCLDCLDC

LCLCLC

LCLCLC

LDCLDCLDC

LDCLDCLDC

LDCLDCLDC

LDCLDCLDC

LCLCLC

LCLCLC

LCLCLC

LCLCLC

C

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

a
1

x

WW0W0

WW0W0

W0W0W

W0W0W

WW0W0

WW0W0

WW0W0

WW0W0

W0W0W

W0W0W

W0W0W

W0W0W

W  (203) 

The initial output-weight matrix, VC, is obtained by placing the vectors T
CL1

v , T
CL2

v , T
CL3

v , 

T
CL4

v , T
CLD1

v , T
CLD2

v , T
CLD3

v , T
CLD4

v , T
CL5

v , T
CL6

v , T
CLD5

v , and T
CLD6

v  along the diagonal 

of a zero matrix, in this order, similarly to eq. 196 and 200.  The input and output biases 

are, 

TT
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
CC LDLDLLLDLDLDLDLLLL

][
656543214321

ddddddddddddd =  

(204) 

and, 

T
CCCCCCCCCCCCC LDLDLLLDLDLDLDLLLL

bbbbbbbbbbbb ][
656543214321

=b  (205) 



 134 

respectively.  The full critic neural network, NNC, is shown in Fig. 48.  Since its 

input/output structure is fully coupled and consistent with eq. 189, it is now ready for use 

in the adaptive control system. 

 

_ 

V 

γ 

q 

θ 
r 
β 
p 
µ 

2
2
2
2

t

t

t

t

d

d

d

dV

0

0

0

0

~

~

~

~

τβ

τµ

τγ

τ

 

V 
H 

~ 

~ 
~ 
~ 
~ 
~ 

~ 
~ 

. . . 

+ 

3  

3  

. . . 
. . 

. . 

. . 

V 

H 

 WC 

3  

. 

. 

. 

 VC 

 −−−−VC 

     ∂V/∂V 
     ∂V/∂γ 

     ∂V/∂q 

     ∂V/∂θ 

     ∂V/∂r 

     ∂V/∂β 

     ∂V/∂p 

     ∂V/∂µ 

4
4
4

4

t

t

t

t

d

d

d

dV

0

0

0

0

)(

)(

)(

)(

~

~

~

~

τβ

τµ

τγ

τ

 

        V 

        H 

~ 

~ 

~ 
~ 

~ 
~ 

~ 
~ 

∂V/∂ 

∂V/∂ 

∂V/∂ 

∂V/∂ 

5  

IaW

xa 

a 

a 

= 
∂V 
∂xa 

 

Figure 48. Architecture of the critic neural network NNC (input and output biases are not 
shown, for simplicity). 

According to eq. 189 and 153, the action-network output, u~ , must equal the sum of 

the feedback and command-integral network outputs, ∆uB and ∆uI.  Also, the input pa is a 

combination of the feedback and command-integral inputs, x~ , ξξξξ, and a.  Therefore, the 

architecture and the initial parameters of the action network can be determined from NNB 

and NNI, through the algebraic network addition described above.  The action input and 

output weight matrices are initialized as follows: 



 135 

66
66
66
66
66
66

7

8

99
99
99
99
99
99

:

;

=67
89:

;
=

22

11

22

11

22

11

22

11

~

~

~

~

~

LDILDI

LDILDI

LILI

LILI

LDBLDB

LDBLDB

LBLB

LBLB

II

BB
A

a
< a

< a
< a

< ax

ax

ax

ax

a
< ax

WW000

WW000

W0W00

W0W00

W00W0

W00W0

W000W

W000W

WW0
W0W

W  (206) 

[ ] ==
==
=

>

?

@@
@@
@

A

B
==

T
I

T
B

T
I

T
B

T
I

T
B

T
I

T
B

IBA

LDLD

LDLD

LL

LL

22

11

22

11

v000v000

0v000v00

00v000v0

000v000v

VVV  (207) 

The action input and output biases are dA = [dB
T dI

T]T and bA = bB + bI.  Figure 49 shows 

the final architecture of the action network to be used in the on-line adaptive controller 

discussed in the following section. 



 136 

 

u ~ 

V 

γ 

q 

θ 
r 
β 
p 
µ 

C
C
C

C

t

t

t

t

d

d

d

dV

0

0

0

0

~

~

~

~

τβ

τµ

τγ

τ

 

V 

H 

~ 

~ 
~ 
~ 
~ 
~ 
~ 
~ 

. . . 

+ 

_ D  

D  

. . . 
. . 

. . 

. . 

V 

H 

 WA 

D  

. 

. 

. 

 VA 

 −−−−VA 

D  

AaW

δT 
δS 
δA 
δR 

~ 
~ 
~ 
~ 

xa 

a 

a 

= 

 

Figure 49. Architecture of the action neural network NNA (input and output biases are not 
shown, for simplicity). 

5.1.2 Action and Critic Network On-line Adaptation 

A nonlinear controller that adapts on line based on the DHP adaptive critic 

architecture is shown in Fig. 50.  The proportional-integral designs obtained in Section 

4.1 are contained, implicitly, in the action and critic network’s parameters initialized in 

the preceding section.  During each time interval ∆t = tk+1 − tk, the networks are adapted 

based on the actual state of the aircraft, x(tk), to more closely approximate the globally-

optimal control law and value function derivatives, through the criteria in eq.s 187 and 

188.  Figures 51 and 52 show that the implementation of these criteria involves an on-

going flow of information between the action and the critic that also is illustrated in Figs. 



 137 

41 and 50.  In particular, eq. 187 and 188 are used to generate desired outputs or targets 

for the action and the critic, denoted by )(~
kD tu  and )( ka t

D

E
, that correspond to the 

present value of their input, i.e., pa(tk).  The parameters of each network are updated to 

minimize the mean-squared error between the target and its actual output, z[pa(tk)].  

During the first time interval, (t1 − t0), the initialized network weights are used before 

each network’s update.  Afterward, the weights obtained during (tk − tk−1) are used as 

initial weights for the interval (tk+1 − tk). 

 

NNC 

Nonlinear 
Plant 

x(t) 

ys(t) 

+ 

yc(t) 

 CSG 
xc(t) 

F
 

 SVG 

NNF 

e(t) 

hs[x(t),u(t)] 

uc(t) 

− NNA 

a(t) 

u(t) ~ 
ξξξξ(t) 

λλλλa(tk) 

x(t) ~ y(t) ~ 

+ 

+ 

+ 

− 
u(t) 

 

Figure 50. Action critic neural network controller.  The dashed lines represent the flow of 
information for the adaptation, during the time interval (tk+1 − tk). 

The action network’s target, )(~
kD tu , is obtained by solving the optimality condition 

(eq. 187), which consists of a set of nonlinear equations.  The MATLAB function fsolve 

(part of the Optimization Toolbox) is used for solving these equations by a least-squares 

method.  The initial guess to their solution, G
kD t )(~u , is provided by the action network 

using its latest weights obtained during (tk − tk−1), and is perturbed by the chosen 

algorithm (e.g., Newton-Raphson) until the default stopping condition is met.  The search 

for )(~
kD tu  can be constrained to the physically-meaningful values of u~  by assigning 



 138 

exponential weighting to the control elements beyond the reasonable bounds.  Solving the 

optimality condition independently of the action weights’  update is considerably more 

effective then optimizing eq. 187 with respect to the network weights (that is, the true 

reinforcement-learning approach).  It allows the algorithm to explore a reduced, m-

dimensional parameter space, and to recover from bad solutions (e.g., lying outside the 

bounds) before the action network is affected. 

Given a guess for the solution, )(~
kD tu G, and the actual value of xa(tk), the optimality 

condition can be evaluated from the quantities in eq. 187, as described in Fig. 51.  The 

utility function derivative is computed analytically from eq. 182: 

( ) ( )[ ]
( ) ( ) ( ) ak

T
ak

T
a

k

kkaSD tt
t

tt
RuMx

u

ux ~
~

~,L
+=

∂
∂

 (208) 

The following equation represents the sampled-data model for the augmented system: 

( ) ( ) ( ) ( )[ ]kkmkSDaka tttt upxfx a
~,,1 =+ ,  xa(t0) given (209) 

It is obtained numerically by using a Runga-Kutta algorithm [90] to integrate the aircraft 

simulation (eq. 1) described in Chapter 4 and the ordinary differential equation governing 

the behavior of ξξξξ in continuous time, i.e.: 

( ) ( )
( ) ( )t
t
t

t
LD

L

LD

L xH
x
x

H0
0HG

x
x

x ~
~
~

=HIJKLMHI
JKLM=

N
 (210) 

Then, the discrete model in eq. 209 is perturbed numerically, using the MATLAB 

function numjac [79], to obtain the transition matrix ∂xa(tk+1)/∂ )(~
ktu .  This model also is 

needed to predict xa(tk+1), based on )(~
kD tu  and xa(tk).  Once xa(tk+1) is known, the critic 

network can be used to compute λλλλa(tk+1) in eq. 187, based on the latest value of the neural 

parameters.  After the optimality condition has been solved for )(~
kD tu , this target can be 



 139 

used to update the weights of the action network, by means of the on-line training 

algorithm (Section 5.1.3). 

 

Given the state, xa(tk), guess 
desired control, uD(tk)

G 

Compute utility function 
derivative, ∂LSD[•]/∂u(tk) 

PLANT MODEL: 
-  State prediction, xa(tk+1) 

-  Transition matrix prediction, 
∂xa(tk+1)/∂u(tk) 

CRITIC: 
-  Predict cost-to-go, λλλλa(tk+1) 

Compute optimality 
condition, ∂V[xa(tk)]/∂u(tk) 

Check 
stopping 
condition 

Update action network 
weights based on uD(tk) 

Perturb desired 
control guess, uD(tk)

G 

Stop 

Continue 

~ 

~ 

~ 

~ 

~ 

~ 

 

Figure 51. Dual heuristic programming action network adaptation, during ∆t = tk+1 − tk. 



 140 

 

Given actual state, xa(tk) 

Compute utility function 
derivatives, ∂LSD[•]/∂u(tk) 

and ∂LSD[•]/∂xa(tk) 

PLANT MODEL: 
-  State prediction, xa(tk+1) 

-  Transition matrices prediction, 
∂xa(tk+1)/∂u(tk) and ∂xa(tk+1)/∂xa(tk) 

CRITIC: 
-  Predict cost-to-go, λλλλa(tk+1) 

Compute desired  
cost-to-go, λλλλaD(tk) 

Update critic network 
weights based on λλλλaD(tk)

ACTION: 
-  Compute control, u(tk) 

-  Compute control gradient, 
∂u(tk)/∂xa(tk) 

~ 

~ 

~ 

~ 

 

Figure 52. Dual heuristic programming critic network adaptation, during ∆t = tk+1 − tk. 

Following the update of the action network’s parameters, the critic’s desired output 

)( ka t
D

O
 is computed from eq. 188 based on xa(tk), as shown in Fig. 52.  At this point, the 

actual values of )(~
ktu  and ∂ )(~

ktu /∂xa(tk) also are known.  In the case of the critic, no 

iteration is needed to compute its desired output, which is merely an approximation to 



 141 

λλλλa(tk).  In order to determine the right-hand side of eq. 188, eq. 208 must be re-evaluated 

together with the utility derivative, 

( ) ( )[ ]
( ) ( ) ( )[ ]Tkaak

T
a

ka

kkaSD tt
t

tt
uMQx

x

ux ~
~,L

+=
∂

∂
 (211) 

which also is obtained from eq. 182.  The transition matrices ∂xa(tk+1)/∂ )(~
ktu  and 

∂xa(tk+1)/∂xa(tk) both are computed numerically from eq. 209.  Finally, the critic network 

is needed to produce λλλλa(tk+1) in eq. 187, based on the latest prediction of xa(tk+1) and on 

the critic’s parameters obtained during (tk − tk−1).  After the target )( ka t
D

P
 becomes 

available, it can be used to update the critic network through the on-line training 

algorithm described in the following section. 

5.1.3 Neural Network On-line Training Algorithm 

As part of the adaptation taking place during the time interval ∆t = tk+1 − tk, the action 

and the critic neural parameters are updated based on their respective targets ( )(~
kD tu  or 

)( ka t
D

P
), as computed by the algorithms in Figs. 51 and 52.  In particular, each of these 

networks is updated to more closely approximate its desired output, denoted in general by 

zD, as soon as it becomes available.  The modified resilient backpropagation (RPROP) 

algorithm introduced in Section 3.2 is used for this purpose.  Given the network input 

pa(tk), an error function of the type in eq. 86 can be defined with respect to a vector of 

ordered weights, w = { wQ } , i.e.: 

( ) ( ) 2

2

1
wzzw −≡ DE  (212) 

Where, z denotes the actual network output corresponding to pa(tk).  At the time tk, w is 

obtained from the input and output weights of either the action or the critic networks 



 142 

(depending on which one is being updated).  Then, during ∆t, w(tk) is modified by the 

RPROP algorithm, ultimately producing the network parameters w(tk+1), for the next 

moment in time, as sketched in Fig. 53.  Based on the idea of backpropagation learning 

[76], at each iteration or epoch -- indexed by (i) -- the algorithm modifies the value of 

each weight wQ (i) by a small increment of size ∆Q (i) that is based on corresponding 

derivative information, ∂E(w)/∂wQ  (as explained in Section 3.2). 

 
w(0) = w(tk) 

w(tk+1) 

w(i) w(i+1) RPROP 
Algorithm 

 

Figure 53. Conceptual illustration of on-line training by a resilient backpropagation 
algorithm that updates the weights through a number of epochs (i), during ∆t = tk+1 − tk. 

Thanks to the pre-training phase, the weights are close to their optimal values, and the 

minimization can be kept local.  The on-line adaptation is effective as well as reliable 

when the error (eq. 212) is decreased at the on-set of training, indicating an immediate 

descent toward a nearby minima, and when the update algorithm does not disregard nor 

degrade prior network weights, which already contain valuable information.  Also, the 

action and critic networks, with the architecture and parameters initialized in Section 

5.1.1 are fairly large (having between 102 and 408 nodes), and have weights that are 

highly dissimilar in magnitude.  Therefore, the modified RPROP algorithm obtained in 

Section 3.2 is particularly well suited for this application.  For both networks, the user-

specified parameters are: η+ = 1.2, η− = 0.5 [77], fw ~ O(10-5), and f0 << 1. 



 143 

To demonstrate the effect of the proposed modifications, the action network NNA 

(initialized in Section 5.1.1) is trained at tk = 0.2 sec using both the MATLAB’s RPROP 

training function trainrp based on the original algorithm [77], but without backtracking, 

and the proposed modified version.  The effectiveness of both updates is tested by 

carrying out training until its convergence, when the mean square of the network error, 

i.e., 

( )wzzeNN −≡ D   (213) 

ceases to change.  The network error is plotted vs. the number of epochs as a measure of 

performance in Fig. 54.  The results are typical among a number of simulations that 

involved both the action and the critic networks. 

 

0 50 100 150

10
-10

10
0

10
10

10
20

MATLAB R  algorithm 

Modified algorithm 

Epochs 

Initial 
error 

M
ea

n-
sq

ua
re

d 
er

ro
r 

pe
rf

or
m

an
ce

 

0 50 100 150

10
-10

10
0

10
10

10
20

MATLAB R  algorithm 

Modified algorithm 

Epochs 

Initial 
error 

M
ea

n-
sq

ua
re

d 
er

ro
r 

pe
rf

or
m

an
ce

 

 

Figure 54. Performance comparison between the MATLAB S  resilient backpropagation 
algorithm and its modified version, for the action network training at tk = 0.2 sec. 

The modified algorithm begins decreasing the error by the third epoch, and it 

converges to almost the same performance as the MATLAB function in half the number 

of epochs.  Although the initial error is relatively small in magnitude, the MATLAB 



 144 

function begins with too large an increment, and degrades the initial weights by looking 

for minima that are far away because of the absence of the backtracking feature.  As a 

consequence, the error increases considerably (in this case, of approximately twenty 

orders of magnitude) before the appropriate increment size is found.  Using eq. 91 for the 

initial increment size, ∆T (0), typically diminishes the number of epochs required to adapt 

∆T ; meanwhile, backtracking prevents the algorithm from degrading the weights.  This 

can be verified, for example, by monitoring the size of the increments and the number of 

weights for which backtracking is performed at every epoch. 

The final network error alone is not a key component for the comparison of the two 

algorithms, because it only is based on local information, i.e., on one piece of 

input/output data, { pa(tk), zD} , rather than on global knowledge.  Therefore, a smaller 

value of E(w) may actually imply a worse global performance, as is the case for the 

MATLAB-trained action network in Fig. 54.  On the other hand, an algorithm that 

decreases E(w) while preserving initialization knowledge as much as possible can 

improve performance locally and globally over time by exploring new regions of the 

input space.  The final simulations in Section 5.2 demonstrate that this is, indeed, 

achieved satisfactorily by the modified RPROP algorithm.  Also, as a first step in the 

validation process, the values of the action network weights updated in Fig. 54 are 

compared to their initial values in Fig. 55.  After 150 epochs, the initialized weights have 

been modified to a much greater extent by the MATLAB algorithm than by the modified 

RPROP.  The latter algorithm achieves a performance similar to the former, but exploits 

mainly the neural parameters that were initialized to zero in Section 5.1.1, and only 

slightly perturbs the remaining ones.  The MATLAB algorithm not only alters the zero 



 145 

parameters by about ten orders of magnitude more than the modified algorithm, but also 

brings about a noticeable change in the non-zero ones.  Section 5.3 shows how this result 

can be explained theoretically, and how the algorithm can be further modified to 

guarantee the preservation of a-priori knowledge. 

 

lo
g|

w
| 

Weight vector element index 

Initial weights, w(0)  

Final weights (modified algorithm) 

Final weights (MATLAB R ) 

 

Figure 55. Comparison of the action network’s weights trained with the MATLAB S  
resilient backpropagation algorithm and with its modified version.  The initial weights 
w(0) are selected at tk = 0.2 sec and trained for 150 epochs, producing the final weights. 

A key design attribute, that also is motivated by the above considerations about local 

vs. global performance, consists of terminating the action and critic network on-line 

training before reaching convergence.  Convergence often is loosely identified with a 

flattening of the network-error curve during training (see also Fig. 54), but, in actuality, it 

cannot be so easily recognized.  In this implementation, for every input/output pair 

{ pa(tk), zD} , the network update terminates after the mean-squared network error has 

decreased by 10% and at least three epochs have elapsed, allowing the increment-size 

adaptation to take place.  When more than a few epochs are needed to decrease the error 



 146 

by this amount, it means that eq. 91 is not producing a satisfactory initial increment.  

Thus, the terminating value of ∆T  is saved and used as ∆T (0) for the next time interval’s 

update (for all U ).  This stopping rule also guarantees that the terminating weights, w(tk+1), 

to be used during ∆t = tk+2 − tk+1, will deliver better local performance (E) than the 

previous weights, w(tk).  Several epochs may be required to update the action and the 

critic during the first one or two time intervals or when significant changes in the overall 

controller’s performance occur, that is, when the increment size needs substantial 

improvement.  Otherwise, three epochs typically are sufficient to decrease the network 

error by a significant amount. 

Using this early-termination rule not only is computationally less expensive than 

waiting for local convergence, but it also eliminates problems such as divergence and 

overfitting.  Employing the sign instead of the value of the derivatives also brings about 

considerable computational savings and efficiency, as anticipated in Section 3.2.  This 

partly is true because of the savings associated with storing and computing the quantity 

sgn[∂E(w)/∂wT ] instead of the value ∂E(w)/∂wT , for all U .  Only the action and critic input 

and output weights are updated on line, i.e., 

( ) ( )[ ] { } VWW
,2,1VecVec ==≡ w

TTT VWw x  (214) 

anticipating the results of Section 5.3.  The input and output biases, d and b, and Wa are 

kept constant.  Then, the performance derivatives needed in RPROP’s eq. 89 and 90 can 

be defined as, 

XYY
,2,1

VecVec
=

Z [
\

]^ _
∂
∂=``a

b
ccde fghijk

∂
∂fghijk

∂
∂≡

∂
∂

w

EEEE
TTT

VWw
 (215) 



 147 

and, the remaining quantities were previously introduced.  For the “signum” and “Vec”  

operators the following holds: 

TTT
EEE llm

n
oop
q lm

nop
q rstuvw

∂
∂lm

nop
q rstuvw

∂
∂=

rstuvw
∂
∂

VWw
sgnVecsgnVecsgn  (216) 

Thanks to the sigmoidal function’s property sgn[σ(n)] = sgn(n) (Section 3.1), the vector 

of gradient signs in eq. 217 can be obtained from the signs of the input weights, 

( ) ( )T
a

TE
xeV

W NN sgnsgnsgn −=
xyz{|}

∂
∂

 (217) 

and from the signs of the output weights, 

( ) ( )TE
ne

V NN sgnsgnsgn −=
~�����

∂
∂

 (218) 

where n is defined as in eq. 39.  Therefore, sigmoidal-function evaluations only are 

required to compute the network output, z, for use in the action/critic implementation and 

in eq. 213.  Finally, an example of modified-RPROP algorithm similar to the one 

employed for all network updates is shown in Appendix B. 

5.2 Adaptive Flight Control Results 

The adaptive PI neural network controller (Fig. 50) is implemented for the control of a 

full, six-degree-of-freedom simulation of a business-type twin-jet aircraft.  The controlled 

aircraft follows a sequence of set points (i.e., a trajectory) specified by the command 

input, as by intent of the pilot or of a guidance law.  PI dynamic compensation improves 

performance in the presence of constant or slowly-varying disturbances and parameter 

variations [81].  The simulation is allowed to explore any region of the aircraft 

operational domain (OR), defined as the envelope for which trim control settings exist, 



 148 

and to temporarily leave this domain, for example, due to emergency situations and 

abrupt maneuvers.  On-line adaptation by a DHP architecture (described in Section 5.1) 

learns new simulated aircraft dynamics, based on full-state feedback.  A metric that 

expresses stability and control characteristics as well as handling qualities that are safe 

and pleasant to the pilot (Section 4.1.2) is optimized during both off-line and on-line 

learning.  The resulting control system is as conservative as the scheduled linear designs 

incorporated during the pre-training phase, and as effective as the global nonlinear 

controller. 

The action and critic network parameters were initialized based only on linear control 

knowledge obtained for a set of thirty-four operating points (OP).  Any remaining 

information is incorporated entirely on line.  In fact, the discrete model (eq. 209) used in 

the DHP architecture and the forward neural network, NNF, obtained from the aircraft 

simulation (eq. 1), only are utilized by the on-line adaptation.  Therefore, in principle, 

they also could be updated on line, based on the actual aircraft state.  In this application, 

they always are held fixed; whereas, the aircraft simulation that represents the real plant 

is modified in Section 5.2.2 and 5.2.3, to reproduce unexpected control failures and 

parameter variations.  In the following section, the controller learns the simulation’s 

nonlinear and coupling effects that were missed by the linearized longitudinal and lateral-

directional models incorporated a priori.  In every instance, the simulated equations of 

motion with feedback control provided by the nonlinear neural controller are integrated 

using a 4th-order Runga-Kutta (RK) routine [90] with a constant time step of 0.1 sec.  The 

adaptation time interval, ∆t, also is chosen equal to 0.1 sec. 



 149 

5.2.1 Full-Envelope Maneuvers 

The histories of the state elements directly commanded by yc are used to asses the 

adaptive controller’s performance, similarly to Sections 4.1.3 and 4.3.  During every 

interval ∆t, the adaptation also is locally evaluated by monitoring the optimality condition 

(eq. 187) as well as the progress of the mean-squared network error (eNN) of both the 

action and the critic.  The optimality condition is solved numerically for the action 

network target, )(~
kD tu , as explained in Section 5.1.2; because the terms in eq. 187 are 

approximate, the MATLAB function fsolve usually terminates before finding its exact 

solution, returning a final objective-function value that is greater than zero.  As the DHP 

adaptation converges to the optimal policy over time, the quantities in eq. 187 also 

converge to their optimal value and the objective-function value decreases considerably.  

This scalar objective constitutes a convenient means for monitoring the temporal 

behavior of the solution to eq. 187.  In addition, the network error is a direct indication of 

how well the network is doing with respect to the desired target (zD).  Since the network 

input (pa) represents the deviation from the desired trajectory (commanded by yc), the 

network output also is expected to decrease in time, at least until a new command input is 

provided.  Thus, a network error that consistently decreases in time over a newly 

explored region of the input space suggests that the adaptation is taking place efficiently.  

Finally, in order to obtain a fair evaluation of the effects of on-line learning, the state 

response is judged against that of the initialized PI controller tested in Section 4.3, whose 

parameters are held fixed. 



 150 

Case 1: Adaptive Control During a Coupled Maneuver 

The aircraft response is considered during a large-angle asymmetric maneuver, for 

which coupling effects between the longitudinal and lateral-directional dynamics are 

significant.  Initially, the aircraft is flying steady and level, at a nominal airspeed V0 of 

95 m/s and an altitude H0 of 2, 000 m, i.e., at an interpolation point where (V0, H0) ⊄ OP.  

At time t = 0, a step command consisting of 5-deg climb angle and 30-deg roll angle is 

initiated, as would be required to perform a climbing steady turn.  The response of the 

aircraft subject to the on-line adaptive controller is plotted with a solid line in Fig. 56, 

together with that of the aircraft subject to the initialized PI controller (represented by a 

dashed line). 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
94.5

95

95.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

 

Figure 56. Comparison between the on-line trained adaptive critic neural network 
controller and the initialized neural network controller subject to 5-deg climb angle and 

30-deg roll angle step command, at (V0, H0) = (95 m/s, 2 Km). 

Initialized neural network control 
Adaptive critic neural network control 

Time, s 

µ,
 d

eg
 

β,
 d

eg
 

γ, 
de

g 
V

, m
/s

 



 151 

This comparison shows that the on-line adaptation taking place every 0.1 sec brings 

about an improvement with respect to the scheduled linear controllers.  The ideal 

characteristics of the aircraft response to a step-command input are defined in Section 

4.1.2.  Following this maneuver, additional tests show that the resulting controller not 

only is characterized by improved performance over this region of the state space but also 

has preserved prior knowledge over the remaining input space (IR).  When the final 

parameters are used for simulations that originate from different operating points in IR, 

the initial performance of the adaptive controller is equivalent to that of the pre-trained 

controller.  Also, over OP, the gradients of the networks are found to be very close to the 

linear gains obtained during the pre-training phase.  For example, when the final 

gradients of NNA are compared to CB
κ and CI

κ, for all κ ∈ OP, following the maneuver in 

Fig. 56, the total mean-squared error is found to be only 1.81×10-4. 

The adaptive control’s time history is compared to that of the initialized controller in 

Fig. 57, showing a minor difference in control usage.  The weights of the action and critic 

network undergo a small change, similarly to Fig. 55, except this change takes place over 

time rather than after many training epochs based on a single piece of input/output 

information.  Figures 58 and 59 show how the on-line training algorithm modifies the 

network error at different stages in the adaptation.  Initially (Fig. 58), eq. 91 is used to 

determine the increment size for the network weights; a flat curve of this kind usually 

indicates that the majority of the weight increments are too small and, thus, are being 

adapted (as explained in Sections 3.2 and 5.1.3).  At later times (e.g., Fig. 59), a few 

epochs are sufficient to decrease the network error in the direction of a nearby minima, 

thanks to the modified RPROP algorithm described in Section 5.1.3. 



 152 

The mean-squared network error constitutes a scalar representation of the progress 

made during training.  However, extensive numerical simulations have demonstrated that 

a smooth, monotonically decreasing training curve is obtained for mse(eNN) only when 

appropriate increment sizes (∆� ) are found, and both eq. 89 and 90 are converging. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-10

0

10

 

Figure 57. Comparison between the on-line trained adaptive critic neural network control 
history and the initialized neural network control history subject to 5-deg climb angle and 

30-deg roll angle step command (Fig. 56), at (V0, H0) = (95 m/s, 2 Km). 

The behaviors of the network error and of the optimality condition over time also show 

that the adaptation is drawing closer to the optimal policy.  The action and critic network 

errors decrease similarly to Fig. 59 during every time interval ∆t = tk+1 − tk, with 

tk > 0.1 sec.  An overall-decreasing objective-function value (eq. 187) is shown in Table 3 

for representative moments in time, at the on-set of ∆t, i.e., at tk. 

Initialized neural network control 
Adaptive critic neural network control 

Time, s 

δA
, d

eg
 

δR
, d

eg
 

δS
, d

eg
 

δT
, %

 



 153 

0 5 10 15 20 25
10

-2

10
-1

0 5 10 15 20 25 30
10

3

10
4

 Epochs 
(a) (b) 

lo
g{

m
se

(e
N

N
)}

, f
or

 N
N

A
 

Epochs 

lo
g{

m
se

(e
N

N
)}

, f
or

 N
N

C
 

 

Figure 58. Mean-squared network error for the action (a) and the critic (b) versus the 
number of on-line training epochs, for the coupled maneuver in Fig. 56-57, at tk = 0 sec. 

0 1 2 3 4 5
10

-4

10
-3

0 2 4 6 8
10

2

10
3

 Epochs 
(a) (b) 

lo
g{

m
se

(e
N

N
)}

, f
or

 N
N

A
 

Epochs 

lo
g{

m
se

(e
N

N
)}

, f
or

 N
N

C
 

 

Figure 59. Mean-squared network error for the action (a) and the critic (b) versus the 
number of on-line training epochs, for the coupled maneuver in Fig. 56-57, at tk = 0.4 sec. 

tk(sec) 0 0.1 0.5 1.0 1.5 2.0 3.0 4.0 4.5 5.0 

u~V/ ∂∂  2 104 7 103 2 103 492 279 19 48 6 103 721 660 

 

Table 3. Temporal behavior of the optimality condition at sample time intervals, for the 
coupled maneuver in Fig. 56-57. 



 154 

The DHP on-line phase takes advantage of prior information and improves upon it, 

without compromising it for later use.  This is easily verified by using the final weights 

from the present adaptation, w(tf), as initial weights, w(t0), for any of the maneuvers 

presented in the following sections.  In this case, the results -- to be introduced shortly -- 

remain virtually the same.  On the other hand, if the maneuver performed were the same, 

one could expect a further improvement in the performance the second time around, as 

will be demonstrated in Section 5.2.2.  Hence, the optimization truly is global. 

Case 2: Adaptive Control During a Large-Angle Maneuver 

The adaptive controller is implemented on a large-angle maneuver for which the 

nonlinear coupling effects are so significant as to, otherwise, lead to closed-loop 

instability.  To demonstrate this capability, a −70-deg turn is commanded, while the 

aircraft is flying steady and level at the nominal airspeed and altitude of 160 m/s and 

7, 000 m, respectively.  Typically, the maximum steady bank angle for a general aviation 

or transport aircraft does not exceed 60 deg.  Beyond such an angle, the aircraft cannot 

produce sufficient lift to maintain altitude, and the coupled dynamics become so 

significant as to compromise any decoupled control design; also, it becomes more 

difficult to coordinate the turn.  While a pilot normally would refrain from performing 

such a maneuver, abiding to safety regulations, it is conceivable for these conditions to 

come about in an emergency situation (or in aerobatic flight).  In fact, very-large bank-

angle turns near the ground contributed to many fatal accidents. 

In this case, the initialized controller, represented by a dashed line in Fig. 60, causes 

the aircraft to become unstable and, possibly, to enter a spin.  The roll and climb angles 

increase beyond acceptable limits; after about 4 sec, the angle-of-attack time history 



 155 

shows that the aircraft enters a stall.  At this point, the simulation can no longer be 

considered a faithful representation of the aircraft dynamics, as post-stall aerodynamic 

effects have not been modeled.  Still, the uncoupled control design causes the aircraft to 

gyrate wildly, and it is not capable of recovering from this maneuver.  Figure 60 also 

shows the response of the adaptive controller (in a solid line), for the same flight 

conditions.  In this case, the control system learns the relevant nonlinear neural network 

weights on line, preventing loss of stability. 

0 1 2 3 4 5 6 7 8 9 10
50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

-40

-20

0

0 1 2 3 4 5 6 7 8 9 10
-150

-100

-50

0

0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

 

Figure 60. Comparison between the on-line trained adaptive critic neural network 
controller and the initialized neural network controller subject to −70-deg roll angle step 

command, at (V0, H0) = (160 m/s, 7 Km). 

Under challenging circumstances, the tendency is for the system to demand 

unreasonable control usage.  While control bounds cannot always be easily incorporated 

in the control design, they can be accounted for in the adaptive critic architecture simply 

by modifying the weighting matrices in eq. 183-185.  In this implementation, the control-

Uncoupled neural network control 
Adaptive critic neural network control 

µ,
 d

eg
 

β,
 d

eg
 

γ, 
de

g 
V

, m
/s

 

Time, s 



 156 

weighting matrix Ra in eq. 187 is modified such that the search for the action target, 

)(~
kD tu , (Fig. 51) is constrained by physically meaningful values of the (total) controls.  

The original matrix, eq. 185, can be used everywhere else in the implementation 

(Appendix E) without loss of generality, thereby preventing numerical blow ups. 

The soft control constraints used in the large-angle simulation of Fig. 60, and in the 

simulations hereafter, are plotted in Fig. 61 for the throttle input and stabilator deflection.  

When the guess G
kD t )(~u  leads to a throttle input, δTG, that is greater than the upper 

bound, δTmax, or that is smaller than the lower bound, δTmin, the throttle-weighting 

element in Ra takes the exponential form, 

( ) 1210
1,1

−
=

GT

a e
δ

R  (219) 

where, δTmax = 1 %, δTmin = 0 %, and Ra(i, j) represents the element in the ith-row and the 

jth-column of the matrix Ra.  Similarly, when the target guess leads to a stabilator 

deflection, δSG, that is greater than its physical upper bound, δSmax, or smaller than its 

lower bound, δSmin, then the stabilator-weighting element in Ra is given by, 

( )
GS

a e
δ15

2,2 =R  (220) 

where, δSmax = 0.6 rad and δSmin = −0.6 rad.  A relation of the form in eq. 220 also is used 

for the elements weighting the aileron and rudder deflections, Ra(3, 3) and Ra(4, 4),when 

the following bounds are exceeded: −0.6 rad < δA < 0.6 rad, and −0.6 rad < δR < 0.6 rad.  

The simulation representing the actual aircraft (eq. 1), prevents the controls from 

exceeding their physical limitations, regardless of the control law’s outcome. 



 157 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12
x 10

5

-0.5 0 0.5
0

2

4

6

8

10

12

14

16
x 10

4

 
δT, % (a) (b) 

R
a(

1,
 1

) 

δS, deg 

R
a(

2,
 2

) 

 

Figure 61. Exponential weighting on the throttle (a) and on the stabilator (b) controls, 
producing the bounds represented by the dashed bars.  The weighting function in (b) also 

is used for the aileron and rudder controls. 

The time histories of the initialized and adaptive controllers that produce the aircraft 

response in Fig. 60 are plotted in Fig. 62.  These results show how the DHP architecture 

modifies the control law with respect to the one designed off line, considerably 

improving performance in time.  The adaptive controller is capable of learning the control 

bounds on line, meaning that it learns how to optimize the control law for the actual 

plant, subject to soft constraints that are known but not accounted for a priori.  This can 

be seen as another level of integration of a-priori and a-posteriori knowledge.  Although 

its control inputs also are bounded by the simulation, to represent the physical limitations 

of the control surfaces, the initialized controller can not become aware of these 

constraints, nor can it cope with them in real time.  The result is that while the adaptive 

control can sustain the desired banked turn, the uncoupled classical design leads to 

hazardous maneuver, as illustrated by the trajectories in Fig. 63. 



 158 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

-40

-20

0

0 1 2 3 4 5 6 7 8 9 10
-200

-100

0

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

 

Figure 62. Comparison between the adaptive critic neural network control history and the 
initialized neural network control history subject to −70-deg roll angle step command, at 

(V0, H0) = (160 m/s, 7 Km). 

0
200

400
600

800

-1000

-500

0

6750

6800

6850

6900

6950

7000

7050

 

A
lt

it
ud

e,
 m

 

East 
position, m North 

position, m 

Uncoupled neural network control 

Adaptive critic neural network control 

 

Figure 63. Comparison of the trajectories obtained with the on-line trained adaptive critic 
neural network controller and with the initialized neural network controller subject to a 

−70-deg roll angle step command, at (V0, H0) = (160 m/s, 7 Km). 

Time, s 

δA
, d

eg
 

δR
, d

eg
 

δS
, d

eg
 

δT
, %

 

Uncoupled neural network control 
Adaptive critic neural network control 



 159 

5.2.2 Control System Failure 

The adaptive controller’s response to control failure, possibly due to physical damage 

or actuator malfunctioning, is evaluated using the tools and metrics introduced in Section 

5.2.1.  The failures are simulated by modifying the aircraft equations of motion (eq. 1).  

They are not included in the discrete model (eq. 209), as they are assumed to be 

unforeseen conditions.  The DHP architecture proves capable of accounting for them on 

line, based on the observed aircraft dynamics (xa). 

Case 3: Adaptive Control During Multiple Control Failures 

The capability of the adaptive control system to handle a near-emergency situation is 

considered by simulating control failures during an approach for landing.  The aircraft, 

initially flying steady level at (V0, H0) = (100 m/s, 3, 000 m), begins its final approach by 

decreasing its velocity and performing a descending turn, following the step command 

input yc = [90 (m/s) −6 (deg) 50 (deg) 0 (deg)]T for ten seconds.  During this time, 

multiple control failures occur, impairing control of the aircraft.  The rudder and 

stabilator are temporarily stuck at 0 deg, for 5 sec ≤ tk ≤ 10 sec; during 0 sec ≤ tk ≤ 5 sec 

the rudder also is stuck at -34 deg, and both engines produce no thrust (δT = 0 %), at all 

times.  As a consequence, by tk = 10 sec, the airplane has entered a steep dive with a large 

roll angle and fast accelerations.  The state response and the control history during these 

first ten seconds, as produced by the initialized controller, are shown in Figs. 64 and 65, 

respectively.  This critical situation is simulated in order to compare the adaptive and the 

initialized control systems during a recovery maneuver with reduced but sufficient 

control authority. 



 160 

0 1 2 3 4 5 6 7 8 9 10
90

95

100

105

0 1 2 3 4 5 6 7 8 9 10
-40

-20

0

0 1 2 3 4 5 6 7 8 9 10
0

20
40
60
80

0 1 2 3 4 5 6 7 8 9 10
-40

-20

0

20

0 1 2 3 4 5 6 7 8 9 10
0

50

 

Figure 64. Uncoupled neural network controller response in the presence of failed control 
inputs, with yc = [90 (m/s) −6 (deg) 50 (deg) 0 (deg)]T and (V0, H0) = (100 m/s, 3 Km) 

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

0 1 2 3 4 5 6 7 8 9 10
-40

-20

0

 

Figure 65. Uncoupled neural network control history in the presence of failed control 
inputs, with yc = [90 (m/s) −6 (deg) 50 (deg) 0 (deg)]T and (V0, H0) = (100 m/s, 3 Km). 

Time, s 

µ,
 d

eg
 

γ, 
de

g 
V

, m
/s

 
ψ,

 d
eg

 
β,

 d
eg

 

Time, s 

δA
, d

eg
 

δR
, d

eg
 

δS
, d

eg
 

δT
, %

 



 161 

It is presumed that 10 sec after the initial failure, the pilot or guidance logic on board 

the aircraft has become aware of the critical situation and has aborted landing, initiating a 

wings-level climb to avoid obstacles on the ground.  First, the wings are brought back to 

level by commanding a 0-deg roll angle for 2 sec.  Then, an airspeed of 95 m/s and a 5-

deg path angle are commanded for climbing.  In the meantime, the stabilator has become 

fully operational, and the available throttle is increased to 50% (as by restoring full thrust 

to a single engine); the rudder is stuck at − 15 deg.  The response of the adaptive 

controller is compared to that of the initialized controller, resetting the integrator state to 

zero in both cases, to avoid the phenomenon known as integrator wind-up [93].  The 

error signal is said to wind-up the integrator when the integral component of the control 

signal has saturated and does not drop from its maximum value, even though the desired 

output has reached the set point and the error has changed sign. 

Figure 66 shows that the adaptation improves the command-input response, at times 

by more than 30 %, even though these conditions are being experienced for the first time 

(i.e., the adaptive critic is exploring a new region of the multidimensional flight envelope 

OR).  All relevant state histories, including total airspeed, are improved upon by the 

adaptive critic architecture.  The velocity and path angle are followed more closely, 

despite a lesser throttle usage, because the adaptive-controlled aircraft experiences 

smaller angles of attack and sideslip and, hence, less drag.  The adaptation also 

diminishes the amplitude of the roll and heading-angle oscillations.  The adaptive and 

initialized-control time histories are shown in Fig. 67.  Due to the limited (50 %) 

available thrust, the throttle-input profile is significantly modified and its usage is more 

evenly distributed over the time interval.  With the rudder stuck at – 15 deg, the lateral-



 162 

directional response is improved by adapting the aileron control input.  The next case 

shows not only that the latter adaptation has preserved prior global control knowledge, 

but also that revisiting this maneuver for a second time further improves local 

performance. 

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
90

95

100

105

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-40
-20

0
20

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

-50

0

50

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-20

-10

0

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-10

0
10
20
30

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

50

100

 

Figure 66. Comparison between the adaptive and the initialized neural controllers in the 
presence of multiple control failures (Fig. 67). 

Adaptive critic neural network control 
Initialized neural network control 

µ,
 d

eg
 

γ, 
de

g 
V

, m
/s

 
ψ,

 d
eg

 
β,

 d
eg

 
α,

 d
eg

 

Time, s 

Command input 



 163 

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

0

0.2

0.4

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-40

-20

0

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

-60
-40
-20

0
20

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-16

-15

-14

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-16

-15

-14

 

Figure 67. Adaptive and initialized neural control histories with 50 %-available thrust and 
the rudder stuck at −15 deg. 

Case 4: Adaptive Control During a Previously-Encountered Maneuver 

In the previous case, the adaptive control system was confronted with an unexplored 

region of the state space (OR) and with novel dynamics characterized both by nonlinear 

effects and by unexpected control failures.  Given the amount of information to be 

assimilated on line, it is reasonable to expect that this first adaptation left room for further 

improvement.  Therefore, the action and critic neural weights obtained at the end of the 

previous time period, i.e., at tk = 15 sec, are used as initial weights for a second 

adaptation that is performed under the same conditions as the previous one.  This 

scenario can be considered equivalent to a case in which the aircraft encounters the same 

situation (Case 3) for a second time, with no significant adaptation in between. 

The state response obtained during the second adaptation (solid line) is compared to 

that obtained during the first adaptation (now represented by a dashed line) in Fig. 68.  

Time, s 

Adaptive critic neural network control 
Initialized neural network control 

δA
, d

eg
 

δR
, d

eg
 

δS
, d

eg
 

δT
, %

 



 164 

The fact that initially these two responses are virtually identical signifies that, while 

improving performance over time, the first adaptation had not degraded prior knowledge 

elsewhere (in this case, over the region of the state space visited during the first few time 

intervals).  Hence, the second adaptation inherits what was learned both through the pre-

training phase and during the first on-line adaptation; moreover, it improves performance 

with respect to the latter and, thus, also with respect to the former.  In particular, Fig. 68 

shows that the updated controls (plotted in Fig. 69) considerably reduce the amplitude of 

the angle-of-attack and sideslip oscillations, eventually preventing stall.  All this is 

achieved without compromising the velocity and path-angle response, implying that the 

control system is being reconfigured over time to deal with the failed control inputs. 

Testing the adaptation for the recovery maneuver (that is, after tk ≥ 10 sec) 

demonstrates that persistence of excitation [92] is not required to learn about the failed 

controls.  The adaptive controller copes with the failures as soon as it encounters a 

stimulus, without having to prepare for it ahead of time through another challenging 

maneuver.  Therefore, if the failures were to occur during steady level flight when little 

or no learning takes place, the control system would still be able to account for them 

effectively once the need arose.  Monitoring the optimality condition and network errors 

over time confirms that the adaptive elements are converging to a nearly optimal, global 

control policy.  The optimality condition and the network errors during the second 

adaptation are smaller than during the first one.  This behavior always is observed during 

simulations of the adaptive DHP controller, provided that the neural network input pa is 

bounded. 



 165 

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
90

95

100

105

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-40
-20

0
20

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-50

0

50

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-20

-10

0

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-10

0
10
20
30

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

50

100

 

Figure 68. Adaptive controller response to a maneuver experienced for the first and 
second time, in the presence of multiple control failures. 

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

0

0.2

0.4

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-40

-20

0

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

-60
-40
-20

0
20

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-16

-15

-14

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-16

-15

-14

 

Figure 69. Adaptive control history for a maneuver experienced for the first and second 
time, in the presence of multiple control failures.. 

Time, s 

µ,
 d

eg
 

γ, 
de

g 
V

, m
/s

 
ψ,

 d
eg

 
β,

 d
eg

 
α,

 d
eg

 
Adaptive control (1st adaptation) 

 Adaptive control (2nd adaptation) 

Command input 

Adaptive control (1st adaptation) 
 Adaptive control (2nd adaptation) 

Time, s 

δA
, d

eg
 

δR
, d

eg
 

δS
, d

eg
 

δT
, %

 



 166 

5.2.3 Parameter Variations 

Case 5: Adaptive Control in the Presence of Parameter Variations 

The adaptive controller is tested for a case in which the parameters of the simulated 

aircraft have changed with respect to the original model (eq. 1) that was used to design 

the initialized controller (Chapter 4).  All control effectors are assumed to be unfailed.  

The pitch-rate and angle-of-attack-rate effects are decreased by 50 %, the static and 

directional stability coefficients are reduced by 20 % and 30 %, respectively.  With the 

original aircraft parameters, the response of the initialized controller subject to a small-

angle command input of 2 deg path angle, 5 deg roll, and 3 deg sideslip can be 

considered to be optimal at a design point, e.g., (V0, H0) = (200 m/s, 11, 000 m).  Due to 

these modified aerodynamic effects, actual dynamic characteristics such as Dutch roll and 

natural frequency differ from those accounted for by the linear design (Section 4.1).  

Therefore, the performance of the initialized controller is degraded with respect to its 

original baseline, as shown in Figs. 70-71. 

Although the DHP architecture employs a model that is based on the original aircraft 

parameters, it can learn about the new dynamics through its knowledge of the actual state.  

In this case, a first adaptation does not bring about a considerable improvement.  But Fig. 

72 shows that if the simulated aircraft with modified parameters undergoes the same 

maneuver a second time, the adaptation considerably improves performance and provides 

a response that is nearly optimal (Fig. 70).  Control usage also is reduced with respect to 

the initialized controller, as shown in Fig. 73.  The DHP implementation is found to be 

robust and capable of learning through an imperfect model. 



 167 

0 1 2 3 4 5

199.8

200

200.2

0 1 2 3 4 5
0

2

4

0 1 2 3 4 5
0

5

0 1 2 3 4 5
0

2

4

 

Figure 70. Initialized controller response for the perfectly-modeled aircraft and in the 
presence of parameter variations, with yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and at 

the design point (V0, H0) = (200 m/s, 11 Km). 

0 1 2 3 4 5
0.6

0.8

1

0 1 2 3 4 5
-3

-2

-1

0

0 1 2 3 4 5
0

5

0 1 2 3 4 5

0
5

10

15

 

Figure 71. Initialized control history for the perfectly-modeled aircraft and in the presence 
of parameter variations, with yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and at the design 

point (V0, H0) = (200 m/s, 11 Km). 

µ,
 d

eg
 

γ, 
de

g 
V

, m
/s

 
β,

 d
eg

 

Time, s 

Initialized control with perfect modeling 
 Initialized control with parameter variations 

δA
, d

eg
 

δR
, d

eg
 

δS
, d

eg
 

δT
, %

 

Time, s 

Initialized control with perfect modeling 
 Initialized control with parameter variations 



 168 

0 1 2 3 4 5

199.8

200

200.2

0 1 2 3 4 5
0

2

4

0 1 2 3 4 5
0

5

0 1 2 3 4 5
0

2

4

 

Figure 72. Comparison between the adaptive neural network controller and the initialized 
neural network controller in the presence of parameter variations, with 

yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and (V0, H0) = (200 m/s, 11 Km). 

0 1 2 3 4 5
0.6

0.8

1

0 1 2 3 4 5
-3

-2

-1

0

0 1 2 3 4 5
0

5

0 1 2 3 4 5

0
5

10

15

 

Figure 73. Control history of the adaptive neural network controller and of the initialized 
neural network controller in the presence of parameter variations, with 

yc = [200 (m/s) −2 (deg) 5 (deg) 3 (deg)]T and (V0, H0) = (200 m/s, 11 Km). 

µ,
 d

eg
 

γ, 
de

g 
V

, m
/s

 
β,

 d
eg

 

Adaptive control (2nd adaptation) 
δA

, d
eg

 
δR

, d
eg

 
δS

, d
eg

 
δT

, %
 

Initialized control with perfect modeling 
 Initialized control with parameter variations 

Time, s 

Time, s 

Initialized control with perfect modeling 
 Initialized control with parameter variations 

Adaptive control (2nd adaptation) 



 169 

5.3 Algebraically Constrained Adaptive Critic Architecture 

Neural network output and gradient weight equations can be used to guarantee that a-

priori knowledge is preserved during incremental learning over time, by following a 

development along the lines of the one introduced in Section 3.3.  A portion of the neural 

parameters can be used to satisfy the same set of requirements that were incorporated by 

initializing the neural networks off line.  Meanwhile, the remaining parameters are 

updated incrementally through an optimization-based on-line training algorithm.  

Typically, the set of requirements to be incorporated off line consists of a batch training 

set and can be matched exactly through an algebraic training technique (Section 3.1).  In 

on-line learning, the objective is to improve the overall neural function approximation 

based on local information that become available a piece at the time and, therefore, can 

be incorporated only incrementally.  One of the main challenges of on-line learning is 

retaining, or remembering, previous information while assimilating new information.  In 

particular, when global knowledge of the function being approximated is available off 

line, the on-line training algorithm must be able to take advantage of it before it is 

forgotten.  This can be achieved by the action and critic networks, and prior knowledge 

can be maintained intact while their performance is improved incrementally over time. 

A basic assumption is that the linear control knowledge obtained in Section 4.1 also 

holds on line; this is implied, provided the aircraft dynamics always can be approximated 

by the linearized models at the operating points in OP.  When the plant to be controlled is 

expected to undergo considerable unforeseen changes (as due to system failure or 

damage), the on-line adaptation should not be constrained in this fashion; instead, it 

should be carried out as described in Sections 5.1 and 5.2.  Nevertheless, this technique 



 170 

demonstrates that the neural controller has the capability of adapting on line, while 

retaining an established baseline performance.  In addition, it produces an algorithm that 

guarantees the realization of this capability, and is characterized by polynomial 

computational complexity.  The method is referred to as constrained because it solves a 

nonlinear optimal control problem (eq. 1 and 10), subject to equality constraints on the 

state and the control (eq. 13 and 20). 

The constrained-learning results in Section 3.3 can be extended to both the action and 

the critic networks initialized in Section 5.1.1; in the interest of conciseness, they are 

illustrated here only for the action network, NNA.  Section 5.1.1 shows how the final 

action network architecture (Fig. 49) is obtained by algebraically combining the scalar 

networks 
1LBNN , 

2LBNN , 
1LDBNN , 

2LDBNN , 
1LINN , 

2LINN , 
1LDINN , and 

2LDINN , 

trained in Section 4.3.  As a consequence of network combination and addition 

operations, the initial action input and output weight matrices (eq. 206 and 207) contain 

the scalar networks’  pre-trained weights, as well as zero weights.  Eventually, all of these 

parameters are modified on line.  Imposing the pre-training requirements on the action 

network equations reveals that the action parameters obtained from the pre-trained scalar 

networks can be adjusted to continue to satisfy the same requirements on line, while the 

remaining parameters are updated to minimize the error function in eq. 212. 

In other words, the action network input/output and gradient equations (eq. 190 and 

191) must satisfy the feedback and command-integral requirements over OP (i.e., eq. 

152, 154, 157, and 158) simultaneously, at every instant in time tk.  Moreover, if they do 

so at every training epoch, while the function in eq. 212 is being minimized with respect 

to the vector w, then the resulting optimization is constrained by these requirements at all 



 171 

times.  For the moment, the time and epoch indices are omitted for simplicity, implying 

that the following equations hold at any time and epoch.  The feedback and command-

integral requirements can be formulated as a unique gradient-based training set of the 

type introduced in Section 3.1.1, i.e., { TT
][ κa0 , 0, Cκ} κ = 1, …, 34, where κ ∈ OP.  The 

following matrix is known from the gains in eq. 156 and 160: 

��
��
�

�

�

��
��
�

�

�
=

κκ

κκ

κκ

κκ

κ

21

11

21

21

LDLD

LL

LDLD

LL

II

II

BB

BB

cc00

00cc

cc00

00cc

C  (221) 

Similarly to eq. 38, this matrix represents the Hessian of the multidimensional function to 

be approximated, e.g., u = h(y), evaluated at selected points (OP), such that Cκ ≡ ∂u/∂y|κ.  

It is reasonable to assume that at the equilibria OP, defined in Section 4.1, the 

longitudinal and lateral-directional dynamics are decoupled, and that eq. 153, 154, and 

158 hold at all times.  However, these assumption need not hold (and most likely will not 

hold) elsewhere in OR. 

The above training set is matched exactly by the action network parameters when they 

satisfy the output weight equations, 

[ ] AAA A
bdaW�V0 a ++= κ ,  κ = 1, …, 34 (222) 

and the gradient weight equations, 

( )[ ]{ }T
AA

T
AAa

VdaW�WC ax +′= κκ diag ,  κ = 1, …, 34 (223) 

both of which are obtained from the vector-output network equation.  The action 

network’s matrix, WA, also can be partitioned into submatrices that bear the subscripts of 

the inputs they weigh, as follows: 



 172 

[ ] [ ]
AAAAAaA a

�
xax WWWWWW ~==  (224) 

It can be observed that if the input weights associated with the scheduling vector, 
AaW , 

and the input bias, dA, are held constant at all times, then the input-to-node values of the 

action network not only are constant but are known from the pre-training phase.  In fact, 

the following relationship can be derived for the action network’s input-to-node vector 

from the input-to-node variables’  definition (eq. 39): 

��
��
��
��
��
��

�

�

��
��
��
��
��
��

�

�

=

��
��
��
��
��
�

�

�

��
��
��
��
��
�

�

�

+

��
��
��
��
��
��

�

�

��
��
��
��
��
��

�

�

=+≡

κ

κ

κ

κ

κ

κ

κ

κ

κκκ

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

LD

LD

L

L

LD

LD

L

L

LD

LD

L

L

LD

LD

L

L

LDI

LDI

LI

LI

LDB

LDB

LB

LB

A

I

I

I

I

B

B

B

B

I

I

I

I

B

B

B

B

AA

n

n

n

n

n

n

n

n

d

d

d

d

d

d

d

d

a

W

W

W

W

W

W

W

W

daWn

a

a

a

a

a

a

a

a

a  (225) 

The notation is consistent with that used in Sections 3.1.1 and 5.1.1.  
1LBaW , 

1LBd , and 

κ
1LBn  are the a-input weight matrix, the input bias, and the input-to-node vector of the 

pre-trained network 
1LBNN ; the remaining quantities in eq. 225 are similarly defined.  

Hence, the action input-to-node values can be computed and stored off line for later use. 

The output weight equations, eq. 222, can be formulated as a linear system in terms of 

the output weights, 

T
A

T
AA BVS0 +=  (226) 

where, 

[ ]
21212121 LDLDLLLDLDLL IIIIBBBBA SSSSSSSSS =  (227) 



 173 

and BA ≡ [bA … bA] is an m × 34 matrix of output biases that also are held constant.  The 

sigmoidal matrices in this equation (defined as in eq. 47) can be computed from the pre-

trained scalar networks corresponding to their subscripts, by using the appropriate input-

to-node vectors in eq. 225.  Thus, they are known a priori, and they remain constant.  By 

rearranging eq. 226, it can be observed that the action network’s output weights 

determined during the pre-training phase can be used to satisfy the same output 

requirements on the feedback and command-integral contributions, ∆uB and ∆uI, for any 

value of the remaining output parameters.  Of course now those contributions are 

automatically summed by NNA; nevertheless, they still can be identified within the output 

weight equations above. 

With this goal in mind, the output weight matrix is partitioned as suggested by its 

initialized value, eq. 207, 

��
��

�

�
��
��
�

�
=

TTTTTTTT

TTTTTTTT

TTTTTTTT

TTTTTTTT

A

4847464544434241

3837363534333231

2827262524232221

1817161514131211

vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv

V  (228) 

and, then, substituted back into eq. 226.  This results into four independent systems of 

equations, 

[ ] ( )T
A

l

l

l

l

l

l

l

l

IIIIBBBB l
LDLDLLLDLDLL

•+

��
��
��
��

�

�

��
��
��
��

�

�

= ,

8

7

6

5

4

3

2

1

21212121
B

v
v
v
v
v
v
v
v

SSSSSSSS0  (229) 



 174 

that each can be solved for vll and vl(l+m), with l = 1, …, 4 (as in the pre-training phase, 

where the remaining weights equaled zero).  For example, the first two weight vectors are 

obtained from the solution of the first system (l = 1): 

( ) [ ] [ ] ( )
112121

1
141312

1
11 LLLDLDLL BB

TTTT
BBBB bSvvvSSSSv −− −−=  (230) 

( ) [ ] [ ] ( )
112121

1
181716

1
15 LLLDLDLL II

TTTT
IIII bSvvvSSSSv −− −−=  (231) 

The vectors 
1LBb  and 

1LIb  can be obtained from the homonymous scalar output biases 

1LBb  and 
1LIb , as in eq. 46, because bA = bB + bI.  The remaining output weight vectors 

are similarly computed, by performing a permutation of the set of values for the index l.  

Except for the output weights, all quantities in eq. 230 and 231 can be computed off line. 

A procedure that is slightly more involved leads to the simplification of the gradient 

weight equations.  In this case, the input weights that satisfy the gradient requirements 

can be computed on line, while the performance function (eq. 212) is being minimized.  

Again, it is convenient to partition the action network’s input weight matrix as suggested 

by its initialized version, eq. 206, 

  
  
  
  

¡

¢

££
££
££
££

¤

¥

=

8584838281

7574737271

6564636261

5554535251

4544434241

3534333231

2524232221

1514131211

WWWWW
WWWWW
WWWWW
WWWWW
WWWWW
WWWWW
WWWWW
WWWWW

WA  (232) 

With appropriate dimensions, the submatrices in eq. 232 assume the values of the 

corresponding submatrices in eq. 206 at the initial time, t0.  The submatrices in the fifth 

column (W15 through W85) correspond to the a-input and together form the matrix 
AaW , 



 175 

which is held constant at all times for the reasons mentioned above.  All of the remaining 

submatrices together form 
AaxW , which is modified on line at every training epoch. 

With the above partition, the gradient equations (eq. 223) can be conveniently 

reformulated as four independent linear systems: 

[ ] ( )[ ][ ]
[ ] ( )[ ][ ]¦§

¦¨ ©
•′=

•′=
TTTTTTTT

AAB

TTTTTTTT
AAB

L

L

8171615141312111

8171615141312111

,2diag

,1diag

2

1

WWWWWWWWVNª« WWWWWWWWVNª«
 (233) 

[ ] ( )[ ][ ]
[ ] ( )[ ][ ]¬­

¬® ¯
•′=

•′=
TTTTTTTT

AAB

TTTTTTTT
AAB

LD

LD

8272625242322212

8272625242322212

,4diag

,3diag

2

1

WWWWWWWWVN°± WWWWWWWWVN°±
(234) 

[ ] ( )[ ][ ]
[ ] ( )[ ][ ]²³

²´ µ
•′=

•′=
TTTTTTTT

AAI

TTTTTTTT
AAI

L

L

8373635343332313

8373635343332313

,2diag

,1diag

2

1

WWWWWWWWVN¶· WWWWWWWWVN¶·
 (235) 

[ ] ( )[ ][ ]
[ ] ( )[ ][ ]¸¹

¸º »
•′=

•′=
TTTTTTTT

AAI

TTTTTTTT
AAI

LD

LD

8474645444342414

8474645444342414

,4diag

,3diag

2

1

WWWWWWWWVN¼½ WWWWWWWWVN¼½
 (236) 

The matrices of gains, ¾ , are obtained from the p = 34 respective gradients in eq. 156 and 

160 as, for example, 
1LB

¿
 ≡ [ p

LBLB
11

1 cc À ]T.  The function “diag”  represents an operator 

that places the ordered elements of a column or row vector on the diagonal of a zero 

matrix of appropriate dimensions.  From eq. 225, the action input-to-node values are 

known and can obtained from the N matrices (eq. 78) of the pre-trained scalar networks: 

[ ]
21212121 LDLDLLLDLDLL IIIIBBBBA NNNNNNNNN =  (237) 

Assuming that the matrix VA is known, each of the 2p gradient equations above can be 

solved for 2p input parameters: eq. 233 for W11 and W21, eq. 234 for W32 and W42, eq. 



 176 

235 for W53 and W63, and eq. 236 for W74 and W84, consistently with the pre-training 

phase. 

Thus, with the matrix VA obtained from the new output weight equations (eq. 229), the 

latest form of the gradient equations can be solved for the input weight matrices indicated 

above.  The procedure is described for eq. 233, and naturally extends to eq. 234 through 

236.  The first step consists of rewriting eq. 233 by parting the submatrices to be 

determined, W11 and W21, from the remaining input weights, as follows: 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]ÁÁÂ
ÁÁÃ
Ä

=ÅÆÇÈÉÊ′′

=ÅÆÇÈÉÊ′′

221

121

21

11
2221

21

11
1211

diagdiag

diagdiag

LLL

LLL

BBB

BBB

K
W
W

vNËvNË
K

W
W

vNËvNË
 (238) 

The matrices 
1LBK  and 

2LBK  can be computed from the known gradients and from the 

remaining input and output weights in eq. 233.  They are defined as: 

[ ] ÌÌÍ
Î

ÏÏÐ
Ñ

ÌÌÍ
Î

ÏÏÐ
Ñ

′−≡
81

31

18

13

diag
21212111 W

W

v

v
NNNNNNÒÓ

K ÔÔ
LDLDLLLDLDLL IIIIBBBB (239) 

[ ] ÕÕÖ
×

ØØÙ
Ú

ÕÕÖ
×

ØØÙ
Ú

′−≡
81

31

28

23

diag
21212122 W

W

v

v
NNNNNNÛÜ

K ÝÝ
LDLDLLLDLDLL IIIIBBBB (240) 

Then, the solution of the system in eq. 238 can be written as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

LL

L

L

LL

LL

BB

B

B

BB

BB

KZ

K

K

vNÞvNÞ vNÞvNÞ
W

W

1

1

2221

1211

21

11

2

1

21

21

diagdiag

diagdiag

−

−

≡

ßßà
á

ââãäßßà
á

ââãä ′′
′′

=ßà
áâãä

 (241) 

The subscript “BL”  refers to the input-to-node values and gain matrices that generate the 

matrices Z and K; as, these weights are associated with the longitudinal outputs (δT and 



 177 

δS) and with the input-to-node values of 
1LBNN  and 

2LBNN  in the gradient equations 

(eq. 233-236). 

All of the initialized (non-zero) input and output weights that satisfy the pre-training 

requirements on line can be computed with low-order polynomial time (as explained in 

Section 5.4).  The remaining parameters, initialized at zero in eq. 206 and 207, can be 

used to minimize eq. 212.  An iterative algorithm of the type in eq. 101 can be used to 

accomplish both objectives incrementally.  With the above developments in mind, the 

vector w is formed from the parameters allocated for the performance-function 

minimization: 

åå
åå
åå
åå
å

æ

ç

èè
èè
èè
èè
è

é

ê

ëë
ëë

ì
í

îî
îî
ï
ð

åå
å

æ
ç

èè
è
é
ê

ëë
ëë

ì
í

îî
îî
ï
ð

åå
å

æ
ç

èè
è
é
ê

≡

474645434241

383635343231

282725242321

181716141312

645444342414

737343332313

827262522212

817161514131

vec

vec

vvvvvv
vvvvvv
vvvvvv
vvvvvv

WWWWWW
WWWWWW
WWWWWW
WWWWWW

w  (242) 

At every epoch (i+1), an increment ∆wñ (i) that modifies each of the weights wñ (i) in w(i) is 

computed from eq. 89 and 90 by the algorithm in Section 5.1.3.  Then, all of the 

submatrices in eq. 242 are known from w(i+1). 

With the stated assumptions of constant biases and 
AaW , the solution of the output 

equations is formulated in terms of constant matrices that can be computed prior to the 

on-line adaptation.  For example, the constant matrices in eq. 230 are defined as 

( ) [ ]
21211

1
LDLDLLL BBBBB SSSS

ò −−≡  (243) 

( )
111

1
LLL BBB bS

ó −−≡  (244) 



 178 

They can be used to solve for the output weights associated with 
1LBNN , i.e., v11.  All of 

the remaining systems in eq. 229 can be formulated in terms of matrices that are similarly 

defined.  The gradient weight equations (eq.s 233-236) can be expressed in terms of 

constant matrices that are easily computed a priori from the known input-to-node values, 

and in terms of input and output weights that become available on line (as shown in eq. 

241).  In particular, the diagonal structure of the output-weight submatrices that compose 

LBZ  (eq. 241) can be exploited to reduce the amount of computation required to invert 

this matrix (e.g., through its LUP decomposition [94]). 

Thus, the input and output weights excluded by eq. 242 are computed from the 

respective weight equations at every epoch.  The simplified equations obtained above are 

used within an algebraically-constrained supervised-training algorithm to guarantee that 

the pre-training requirements are satisfied on line, while the weights in w are used to 

minimize the network performance, E.  In summary, at each epoch, the action network 

parameters are updated according to the following sequential rules: 

( ) ( ) ( ) ( )11 ++ →∆+= iiii www wôôô  (245) 

( )
( )
( )
( )

( )
( )
( )
( ) 1111

1
18

1
17

1
16

1
15

1
14

1
13

1
12

1
11 ,

LLLL I
i

i

i

I
i

B
i

i

i

B
i E

v
v
võ

vE
v
v
võ

v +öö
ö

÷
ø

ùù
ù
ú
û

=+öö
ö

÷
ø

ùù
ù
ú
û

=
+

+

+

+

+

+

+

+  (246) 

( )
( )
( )
( )

( )
( )
( )
( ) 2222

1
28

1
27

1
25

1
26

1
24

1
23

1
21

1
22 ,

LLLL I
i

i

i

I
i

B
i

i

i

B
i E

v
v
vü

vE
v
v
vü

v +ýý
ý

þ
ÿ

��
�
�
�

=+ýý
ý

þ
ÿ

��
�
�
�

=
+

+

+

+

+

+

+

+  (247) 

( )
( )
( )
( )

( )
( )
( )
( ) 1111

1
38

1
36

1
35

1
37

1
34

1
32

1
31

1
33 ,

LDLDLDLD I
i

i

i

I
i

B
i

i

i

B
i E

v
v
v�

vE
v
v
v�

v +��
�

�
�

��
�
�
	

=+��
�

�
�

��
�
�
	

=
+

+

+

+

+

+

+

+  (248) 



 179 

( )
( )
( )
( )

( )
( )
( )
( ) 2222

1
47

1
46

1
45

1
48

1
43

1
42

1
41

1
44 ,

LDLDLDLD I
i

i

i

I
i

B
i

i

i

B
i E

v
v
v


vE
v
v
v


v +��
�

�



��
�
�
�

=+��
�

�



��
�
�
�

=
+

+

+

+

+

+

+

+  (249) 

( )

( )
( ){ }

LL B
i

Bi

i

KZ
W

W 11
1

21

1
11 −+

+

+

=
��

����
 (250) 

( )

( )
( ){ }

LDLD B
i

Bi

i

KZ
W

W 11
1

42

1
32 −+

+

+

=
��

����
 (251) 

( )

( )
( ){ }

LL I
i

Ii

i

KZ
W

W 11
1

63

1
53 −+

+

+

=���
�

  !"  (252) 

( )

( )
( ){ }

LDLD I
i

Ii

i

KZ
W

W 11
1

84

1
74 −+

+

+

=##$
%

&&'(  (253) 

The above algorithm implies that, at the (i)th epoch, the update of the Z matrices is 

based on the new (i+1)th value of the input and output weights in eq. 239-241.  The 

remaining matrices, ΓΓΓΓ, E, K, ) , and 1)( −′ TN*  can be computed off line, from a-priori 

information (such as eq. 225, 156, and 160) and they are held constant thereafter.  Hence, 

these algebraic equations constitute the criteria for updating the action network weights 

on line, while preserving the a-priori knowledge intact.  A virtually identical algorithm 

can be obtained for the critic network, but is not shown for brevity’s sake.  This result 

proves that the neural networks involved are capable of meeting the objectives of both the 

pre-training phase and the on-line adaptation, providing a theoretical justification for the 

results obtained in the previous sections.  Together with the simulations in Section 5.2, 

this conclusion also implies that the modified RPROP algorithm (Section 5.1.3) already is 

powerful enough to approximate the solution of eq. 246-253 exclusively through a 

gradient-based search. 



 180 

5.4 A Word on Computational Complexity: Execution Time of Algebraic and 

Adaptive-Learning Algorithms 

From a computational perspective, the use of Approximate Dynamic Programming 

(ADP) for solving optimization problems can be justified by the existence of many NP-

complete problems for which obtaining an optimal solution is intractable.  The DHP 

adaptive critic architecture presented in the previous sections can be considered as an 

approximation algorithm that seeks a near-optimal solution for the optimal control 

problem at hand.  Although a formal analysis of the proposed algorithm is beyond the 

scope of this thesis, it is important to address the running time of the main subroutines 

introduced thus far, to begin to show that the approach produces a polynomial-time 

approximation algorithm.  In particular, the running time of the newly developed training 

algorithms is discussed to emphasize their efficiency.  Error-bounds are not analyzed 

here; however, since they constitute an integral part of approximation schemes’ analysis, 

they are strongly recommended as a topic for future work. 

The inputs to the optimization problem and, thus, to the DHP solution scheme can be 

identified with the state xa and the control u~  of size (n + ec) and m, respectively.  A 

general concern is how rapidly the running time grows with respect to these dimensions.  

However, in considering individual subroutines, the input size typically refers to the 

number of items in the input to the algorithm [94].  Therefore, the relevant dimensions 

depend on the context that is being investigated.  Also, the running time is measured as 

the number of primitive operations executed, where it is understood that different 

operations require different execution times.  Since the order of growth with respect to 

the input dimension is of major concern, the worst-case running time is independent of 



 181 

the primitive execution times [94].  In this section, the bounds on the running-time 

function are used to judge the computational expense of algorithms.  In particular, the Θ-

notation, asymptotically bounding a function from above and below is adopted.  For a 

given function g(d), the notation Θ(g(d)) denotes the set of functions, 

( )( ) ( ) ( ) ( ) ( ){ }021021 ,0thatsuchand,,: dddgcdfdgcdccdfdg ≥∀≤≤≤∃=Θ  

(254) 

where c1, c2, and d0 are positive constants. 

It can be observed from the previous sections that the algebraic and adaptive learning 

techniques introduced are based entirely on matrix operations.  More precisely, they are 

comprised of steps whose worst-case running times are associated with matrix operations, 

such as multiplication and inversion.  Therefore, statements characterized by lower-order 

polynomial times, such as “diag”  or “Vec”  operations, can be ignored.  Also, all of the 

learning algorithms terminate in a finite number of steps that is independent of the 

number of inputs.  Strictly speaking, in the case of the RPROP on-line training algorithm, 

this is not true, because as the input dimension increases, where the input can be 

identified with w (and, hence, with the size of the network), the number of epochs needed 

for satisfactorily improving the performance function also is expected to increase.  In this 

instance, error-bound analysis would be required to produce a formal estimate of the 

required running time.  For practical purposes, if we assume that the early-termination 

rule of Section 5.1.3 produces a satisfactory performance bound, then this routine also 

terminates in a finite number of steps that is either independent of w, or that has a low-

order-polynomial dependency with respect to its size. 



 182 

The solution times of matrix multiplication and inversion are key attributes for this 

analysis.  Typically, linear systems of equations are solved through LUP decomposition, 

rather than by matrix inversion, to avoid numerical instability [94].  The cost of 

computing the LUP decomposition of a d × d matrix is Θ(d3).  Once the LUP 

decomposition of a matrix is available, any corresponding linear system of equations can 

be solved in time Θ(d2) [94].  The multiplication of two d × d matrices performed 

according to its definition requires a running time that is Θ(d3), but it also can be obtained 

by the Stressen’s algorithm in reduced time Θ(d2.81).  A useful property of the Θ-notation 

is that if an operation with polynomial running time Θ(dp) is repeated a number of times 

c, than the resulting algorithm is Θ(cdp), or simply Θ(dp) when c is constant with respect 

to d.  For example, the gradient-based training algorithm in Section 3.1.1 consists of 

solving one p-dimensional linear system (eq. 55) and n p-dimensional linear systems (eq. 

56).  Provided it is well posed, the algorithm is not recurrent.  Therefore, for constant n, 

the worst-case computation time of this subroutine is Θ(p3).  The running time for pre-

training m scalar networks could be obtained in terms of the dimensions of the 

optimization inputs, xa and u~ , by observing that p depends on n and, in particular, on the 

number of scheduling variables (n − e).  Since p grows exponentially with (n − e), this 

dependency is likely to be far less optimistic than the former one. 

Following the pre-training phase, the neural networks are trained on line by a modified 

RPROP algorithm (Section 5.1.3).  Because only the sign of the gradient is needed, 

sigmoidal-function evaluations only are required once, for computing the neural network 

output; and, they also require polynomial time.  The sign of the gradient in eq. 217 is 

obtained from the matrix multiplications in eq. 217-218, in one step.  The update rules in 



 183 

eq. 89 and 90 are characterized by linear first-order recurrence.  Therefore, a preliminary 

analysis shows that this algorithm also is executed in low-order polynomial time, when 

the appropriate conditions for local convergence are satisfied. 

The constrained version of the RPROP algorithm (in Section 5.3) entails solving linear 

systems of equations for which the LUP decomposition can be computed and stored off 

line.  The only exception to this statement consists of the gradient weight equations.  

However, in this case, the diagonal structure of the output-weight submatrices (shown in 

eq. 241) can be exploited to reduce the computational complexity of the solution.  

Therefore, the running time for the algebraically-constrained training algorithm also is 

low-order polynomial.  In summary, breaking the optimal control structure down to sub-

problems that can be solved by computationally efficient algorithms shows to be a 

promising approach to tackling otherwise intractable problems.  On the other hand, a 

more extensive analysis is required to investigate the behavior of the approximation 

scheme and error bounds with respect to the most relevant dimensions, i.e., those of the 

state and control vectors. 

5.5 Chapter Summary 

The results of the pre-training phase are linked to the adaptive critic architecture of 

choice, i.e., dual heuristic programming.  Consequently, the cost function and the neural 

parameters to be optimized on line are determined algebraically from those computed 

from linear control theory.  The proportional-integral neural network controller is adapted 

on line through action and critic criteria obtained from the recurrence relation of dynamic 

programming.  During every time interval, the adaptive critic design is used to compute 



 184 

desired targets for the action and the critic networks, and a modified resilient 

backpropagation algorithm is implemented to update the network parameters accordingly. 

The adaptive controller is tested during large-angle maneuvers and flight conditions 

unaccounted for by the pre-training phase.  The results show that the system’s 

performance is improved incrementally over time.  The optimality condition and the 

network errors are monitored to verify that the action and the critic function 

approximations are converging to a near-optimal solution.  The adaptation is so effective 

as to prevent closed-loop instability during a large-bank turn, and to improve 

performance in the presence of unforeseen maneuvers, unmodeled failures, and parameter 

variations.  Under virtually all circumstances, the global control knowledge introduced 

during the pre-training phase always is well preserved; and, eventually, it is improved 

upon in those state-space regions that are explored by the simulation.  An algebraically-

constrained algorithm can be obtained to guarantee and justify the preservation of a-

priori knowledge during on-line learning.  Finally, a preliminary analysis of the training 

algorithms is proposed to address computational complexity and worst-case solution 

times. 



 185 

Chapter 6 

Conclusions 

6.1 Summary 

The primary objective of this thesis is to develop a systematic design procedure for a 

control system that retains the stability and robustness characteristics of the classical 

designs, while capitalizing on the computational capabilities of approximate dynamic 

programming and neural networks.  The result is an adaptive control system that learns to 

deal with new system dynamics as they arise, improving performance during large-angle 

maneuvers and unforeseen conditions, such as control failures and parameter variations.  

The proposed design philosophy consists of constructing a nonlinear controller, 

comprising a network of neural networks, using a two-phase learning procedure.  First, 

the networks’  architecture, parameters, and size (i.e., number of hidden nodes) are 

determined from the initial specification of the control law.  Secondly, on-line learning 

by an adaptive critic approach is expected to preserve prior control knowledge and 

improve performance by accounting for dynamic effects that were not captured in the 

initial control law. 

Gain scheduling is a well-known procedure for applying linear control theory to 

nonlinear systems that is widely applicable, especially in the aerospace and chemical-

processes industry.  It consists of locally approximating the nonlinear plant as a linear-

parameter-varying system at several operating points, and of designing corresponding 

control gains that later can be interpolated through dynamically-significant scheduling 



 186 

variables.  Central to this novel approach is the recognition that the gradients of a 

nonlinear control law represent the gain matrices of an equivalent, multivariable linear 

control structure that is chosen as the proportional-integral (PI) controller, for illustration.  

Hence, a set of satisfactory linear controllers is obtained through an established procedure 

known as implicit model following to satisfy well-known aircraft handling qualities and 

design criteria.  Then, a novel gradient-based pre-training technique is used to match 

these linear controllers exactly by means of nonlinear neural networks in one step.  A PI 

neural network controller is obtained by replacing the linear gains of the PI controller 

with the pre-trained neural networks.  This architecture performs at least as well as an 

equivalent gain-scheduled design, immediately following the pre-training phase. 

Adaptive critic designs constitute a class of approximate dynamic programming 

methods that optimize a short-term metric, ensuring optimization of the cost over all 

future times.  Neural networks typically are the approximating structure of choice, 

because they easily handle large-dimensional input and output spaces and can learn in an 

incremental fashion.  A dual heuristic programming adaptive critic architecture is used to 

adapt the pre-trained PI neural network controller over time, while a full-scale simulation 

of the aircraft is flying throughout its operating region.  A good deal of literature has been 

written about the theoretical motivation behind dual heuristic programming, as a method 

that promises fast convergence and great potential for on-line learning.  However, for 

several years now, the bottlenecks associated with its implementation have prevented this 

approach from realizing its promise. 

The implementation’s details and algorithms that allow for a successful 

implementation of dual heuristic programming (DHP) are described in this thesis.  The 



 187 

pre-training phase provides an excellent initialization point for the on-line phase.  

Furthermore, the advancement made in algebraic and adaptive learning achieve the on-

line phase’s objective of improving performance in the presence of unknown dynamics, 

while preserving the global designs incorporated off line.  Classical control theory 

provides a unifying framework for the two training phases.  The pre-training phase is 

based on the linear quadratic regulator; the adaptive critic approach is based on the 

recurrence relation of dynamic programming. 

6.2 Conclusions 

The foundations have been laid for a novel approach to designing nonlinear control 

systems that make the most of prior knowledge and experience, while capitalizing on the 

broader capabilities of adaptive control theory and computational neural networks.  The 

principles introduced can be applied to any nonlinear control law that affords a gain-

scheduled law formulation.  During pre-training, not only the adjustable parameters, but 

also the network’s size and architecture that are apt to meet the desired specifications are 

rapidly determined by solving linear algebraic equations, with no need for iteration.  For 

example, through this novel algebraic approach it can be shown that a number of nodes 

equal to the number of operating points (or training pairs) achieves exact matching of the 

data with probability one.  The approximation properties of neural networks can be 

investigated to a great extent by using elementary linear algebra. 

The simulations show that a relatively small number of operating points, and thus of 

hidden neural nodes, is sufficient to obtain satisfactory neural network control throughout 

the steady-level flight envelope of the aircraft.  The method produces a network of 

minimal neural networks that approximate the hypersurfaces of a global, nonlinear 



 188 

control law effectively and that match equivalent, locally linearized controllers exactly.  

Furthermore, a number of algebraic training algorithms have been developed that can be 

extended to many other neural network applications, provided the training data is free of 

noise and available at once (also referred to as batch or off-line training). 

Additional advances have been made in on-line learning techniques and in adaptive 

critic methods.  The pre-training phase can be linked to the on-line adaptation by 

realizing that the same cost function is to be optimized during both phases, for 

consistency.  Then, the cost weighting matrices and the action and critic initial 

parameters to be used during the on-line phase can be determined algebraically from the 

results of the previous phase.  An existing training algorithm, resilient backpropagation, 

is modified to take into consideration properly-initialized parameters.  It is found that the 

use of proportional initial increments, backstepping, sigmoidal monotonic properties, and 

early termination rules leads to an on-line training algorithm that preserves initial 

knowledge and that is characterized both by excellent convergence and computational 

savings. 

These and other developments described in this thesis lead to a successful 

implementation of the nonlinear adaptive controller for the command-input control of a 

full-scale aircraft simulation.  Relatively high-dimensional neurocontrollers adjust on line 

while retaining their baseline performance in unexplored regions of the state space.  This 

behavior, observed in the simulations, can be justified theoretically by investigating on-

line learning through the neural network weight equations, according to the algebraic 

training approach.  During the on-line phase, the adaptation spontaneously utilizes those 

parameters that were unused during pre-training.  Also, it allows the neurocontrollers to 



 189 

significantly improve their performance over only one or few epochs, during each time 

increment.  The advancements of all key design stages combined greatly increase the 

potential for real life applications of intelligent and reconfigurable control. 

6.3 Recommendations 

The main recommendation for future work is to expand upon the findings of this thesis 

to investigate error bounds, closed-loop stability, and robustness of the adaptive control 

system.  Since the approach is iterative and relies heavily on computation, a rigorous 

analysis of the algorithms presented can be related to the first objective.  In particular, it 

would be relevant to determine the worst-case computation times and error bounds with 

respect to the dimensions of the state and control, as well as the number of stages.  The 

algebraic techniques developed, together with existing theories on Markov decision 

processes and on the stability of gain-scheduled designs show particular promise in this 

direction.  Alternatively, other classical designs could be used for pre-training the 

controller and existing techniques (such as linear matrix inequalities) extended to include 

this adaptive system.  The investigation of the neural approximation properties should 

remain a key ingredient in the process, as the neural architectures determine the class of 

control and cost functionals that can be approximated and, therefore, the optimal control 

problems that can and cannot be solved. 

One of the most desirable features of this approach is its flexibility.  Not only is it 

unrestricted by the form of the governing dynamic equation, but it allows for extensions 

that can deal with system identification, stochastic processes, disturbances, and state 

estimation, to name a few.  For example, it is possible to use a model network to 

approximate the plant dynamics, allowing it to perform system identification on line.  In 



 190 

this case, local network gradients would be provided by the transition matrices that derive 

from the difference governing equation.  In this case, the gradient-based algebraic 

training algorithm could be used to pre-train the model network as well.  Subsequently, 

its parameters could be updated on line through the modified resilient backpropagation 

algorithm, as for the other networks.  In this case, the forward neural network, which 

approximates an inversion of the plant dynamics, also should be updated on line.  The 

rest of the design would likely remain the same, whereas the controller already learns 

nonlinear system dynamics on line. 

A valuable extension would be to use not only the training techniques developed here, 

but also the entire control design process for other applications.  This would be an 

excellent way to validate the results of the thesis, as well as to identify bottlenecks that 

may have been missed during this implementation.  The range of possibilities is at least 

as diverse as are the neural network applications that already exist today in the literature.  

In particular, designs that can benefit both from a-priori and a-posteriori knowledge of 

the system would be ideal.  Examples include process control and planning, routing 

problems in air traffic management and communication networks, pattern identification 

for speech/audio-recognition devices, criminal profiling, and target assignment in combat 

scenarios. 

The optimal estimation problem can be seen as the dual of the optimal control 

problem.  Therefore, the approach developed here for the near-optimal solution of the 

aircraft control problem could be extended to train a near-optimal nonlinear estimator by 

using, for example, Kalman filter gains during the pre-training phase [81].  Another 

consideration is that the sampled-time interval that was kept small in the simulations 



 191 

could easily be increased to deal with a discrete-event process or to allow sufficient time 

for the adaptation to take place in a real-life application.  In this case, a trivial extension 

consists of using discrete-time linear designs to pre-train the neural networks for solving 

either a control or an estimation problem.  Since the on-line phase already is analyzed in 

discrete time, the same adaptive critic architecture could be used for improving the 

performance of a discrete controller. 

In principle, adaptive critic designs should be capable of determining a near-optimal 

policy for a stochastic plant and/or environment.  In fact, there exist important 

convergence proofs for the approximate dynamic programming approach that also hold in 

the presence of white noise and Markov noise [16, 4].  This is an important and, yet, 

ambitious direction of research that is likely to require substantial modifications of the 

approach, such as the use of stochastic approximators [95].  Finally, there is considerable 

interest in the field for high-dimensional problems, where the state and control have 

many variables [96].  Hence, the study of computation complexity should be a major 

focus of any solution method pursued hereon. 



 192 

APPENDICES 



 193 

Appendix A: Nomenclature 

Symbol    Description +
 Matrix of selected known gradient vectors 

ςςςς Vector of all known gradients in a given training set 

ηηηη Vector of input-to-node values evaluated at all of the operating points in a 
given training set 

ξξξξ Time integral of the output error 

ΓΓΓΓ Constant matrix formed from selected sigmoidal matrices, for 
algebraically-constrained on-line training 

a Scheduling vector (or vector of scheduling variables) 

A Matrix of all scheduling vectors in a given training set 

b Output bias of a vector-output neural network 

Bk Constant matrix formed from the network output weights and from the 
sigmoid’s derivatives evaluated at selected input-to-node-values 

C Linear control gain matrix 

ck Known vector gradient of a scalar-output neural network, evaluated at the 
kth-operating point in a given training set 

Ck Known Hessian gradient-matrix of a vector-output neural network, 
evaluated at the kth-operating point in a given training set 

d Input bias of a neural network 

E Constant matrix formed from the inverse of a selected sigmoidal matrix 
and the output bias, for algebraically-constrained on-line training 

eNN Neural network vector-output error 

F State-Jacobian matrix of a linear dynamical system 

G Control-Jacobian matrix of a linear dynamical system 

K Matrix of selected known quantities in an algebraically-constrained on-line 
training algorithm 

Hu Jacobian matrix of a linear system’s output with respect to the control 

Hx Jacobian matrix of a linear system’s output with respect to the state 



 194 

In Diagonal matrix with n elements along the diagonal 

M Matrix of cross-coupling weighting between the state and the controls 

N Matrix of input-to-node values evaluated at all of the operating points in a 
given training set 

nk Vector of input-to-node values evaluated at the kth-operating point in a 
given training set 

P Riccati matrix 

p Vector input of a neural network 

pm Parameter vector of a dynamical system 

Q State-weighting matrix 

R Control-weighting matrix 

S Sigmoidal matrix 

T Linear transformation matrix 

u Control vector 

U Matrix of all known output vectors in a given training set 

uk Neural network sampled vector-output information 

u0 Nominal control vector 

v Output-weight vector of a scalar-output neural network 

V Output-weight matrix of a vector-output neural network 

W Input-weight matrix of a neural network 

w Vector of ordered neural network weights 

x State vector 

X Sparse matrix composed of the matrices Bk, evaluated at all operating 
points in a given training set 

x0 Nominal state vector 

Y Matrix of all known input vectors in a given training set 



 195 

yc Command input 

yk Neural network sampled input information 

ys Output of a dynamical system 

z Output of a neural network 

Z Matrix of output weights and known sigmoidal-function derivatives, in an 
algebraically-constrained on-line training algorithm 

ζ Damping ratio of a linear system’s response 

τ Time constant of a linear system’s response 

θ Aircraft Euler pitch angle 

α Aircraft angle of attack 

ψ Aircraft Euler yaw angle 

ωn Natural frequency of a linear system’s response 

∆t Time increment in a sampled- time representation 

f User-defined scalar factor 

H Aircraft altitude 

H0 Nominal aircraft altitude 

Ixx Aircraft mass moment of inertia about the xb axis 

Ixz Aircraft mass product of inertia about the yb axis 

Iyy Aircraft mass moment of inertia about the yb axis 

Izz Aircraft mass moment of inertia about the zb axis 

p Aircraft body-axis roll rate 

q Aircraft body-axis pitch rate 

r Aircraft body-axis yaw rate 

t Time variable, in a continuous-time representation 



 196 

tk Time variable, in a sampled-time representation 

u Forward, or x-body-axis component of aircraft velocity 

uk Neural network sampled scalar-output information 

V Total aircraft velocity or airspeed 

v Side, or y-body-axis component of aircraft velocity 

V0 Nominal airspeed 

w Downward, or z-body-axis component of aircraft velocity 

w,  Adjustable - th-ordered parameter, or weight, of a neural network 

xb Aircraft x body axis 

xr Inertial x axis 

yb Aircraft y body axis 

yr Inertial y axis 

zb Aircraft z body axis 

zr Inertial z axis 

∆,  Size of the increment for the - th-ordered parameter of a neural network 

∆w,  Increment for the - th-ordered parameter of a neural network 

β Aircraft-sideslip angle 

δA Aircraft-aileron deflection 

δR Aircraft-rudder deflection 

δS Aircraft-stabilator deflection 

δT Aircraft-throttle control 

φ Aircraft Euler roll angle 



 197 

γ Aircraft-path angle 

µ Aircraft-bank angle 

σ′(•) Derivative of the sigmoidal function with respect to its argument 

σ(•)  Sigmoidal function 

λλλλ(t)  Derivative of the value function with respect to the state 

ϕ[•]  Terminal state penalty-term in the cost function 

E(••••) Performance function of a neural network 

)(g •
xb  x body-axis gravity component 

)(g •
yb  y body-axis gravity component 

)(g •
zb  z body-axis gravity component 

H[•] Hamiltonian 

J[•]  Cost function 

JkN[•]  Cost function between the kth and the Nth stage in a multi-staged (or 
sampled-time) process 

L[•]  Lagrangian 

Lb(•) Acceleration due lift 

Mb(•) Acceleration due to pitching moment 

Nb(•) Acceleration due to yawing moment 

V[•] Value function or cost-to-go 

Xb(•) Acceleration modeled in the xb direction 

Yb(•) Acceleration modeled in the yb direction 

Zb(•) Acceleration modeled in the zb direction 



 198 

ER Set of extrapolating conditions in the operating region of a dynamical 
system 

IR Set of interpolating conditions in the operating region of a dynamical 
system 

NN Vector-output mapping by a neural network 

NN Scalar-output mapping by a neural network 

OP Set of design operating points 

OR Full operating region of a dynamical system 

Uc Aircraft trim map 

)~(•  Deviation from the commanded value of a variable 

)ˆ(•  Estimated value of a variable 

( )* Optimal value of a variable 

( )ξξξξ Variable associated with ξξξξ, the time integral of the output error 

( )-1 Inverse of a matrix 

( )A Variable associated with the action neural network 

( )a Variable associated with a, the scheduling vector 

( )a Variable associated with the augmented state, xa 

( )B Variable associated with the feedback neural network 

( )C Variable associated with the critic neural network 

( )c Commanded variable 

( )D Desired value of a variable 

( )DR Variable associated with the Dutch Roll 

( )F Variable associated with the forward neural network 

( )G Initial guess for an unknown variable 

( )I Variable associated with the command-integral neural network 



 199 

( )k, or ( )κ Variable evaluated at the kth training pair/triad, or at the κth operating point 

( )L Variable associated with the aircraft longitudinal dynamics 

( )LD Variable associated with the aircraft lateral-directional dynamics 

( )m Variable associated with the ideal aircraft model 

( )P Variable associated with the Phugoid mode of the aircraft 

( )PI Left pseudo-inverse operator 

( )SD Sampled-data (or discrete-time) variable 

( )SP Variable associated with the short-period mode of the aircraft 

( )T Transpose operator 

( )x Variable associated with x, the state vector 

(•) Derivative with respect to time 

⊗ Element-wise multiplication between vectors of the same size 

Θ Asymptotically bounds a function from above and from below 

∆( ) Deviation from the nominal value of the variable 

diag( ) Diagonal operator, extracting the diagonal of the square-matrix argument, 
or placing the vector argument on the diagonal of a zero matrix 

mse( ) Mean-squared error of a vector or matrix 

rank( ) Rank of a matrix 

sgn( ) Signum operator 

Vec( ) Kronecker Vec operator, rearranging the elements of a matrix column-wise 
into a vector 



 200 

Appendix B: Algorithms 

This appendix provides the MATLAB implementation of sample algorithms 

developed in the thesis.  The first algorithm was used in Chapter 4 to pre-train the 

feedback, command-integral, and critic scalar neural networks, and is based on the exact 

gradient-based solution introduced in Section 3.1.1.  Figure B.1 illustrates how it can be 

coded in MATLAB.  Given the gradient-based training set { TTk ][ a0 , 0, ck} k = 1, …, p , 

the matrix “A0”  can be obtained from the p scheduling vectors, as: 

[ ]paa .1=A0  (B1) 

In Fig. B.1, the scalar “P”  represents the number of training triads, p, and “c”  represents 

the vector of known gradients, ςςςς, defined in eq. 60.  The scalar “n”  is the dimension of 

the x input. 

In Fig. B.1 the constants A0, P, c, and n are assumed known from the training set.  All 

of the remaining variables are defined locally as indicated by the lines of code.  The 

objective of the program is to compute the quantities “w_a” , “v” , and “w_x” , 

representing the neural weight vectors defined in Section 3.1.1, i.e., wa, v, and wx, 

respectively.  The algorithm is implemented for a scalar-output sigmoidal network with 

one input bias, one output bias, and two scheduling variables.  A user-defined subroutine 

“sgm”  (not shown here) evaluates the sigmoidal function of its input component wise, 

according to the definition of the sigmoid, σ(•), introduced in Section 3.1.1.  A similarly 

defined function “dsgm”  also can be produced based on the definition of σ′(•) (Section 

3.1.1). 



 201 

% GIVEN: A0, P, c, n 
 
% SOLVE INPUT-TO-NODE EQUATIONS 
% Create the A-matrix: 
A = zeros(P^2, 3*P); 
for i = 1:P, 
  A1 = [A0(i,1)*ones(P,1), A0(i,2)*ones(P,1), ones(P,1)]; 
  AP = spdiags(A1,[0 P 2*P], P, 3*P); 
  A((i-1)*P+1:i*P, 1:3*P) = AP; 
end 
 
% Create the n-vector: 
N = randn(P, P); 
N = N - diag(diag(N)); 
n_vec = reshape(N, P^2,1); 
w_a = pinv(A)*n_vec; 
n_vec = A*w_a; 
 
f_n = 10/(max(abs(n_vec))); 
n_vec = n_vec*f_n;  
 
% Compute the matrices N and S: 
N = reshape(n_vec, P, P)’; 
S = sgm(N); 
 
% Compute vector of input biases and a-input weights: 
w_a = w_a*f_n; 
 
% SOLVE OUTPUT EQUATIONS 
% Create the b-vector from the output bias: 
bias = 10*rand(1,1); 
b = -bias*ones(P,1); 
 
% Compute output weights: 
v = inv(S)*b; 
 
% SOLVE GRADIENT EQUATIONS 
% Create the X-matrix: 
X = zeros(n*P, n*P); 
for i = 1:P, 
  for j = 1:n, 
    X((j+((i-1)*n)), (P*(j-1)+1):(P*j)) = (v.*(dsgm(N(:,i))))'; 
  end 
end 
 
% Compute the x-input weights: 
w_x = inv(X)*c;  

Figure B.1. Sample code for the exact gradient-based algebraic training algorithm. 

A sample code is provided for the exact input/output-based solution algorithm 

(Section 3.1.2) in Fig. B.2.  Here, the matrix “Y”  and the vector “u”  (corresponding to Y 



 202 

and u, in Section 3.1.2) are provided to the program, based on the training set 

{ yk, uk} k = 1, …, p.  The number of inputs “q”  and the number of training pairs “P” , 

corresponding to q and p, also constitute inputs to the routine.  The program computes the 

neural network weights W and v represented by the variables “W”  and “v”  in Fig. B.2.  

The output bias, b, can be set equal to zero, as shown by the weight equations in Section 

3.1.2. 

% GIVEN: Y, q, u 
 
% Create matrix of input weights: 
f = 3; 
W = 3*randn(P,q); 
 
% Compute input bias: 
d = -diag(Y*W’); 
 
% Compute input-to-node-value (N) matrix: 
N = Y*W’ + ones(P,P)*diag(d); 
 
% SOLVE OUTPUT EQUATIONS: 
S = sgm(N); 
v = inv(S)*u;  

Figure B.2. Sample code for the exact input/output-based algebraic training algorithm. 

When gradient information is available in the training set { yk, uk, ck} k = 1, …, p, it can be 

used to improve the generalization properties of the neural network trained by the sample 

code in Fig. B.2, as explained in Section 3.1.4.  According to the previous routine, the 

number of nodes, s, in the network equals p, or “P”  in the program’s notation.  At each 

step, indexed by “ i” , the code in Fig. B.3 compares the gradient of the neural network to 

the known derivatives in one training triad.  Since s = p, the index “ i”  can be considered 

equivalent to k (as explained in Section 3.1.4); therefore, the algorithm always terminates 

in p steps. 



 203 

% GIVEN: Y, u, C, W, d, v, tol_max 
 
% Recreate N: 
N = Y*W’ + ones(P,P)*diag(d); 
 
for i = 1:P, 
 
  wi_old = W(i,:); 
 
  % Compare neural network gradients with “ideal” ones: 
 
  c_i = C(:,i); 
  c_nn = (v'.*dsgm(N(i,:)))*W; 
 
  if max(abs(c_i-c_nn)) > tol_max,    %Change input weights wi) 
 
    wi_new = W(i,:) +  (c_i-c_nn)/v(i)/dsgm(N(i,i)); 
 
    if max(abs(wi_new)) > 50,     %Impose a “safe” upper bound 
      wi_new = wi_old;      %Retain old weights 
    end 
 
  else, 
 
    wi_new = wi_old;      %Retain old weights 
 
  end 
 
  % Update neural network weights: 
  W(i,:) = wi_new; 
  d(i) = -Y(i,:)*W(i,:)'; 
  N(:,i) = d(i) + Y*W(i,:)'; 
 
  % Recompute output weights: 
  S = sgm(N); 
  v = inv(S)*u; 
 
end  

Figure B.3. Sample code for the approximate general solution training algorithm. 

If the user-supplied gradient tolerance “ tol_max”  is exceeded by the gradient error at 

the ith-step, the input weights corresponding to the ith-node, wi, (or “wi”  in the program) 

are modified.  Consequently, the new output weights v, or “v” , must be re-computed from 

the output equations.  The program in Fig. B.3 utilizes a matrix of known gradients, that 

can be obtained from the training set as, 

[ ]pcc /1=C  (B2) 



 204 

as well as the information used in Fig. B.2.  The neural network weights to be refined, 

“W” , “d”  and “v” , also must be provided to this approximate algorithm. 

Figures B.4-B.5 provide sample code for the resilient-backpropagation (RPROP) 

algorithm presented in Section 3.2, and implemented by the adaptive critic architecture 

(Section 5.1.3).  For convenience, the program is illustrated in two parts: (a) and (b).  The 

inputs consist of the neural weights, “W” , “V” , and “d” , and of the network’s input and 

target, “p”  and “nn_target” , respectively.  The algorithm modifies the weights “W”  and 

“V” , that are rearranged in the vector “w”  (or w), as explained in Sections 3.2 and 5.1.3.  

For simplicity, the program is illustrated for a network with no scheduling vector (or a 

input).  Part (a), in Fig. B.4, prepares the data needed by the iterative portion of the 

algorithm (Fig. B.5). 

As anticipated in Section 5.1.3, the scheme implements a “backtracking step”  [77], a 

gradient-sign computation (based on eq. 217-218), and an “early-termination rule”  as 

stopping condition.  Also, the increment size ∆0  (or “delta_w” ) initially is computed 

through the proportional rule in eq. 91.  However, since the RPROP training algorithm is 

called repeatedly by the adaptive critic architecture, under the stated circumstances 

(Section 5.1.3) the algorithm can store ∆0  in the binary file “delta_file.mat” .  Figure B.4 

also shows that, at the on-set of training, the modified-RPROP routine accesses the value 

of “delta_w”  stored in the latter binary file, and that it uses eq. 91 to compute ∆0 (0) only if 

the “delta_w”  variable is empty.  A file named “delta_file.mat”  with an empty variable 

“delta_w”  always should be available to this program. 



 205 

% GIVEN: p, W, d, V, b, nn_target 
 
% RPROP user-defined parameters: 
delta_max = 50; 
delta_inc = 1.2;  delta_dec = 0.5; 
 
% Create vector of ordered weights: 
[s, n] = size(W);  [m, s] = size(V); 
w = [reshape(W,s*n,1); reshape(V,m*s,1)]; 
 
% Compute old-NN gradient-sign and output-error: 
n_vec = W*p + d; 
nn_output = V*sgm(n_vec) + b; 
 
e_w = nn_target - nn_output;      %Output error 
e_v = V'*e_w; 
nn_mse0 = mse(e_w); 
 
% Gradient signs: 
sign_gW = sign(-e_v)*sign(p’); 
sign_gV = sign(-e_w)*sign(n_vec’); 
sign_gw = [reshape(sign_gW,s*n,1); reshape(sign_gV,m*s,1)]; %Gradient sign 
 
% Initialize loop variables: 
epochs = 0; 
sign_gw_old = sign_gw; 
save_delta_w = 1;  stop_condition = 0;    %Loop flags 
dw_old = zeros(length(w),1);      %Weight increments 
f_mse = 10/100;       %Desired mse-change 
 
% User-specified performance parameters: 
epochs_max=5;       %Maximum epochs 
mse_perf_final=1e-5;      %Ideal performance 
f2_delta_w=1e-5; 
 
% Initialize weight-increment size: 
load delta_file       %With: delta_w 
if isempty(delta_x) == 1, 
  f1_delta_w = nn_mse0*f2_delta_w; 
  delta_w = f1_delta_w.*abs(w) + 1e-20;    %Proportional rule 
end  

Figure B.4. Part (a) of a sample program based on the modified-resilient-backpropagation 
(RPROP) on-line training algorithm. 



 206 

% GIVEN: p, W, d, V, b, nn_target 
% GIVEN: delta_max, delta_inc, delta_dec, m, s, n, dw_old, from Part (a) 
% GIVEN: stop_condition, epochs, sign_gw, sign_gw_old, from Part (a) 
 
% Resilient Backpropagation (RPROP) Algorithm: 
while stop_condition == 0, 
  epochs=epochs+1; 
 
  sign_ggw= sign_gw_old.*sign_gw; 
  delta_w = ((sign_ggw>0)*delta_inc + (sign_ggw<0)*delta_dec + (sign_ggw==0)).*delta_w; 
 
  % Bound increment size: 
  delta_w = min(delta_w, delta_max); 
 
  % "Backtracking" step: 
  dw = (-sign_gw.*delta_w).*(sign_ggw>=0) + (-dw_old).*(sign_ggw<0); 
  sign_gw(find(sign_ggw<0)) = 0; 
 
  % Update old variables for next epoch: 
  w_old = w;  dw_old = dw;  sign_gw_old = sign_gw; 
 
  % Update variables for next epoch: 
  w = w + dw; 
 
  % Compute new NN gradient-sign and output-error: 
  W = reshape(w(1:s*n), s, n);  V = reshape(w(s*n+1:end), m, s); 
  n_vec = W*p + d;  nn_output = V*sgm(n_vec) +b; 
 
  e_w = nn_target - nn_output;      %Output error 
  nn_mse=mse(e_w);  e_v = V'*e_w; 
 
  sign_gW = sign(-e_v)*sign(p’); 
  sign_gV = sign(-e_w)*sign(n_vec’); 
  sign_gw = [reshape(sign_gW,s*n,1); reshape(sign_gV,m*s,1)];  %Gradient sign 
 
  %Check stopping condition: 
  if epochs > epochs_max & nn_mse < (1-f_mse)*nn_mse0,  stop_condition=1; 
  elseif nn_mse <= mse_perf_final,  stop_condition=1; 
  end 
 
  % Adaptive initial-increment-size rule: 
  if nn_mse < (1-f_mse)*nn_mse0 & save_delta_w == 1 & epochs > 3, 
    save delta_file.mat  delta_w      %Store 
    save_delta_w = 0;        %Reset flag 
  elseif nn_mse < (1-f_mse)*nn_mse0 & save_delta_w == 1 & epochs <= 3, 
    save_delta_w=0;        %Don’t store 
  end 
 
end  

Figure B.5. Part (b) of a sample program based on the modified-resilient-backpropagation 
(RPROP) on-line training algorithm. 



 207 

Appendix C: Proofs 

Algebraic Network Operations: Output Combination 

This section of the appendix shows that the algebraic operation that combines two 

nonlinear neural networks with the same input and different outputs, illustrated in Fig. 43, 

preserves performance.  The proof demonstrates that, if the original networks each match 

the training sets { xk, u1
k, C1

k} k = 1, …, p and { xk, u2
k, C2

k} k = 1, …, p , then a final network that 

matches the full set { xk, uk, Ck} k = 1, …, p can be obtained by the simple algebraic 

operations described in Section 5.1.1.  The matrix of known gradients, Ck, is defined as in 

Section 5.3, and the remaining quantities are defined consistently with Section 5.1.1.  

From Fig. 43 it can be deduced that the following relationships hold for the known 

outputs, 

123456= k

k
k

2

1

u
u

u  (C1) 

and for the known gradients: 

[ ]kkk
21 CCC =  (C2) 

Network weight equations can be used to show that if the full training set is matched 

by the final network (with weights W, d, V, and b), then the parameters of the two 

original networks (W1, d1, V1, b1, and W2, d2, V2, b2) also satisfy the weight equations 

corresponding to the original training sets.  If this is the case, then the opposite argument 

also must apply, and the final network can be constructed from the original networks’  

parameters through the stated algebraic operations.  A single, generic training triad 

indexed by k can be considered without loss of generality.  The output weight equations 

for the final network can be written as the vector-output equivalent of eq. 44, i.e., 



 208 

bdWxV 7u ++= ][ kk  (C3) 

Using the parameters obtained by the algebraic operations in Section 5.1.1, as well as eq. 

C1, the final output weight equations (eq. C3) can be reformulated as: 

( )
( )

( )
( ) 89:;<=

++
++=

89:;<=+89:;<=
+
+89:;<==

89:;<=+> ?@AB C 89:;<=
+
+89:;<==

89:;<=+> ?@AB C 89:;<=+89:;<=89:;<==89:;<=

2222

1111

2

1

22

11

2

1

2

1

22

11

2

1

2

1

2

1

2

1

2

1

2

1

bdxWDV
bdxWDV

b
b

dxWD dxWD
V0
0V

b
b

dxW
dxWD

V0
0V

b
b

d
d

x
W
WD

V0
0V

u
u

k

k

k

k

k

k

k
k

k

 (C4) 

The above equation is found to be equivalent to the two output weight equations of the 

original networks.  Thus, it can be concluded that this network operation preserves output 

information. 

The gradient weight equations of the full network can be written as the vector-output 

equivalent of eq. 49, for the case in which derivatives are known with respect to all of the 

inputs (e = q), that is: 

( )[ ]{ }TkT VnEWC ′= diagκ  (C5) 

The vector of input-to-node values can be computed from the kth-training triad, as: 

dWxn += kk  (C6) 

Just as in eq. C4, it can be shown that the following holds, 

FGHIJK=FGHIJK
+
+= k

k

k

k
k

2

1

22

11

n
n

dxW
dxWn  (C7) 

Then, the diagonal matrix in eq. C5 can be partitioned as, 



 209 

( )[ ] ( )[ ]
( )[ ] LMNOPQ
′

′
=′

k

k
k

2

1

diag
diag

diag
nR0

0nR
nR  (C8) 

such that, by using the final network’s parameters and eq. C2, the gradient weight 

equations (eq. C5) can be reformulated as: 

[ ] ( )[ ]

[ ] ( )[ ]
( )[ ]

( )[ ] ( )[ ][ ]TkTTkT

T

T

k

k
TT

TkTkk

222111

2

1

2

1
21

21

diagdiag

diag
diag

diag

VnSWVnSW

V0
0V

nS0
0nS

WW

VnSWCC

′′=

TUVWXYTUVWXY
′

′
=

′=

 (C9) 

The above equation is expressed as two independent equations that correspond to the 

original networks’  gradient weight equations, demonstrating that gradient information 

also is preserved by this operation.  Similarly, it can be verified that the remaining 

network operations (Figs. 9, 13, 44, and 45) also preserve performance. 



 210 

Appendix D: Description of Trim Data Sets 

The aircraft trim map is obtained by sampling the entire operating range of the 

airplane, OR = { V, H, γ, µ, β} , and by determining whether a trim solution exists at each 

operating point (V, H, γ, µ, β).  Section 4.4 describes the philosophy behind the sampling 

process that also determines the boundaries of the multi-dimensional envelope OR.  

Ultimately, the trim map Uc is defined by the collection of trim control settings 

corresponding to the operating points for which trim solutions exist (eq. 168).  This 

appendix describes how the space OR is sampled numerically, and how the 

corresponding trim solutions are stored once they are found.  Subsequently, the trim data 

is reduced to obtain the training and validation sets used in Section 4.4 to train and test 

the forward neural network. 

Initially, the outer bounds of { V, H}  are assumed to be those of the steady-level flight 

envelope, Fig. 15, with γ = µ = β = 0.  Then, different combinations of γ, µ, and β are 

explored within the prescribed ranges (eq. 169), redefining the V-H limits when trim 

solutions do not exist everywhere inside the initial boundaries.  Several (γ, µ, β) 

combinations are obtained by sampling each of these variables.  The path angle, γ, is 

sampled between − 6 and + 6 deg, with constant intervals ∆γ = 1 deg.  The bank angle, µ, 

and the sideslip, β, are sampled as shown by the Table D.1.  To each combination of 

values (γ, µ, β) there corresponds a two-dimensional envelope { V, H} .  Each of the { V, 

H}  envelopes is explored by sampling the altitude between 0 and 15, 000 m, at intervals 

of ∆H = 1, 000 m.  For each altitude, the corresponding velocity range is sampled at 

intervals of ∆V = 5 m/s. 



 211 

β (deg) µ (deg) 

5 −20 −15 −10 −5 0 5 10 15 20 

4 −21 −17 −13 −7 −2 3 8 14 19 

3 −20 −16 −11 −6 −1 4 9 16 20 

2 −18 −12 −8 −4 0 4 9 13 18 

1 −21 −17 −13 −7 −2 3 8 14 19 

0 −20 −15 −10 −5 0 5 10 15 20 

−1 −19 −14 −9 −3 1 6 12 17 21 

−2 −20 −16 −11 −6 −1 4 9 16 20 

−3 −18 −12 −8 −4 0 4 9 13 18 

−4 −21 −17 −13 −7 −2 3 8 14 19 

−5 −20 −15 −10 −5 0 5 10 15 20 

 

Table D.1. Sampled values of bank angle, µ, and the sideslip, β, used to compute the 
aircraft trim map, Uc. 

For each combination (γ, µ, β) considered above, there exists an envelope { V, H}  of 

sampled V and H values and corresponding trim control settings.  This suggests the 

following approach to storing relevant trim data in MATLAB.  The full envelope of the 

aircraft is stored in one three-dimensional cell array, denominated “ENV” , that contains 

nested cells with two-dimensional envelopes { V, H} .  Each nested cell corresponds to one 

combination (γ, µ, β), with γ varying along the first dimension of the cell array, µ varying 

along its second dimension, and β varying along its third dimension, as shown in Fig. 

D.1.  Then, the actual values of γ, µ, and β can be stored in three matrices, e.g., “G” , 

“M” , and “B” .  In each one-dimensional nested cell, the first element contains a vector of 

altitudes (with ∆H = 1, 000 m), up to the appropriate ceiling; the remaining elements 



 212 

contain corresponding vectors of velocities sampled between the minimum and the 

maximum speed, with ∆V = 5 m/s (Fig. D.1). 

 

 
ZZ
ZZ

[
\

]]
]]
^
_

000,15

000,2
000,1
0

`
[ ]150908580 a

[ ]1559590 b

[ ]150145

Multidimensional cell ar ray, “ ENV”  Nested cell with 
{V, H} envelope 

{ µ}  

{ γ}  { β}  

{ V(H)}  

{ H}  

 

Figure D.1. Cell array structure “ENV”  used to store the aircraft multidimensional flight 
envelope, OR = { V, H, γ, µ, β} . 

Another multidimensional cell array, “ENVPAR” , is used to store the trim control 

settings over the full aircraft flight envelope, as shown in Fig. D.2.  This second array has 

the same outer correspondence to γ, µ, and β values.  However, in this case each nested 

cell is two dimensional and contains a vectors of control settings, “TrimPar”  (or uc), 

obtained for the corresponding values of H and V, stored in “ENV” .  H varies along the 

first dimension (column-wise) and V varies along the second dimension (row-wise).  The 

cell dimensions are ordered consistently with the MATLAB convention for multi-

dimensional arrays.  Since the number of V values may be different at every altitude, H, 



 213 

some of the vectors in the nested cells will be empty, as illustrated by the empty brackets, 

[ ], in Fig. D.2. 

 
Multidimensional cell ar ray, “ ENVPAR”  Nested cell with control settings 

{ µ}  

{ γ}  { β}  

{ V}  

{ H}  

 cccd
e

fffg
h

i23.0
01.0
02.0

jjjk
l

mmmn
o

p31.0
01.0
03.0 jjjk

l
mmmn
o

p 4.0
01.0
03.0

qqqr
s

tttu
v

w43.0
02.0
04.0

xxxy
z

{{{|
}

~27.0
02.0
03.0

cccd
e

fffg
h

i45.0
02.0
03.0

����
�

����
�

� 8.0
03.0
04.0

“TrimPar”  

[  ] 

[  ] 

 

Figure D.2. Cell array structure “ENVPAR”  used to store the aircraft trim map, Uc, i.e., 
the trim control settings, “TrimPar” , corresponding to the multidimensional flight 

envelope, OR = { V, H, γ, µ, β} . 

The training set for the forward neural network, NNF, (eq. 170) is obtained from the 

above data by reducing it to 2, 696 operating points or, equivalently, 2, 696 (V, H, γ, µ, β) 

combinations.  This is achieved by first reducing the number of (µ, β) combinations to 

the following subset: 

{ } (deg)

20192120
815014
0940
151615
21211421

,

5115
4004
5235
5325
4114

, ���
��
�
�

���
��
�
�

��
��

�

�
��
��
�

�
−−−−
−−−−

��
��

�

�
��
��
�

�

−−
−

−−
−−
−−

=βµ  (D1) 



 214 

For each of the (µ, β) combinations above, four to five values of γ are selected randomly 

within the chosen range (eq. 169).  Then, for each of the resulting (γ, µ, β) combinations, 

the altitude values are chosen in ∆Htrain = 2, 000 m increments, alternatively between 0 m 

or 1, 000 m and the applicable ceiling.  For each altitude value, velocity values are 

selected using ∆Vtrain = 30 m/s, and retaining the minimum and maximum velocities (i.e., 

the envelope boundaries).  This approach samples the space OR uniformly, while 

minimizing repetition in the final data set (eq. 170). 

Two validation sets also are created from the full-envelope trim data.  The first set is 

obtained by using all 1, 287 (γ, µ, β) combinations, and by selecting altitude and velocity 

values with the same criteria described above.  Since, in general, the envelope { V, H}  

associated with one combination (γ, µ, β) differs from that associated with a different (γ, 

µ, β) combination, these sampling criteria diversify the data set with respect to V and H, 

as well.  This validation set contains 39, 764 operating points.  The second validation set 

contains 2, 629 operating points and is obtained by randomly picking 87 (γ, µ, β) 

combinations from the original possibilities, and using the same selection criteria for V 

and H. 

The values of a variable, say µ, are said to be picked randomly when they are selected 

by randomly choosing among a selected number of index permutations.  For example, 

Table D.1 shows that to different values of β there correspond different sampled sets of 

µ.  However, all of these µ-sets contain the same number of elements, i.e., 9, (with more 

or less constant spacing to provide for uniform sampling).  Thus, the elements in a µ-set 

always can be indexed by the vector [1:9] (in MATLAB notation).  Here, two vectors of 

indices are used to define two µ-subsets: [1:2:9] and [2:2:8].  Then, random values of µ 



 215 

are chosen by randomly picking between these two vectors.  This approach guarantees 

uniform sampling, while the set is being reduced in a random fashion to minimize 

repetition. 



 216 

Appendix E: Flight Control Software Architecture 

The dual-heuristic-programming (DHP) adaptive critic design (ACD) described in 

Chapter 5 is implemented using a modular software comprised of user-defined MATLAB 

functions that take advantage of this high-level language’s capabilities.  The proposed 

modular structure has not been optimized for computational efficiency.  Instead, it is 

designed to permit implementation changes to be performed quickly and reliably.  Every 

function corresponds to a particular mathematical entity in the DHP architecture.  An 

overview of the software is provided in this appendix, and the details of each function are 

omitted for simplicity.  It is assumed that the action and critic neural parameters are 

initialized (according to Chapter 4 and Section 5.1.1) and stored in a MATLAB cell 

array, referred to as “nn_cell” .  The initialized cell array is stored in a binary file called 

“weightsA.mat”  for the action network (NNA), and in a file called “weightsC.mat”  for the 

critic network (NNC).  Using the same name “nn_cell”  for both the action and the critic 

allows the subroutines to be applicable to either networks.  During every time interval, 

∆t = tk+1 − tk, the neural parameters are modified by the DHP architecture and, as soon as 

they are updated to “nn_cell” (tk+1), they are stored in the corresponding binary file, 

replacing the previous parameters “nn_cell” (tk). 

The main file, “ACDpinn.m”, is used to specify a command-input time history, Uc.  

However, the command-input becomes known to the DHP architecture only the present 

time, tk, comes about in the simulation.  The initial conditions, x0 and u0, and the time 

span (tf − t0) are prescribed in this file that computes the corresponding aircraft state and 

control histories, X and U.  The sampled-time history of a vector is stored column-wise in 

a matrix, as suggested by the MATLAB convention for ordinary differential equations.  



 217 

The input/output structure of the main file and of the subroutines it implements are 

sketched in Fig. E.1.  The global variables uc(tk), a(tk), x0, and u0 can be obtained by all 

functions without being included in their inputs.  The notation used for the input and 

output variables corresponds to that introduced in Chapters 1 through 5, and summarized 

in Appendix A.  A dashed arrow indicates the function is accessing the binary file as 

shown, in the direction illustrated (i.e., either to store “↓”  or load “↑”  its contents). 

The function “ClEoM.m” represents the aircraft closed-loop equations of motion.  It 

produces the time-derivative of the augmented state, xa(tk), computing the control )(~
ktu  

by means of the action network, with the parameters in “weightsA.mat” .  The function 

“OlEoM.m” is similarly defined, except it represents the open-loop equations of motion, 

therefore it also takes the control as input.  Both functions simulate an ordinary 

differential equation and are referred to as “odefiles” .  A function denominated 

“RKstep.m” can be used to compute the Runga-Kutta [90] integration step, ∆y(tk), for a 

generic “odefile[y(tk), tk]”, with y(tk) as dependent variable and tk as independent variable.  

Then, the ordinary differential equation simulated by the “odefile”  can be integrated 

simply by computing y(tk+1) = y(tk) + ∆y(tk) at every interval, ∆t, over the desired time 

span, e.g., (tf − t0).  Both “ClEoM.m” and “OlEoM.m” access the aircraft simulation 

described in Chapter 4, referred to as “FLIGHT.m” [64].  This program has been 

customized to output the aircraft parameters, pm(tk), based on the present aircraft state, 

x(tk), and control, u(tk). 



 218 

 

ACDpinn.m 

ClEoM.m 

RKstep.m 

adaptA.m 

FunA.m 

RPupdate.m 

FLIGHT.m 

OlEoM.m 

Model.m 

vecNN.m 

Uc 
X 

U 

x(tk) 

u(tk) 

pm(tk) 

xa(tk) 

tk 

xa(tk) xa(tk) 

tk 
u(tk) 
~ xa(tk) 

y(tk) 

tk 
∆t 

odefile[y, tk] 

∆y(tk) xa(tk) 

tk 
u(tk) 
~ 

xa(tk+1) 

nncell(tk) 

pa(tk) 

nncell(tk+1) 

weightsA.mat 

adaptC.m 
nncell(tk) 

pa(tk) 

nncell(tk+1) 

weightsC.mat 

xa(tk) 

u(tk) 
~ 

weightsC.mat 

FunC.m 
xa(tk) 

u(tk) 
~ 

weightsA.mat 
weightsC.mat 
 

∂u(tk) 
~ 

∂V[⋅] ∂V[⋅] 
∂xa(tk) 

nncell(tk) nncell(tk+1) nncell 

p 
z 

weightsA.mat 

 

Figure E.1. Input/output structure of the user-defined functions used in the dual-heuristic-
programming adaptive-critic software implementation. 



 219 

The aircraft model (eq. 209) used by the DHP architecture is implemented in the 

function “Model.m”.  Given the state and control, xa(tk) and )(~
ktu , this function predicts 

the state for next time interval, xa(tk+1), based on “OlEoM.m” and “RKstep.m”.  The 

model function also is called by the MATLAB built-in function “numjac”  to predict the 

system transition matrices, as explained in Section 5.1.2 (eq. 187 and 188).  The module 

for the action network adaptation, “adaptA.m”, and the module for the critic network 

adaptation, “adaptC.m”, are called by the main program once every time interval, in this 

order.  These functions implement the flowcharts in Figures 51 and 52, respectively.  The 

action adaptation module solves the optimality condition (eq. 36) -- represented by the 

function “FunA.m” -- using the MATLAB built-in function “ fsolve” .  Then, it calls the 

subroutine “RPupdate.m” to update the action network parameters, by means of the 

resilient-backpropagation algorithm.  The code in Figs. B.4-B.5 can be used to create the 

“RPupdate.m” function, provided it is customized to take the neural weights w(tk) from 

the cell array “nn_cell” (tk) and to return the updated weights w(tk+1) in the same structure 

“nn_cell” (tk+1).  Once the routine “adaptA.m” has obtained “nn_cell” (tk+1) from 

“RPupdate.m”, it returns the action parameters to “ACDpinn.m” and stores them in the 

binary file “weightsA.m”. 

Following the above action-network adaptation, the main file “ACDpinn.m” calls the 

module for the critic network adaptation, “adaptC.m”.  This function computes the critic 

network target by calling “FunC.m”, which implements the criterion in eq. 188.  Given 

this target (“nn_target”) and the old critic parameters, “nn_cell(tk)” , “adaptC.m” calls 

“RPupdate.m” to compute the new parameters “nn_cell” (tk+1).  This updated critic 

network information is stored in the binary file “weightsC.m” for later use.  A function 



 220 

“vecNN.m” that simulates a vector-output sigmoidal neural network is used by several of 

the subroutines in Table D.1.  It computes the network output z based on the available 

input, p, and network information, “nn_cell” .  Based on the inputs provided, “vecNN.m” 

plays the role of either the action or the critic network, at any moment in time tk. 

During each of the DHP sequenced events sketched in Fig. 41, the functions in Table 

D.1 exchange input/output information as illustrated in Fig. E.2.  This diagram illustrates 

the implementation of the control action, Fig. E.2.(a), the action adaptation, Fig. E.2(b), 

and the critic adaptation, Fig. E.2(c), during the time interval ∆t.  The modular software 

architecture allows the user to perform quick implementation changes and 

troubleshooting.  Every function has a distinct role within the adaptive critic architecture, 

and corresponds to a well defined mathematical entity.  For example, the on-line training 

routine can be changed virtually instantaneously by modifying or substituting the 

function “RPupdate.m” alone.  Another example involves the “Model.m” routine.  

Suppose on-line identification is to be carried out by a model neural network, as 

suggested by Section 6.3.  Then, “Model.m” can be substituted by a function that 

implements “vecNN.m” to simulate the model network and that utilizes “RPupdate.m” 

(as well as other functions in Fig. E.1) to adapt the model parameters. 



 221 

 

ACDpinn.m RKstep.m ClEoM.m 

FLIGHT.m “ Control Action”  

ACDpinn.m

RKstep.m 

RPupdate.m FLIGHT.m 

“ Action Adaptation”  

adaptA.m FunA.m 

vecNN.m

Model.m 

Model.m 

OlEoM.m

ACDpinn.m 

RKstep.m 

RPupdate.m FLIGHT.m 

“ Critic Adaptation”  

adaptC.m FunC.m 

vecNN.m

Model.m 

Model.m 

OlEoM.m

(a) 

(b) 

(c) 

 

Figure E.2. Sequence of events taking place during the time interval ∆t = tk+1 − tk, in the 
dual-heuristic-programming adaptive-critic software architecture.  The arrows indicate 
communication between functions, whose inputs and outputs are described in Fig. E.1. 



 222 

Appendix F: Aircraft Model 

The equations of motion and state elements that are used in the aircraft simulation 

(eq. 1) are reviewed in this Appendix.  The simulation represents a business-type aircraft 

with two turbojet engines, a gross cruising weight of 4, 536 kg, and a nominal cruising 

Mach number of 0.79.  The maximum available thrust is 26, 423 N at sea level, and 

11, 735 N at 10, 000 m.  The service and performance ceilings (calculated in [64]) are 

15, 315 m and 15, 275 m, respectively.  For a full explanation of the physical and 

performance characteristics modeled by the business twin-jet simulation, the reader 

should refer to [64].  The model estimates low-angle-of-attack Mach effects, power 

effects, and moments and products of inertia by using available full-scale wind tunnel 

data and physical characteristics, according to the methods described in [64].  The state 

accelerations, denoted by Xb, Yb, Zb, Lb, Mb, and Nb, are a function of the available 

thrust, and of the aerodynamic force and moment coefficients produced by the controls 

for the present aircraft state and wind field. 

The nonlinear equations of motion are formulated with respect to the aircraft body-

axis velocities and angular rates, and with respect to its position relative to an inertial 

frame of reference (Section 4.4), as: 

( ) ( ) qwrvu
xbb −+•+•= gX

�
 (F1) 

( ) ( ) pwruv
ybb +−•+•= gY

�
 (F2) 

( ) ( ) pvquw
zbb −+•+•= gZ

�
 (F3) 

( )
( )ψφψθφ

ψφψθφψθ

sinsincossincos

sincoscossinsincoscos

−+

−+=

w

vuxr

�
 (F4) 



 223 

( )
( )ψφψθφ

ψφψθφψθ

cossinsinsincos

coscossinsinsinsincos

−+

++=

w

vuyr

�
 (F5) 

θφθφθ coscoscossinsin wvuzr ++−=
�

 (F6) 

( ) ( ) ( )[ ] ( )[ ]{ }
( )2

2NL

xzzzxx

yyzzzzxzzzxxyyxzbxzbzz

III

IIIIrIIIIpIIq
p

−
−++−−−•+•

=
�

(F7) 

( ) ( ) ( )[ ]
yy

xzzzxxb

I

rpIIIpr
q

22M −−−−•
=

�
 (F8) 

( ) ( ) ( )[ ] ( )[ ]{ }
( )2

2NL

xzzzxx

yyxxxxxzzzxxyyxzbxxbxz

III

IIIIpIIIIrIIq
r

−
−++−−+•+•

=
�

(F9) 

( ) θφφφ tancossin rqp ++=
�

 (F10) 

φφθ sincos rq −=
�

 (F11) 

( )
θ

φφψ
cos

cossin rq +=
�

 (F12) 

The body-axis gravity components, 
xbg , 

ybg , and 
zbg , and the state accelerations are a 

function of the state and, possibly, of the controls and wind field.  The moments of 

inertia, Ixx, Iyy, and Izz, and the product of inertia, Ixz, are estimated using simplified mass 

distributions, and are held fixed during the simulation. 

The time history of the state vector x = [V γ q θ r β p µ]T is obtained by integrating the 

equations of motion above.  The following relations are used to compute the state 

elements that do not explicitly appear in the chosen formulation: 

( )
( )

�� 
¡

¢¢£
¤

−

++
=�� 

¡
¢¢£
¤

−

−

Vw
Vv

wvuV

/sin
/sin

1

1

222

γ
β  (F13) 

( )[ ] ¥§¦¨©ª§« −+= −
γ

βφθαθαβφθµ
cos

sincoscossinsincoscossincos
sin 1  (F14) 



 224 

For small-angle maneuvers, the bank angle, µ, is very close to the roll angle, φ; however, 

while φ is measured about the body axis xb, µ is measured about the velocity vector [64].  

The angle of attack, α, is computed as in eq. 165.  The body velocities and angular rates, 

and flow angles are sketched in Fig. F.1.  Section 4.4 provides additional information 

about the body and inertial axes systems.  The references [64, 87, 88] include a detailed 

description of all aircraft angles and coordinate transformations. 

 

Horizontal plane 

xb 

yb 

zb 

V 

u 
v 

w 

p 

r 

q 

V 

u 

w 

v 

u 

yb 

xb 

zb 

xb 

γ   

 

Figure F.1. Definition of path angle, angle of attack, and sideslip, adapted from [88]. 



 225 

References 

[1] K. S. Narendra, “Adaptive Control using Neural Networks,” Neural Networks for 
Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds., pp. 115-142, MIT 
Press, Cambridge, MA, 1990. 

[2] L. J. Lin, “Self-improvement based on reinforcement learning, planning and 
teaching,”  Machine Learning: Proceedings of the Eight International Workshop, 
L. A. Birnbaum and G. C. Collins, Eds., pp. 323-327, Morgan Kaufmann, San 
Mateo, CA, 1991. 

[3] A. G. Barto, “Reinforcement Learning and Adaptive Critic Methods,”  Handbook 
of Intelligent Control, D. A. White and D. A. Sofge, Eds., pp. 469-492, Van 
Nostrand Reinhold, New York, NY, 1992. 

[4] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic Programming, Athena 
Scientific, Belmont, MA, 1996. 

[5] K. S. Narendra and K. Parthasaranthy, “Identification and control of dynamical 
systems using neural networks,”  IEEE Trans. Neural Networks, Vol. 1, pp. 4-27, 
1990. 

[6] J. Neidhoefer and K. Krishnakumar, “Nonlinear Control Using Neural 
Approximators with Linear Control Theory,”  Proc. AIAA Guidance, Navigation 
and Control Conference, New Orleans, pp. 364-372, 1997. 

[7] T. Iwasa, N. Morizumi, and S. Omatu, “Temperature Control in a Batch Process 
by Neural Networks” , IEEE International Conference, IEEE-0-7803-41223-8/97, 
V 6, no.1, pp. 2430-2433, 1997. 

[8] A. J. Calise, “Neural Networks in Nonlinear Aircraft Flight Control,”  IEEE 
Aerospace and Electronics Systems Magazine, Vol. 11, No. 7, pp. 5-10, 1996. 

[9] K.S. Narendra and O.A. Driollet, “Stochastic adaptive control using multiple 
models for improved performance in the presence of random disturbances,”  
International Journal of Adaptive Control and Signal Processing, Vol. 15, No. 3, 
pp. 297-317, 2001. 

[10] A. O. Esogbue, “Computational Aspects and Applications of a Branch and Bound 
Algorithm for Fuzzy Multistage Decision Processes,”  Journal of Computers and 
Mathematics with Applications, Special Issue, Vol. 21, No. 11-12, pp. 117-128, 
199l. 

[11] R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 
1957. 

[12] D. E. Kirk, Optimal Control Theory; an Introduction, Prentice-Hall, Englewood 
Cliffs, NJ, 1970. 

[13] R. Bellman, Methods of Nonlinear Analysis: Volume II, Academic Press, 1973. 



 226 

[14] P. J. Werbos, “Building and Understanding Adaptive Systems: A 
Statistical/Numerical Approach for Factory Automation and Brain Research,”  
IEEE Trans. Syst., Man, Cybern., Vol. 17, No. 1, pp. 7-20, 1987 

[15] D. P. Bertsekas, “Distributed Dynamic Programming,”  IEEE Trans. Automatic 
Control, Vol. 27, pp. 610-616, 1982. 

[16] R. Howard, Dynamic Programming and Markov Processes, MIT Press, 
Cambridge, MA, 1960. 

[17] P. J. Werbos, “Neurocontrol and Supervised Learning: an Overview and 
Evaluation,”  Handbook of Intelligent Control, D. A. White and D. A. Sofge, Eds., 
pp. 65-86, Van Nostrand Reinhold, New York, NY, 1992. 

[18] P. J. Werbos,”  A Menu of Designs for Reinforcement Learning Over Time,”  
Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds., 
pp. 67-96, MIT Press, Cambridge, MA, 1990. 

[19] P. J. Werbos, “Advanced Forecasting Methods for Global Crisis Warning and 
Models of Intelligence,”  General Systems Yearbook, 1997. 

[20] A. Barto, R. Sutton, and C. Anderson, “Neuronlike Elements that Can Solve 
Difficult Learning Control Problems,”  IEEE Trans. Systems, Man, and 
Cybernetics, Vol. 3, No. 5, pp. 834-846, 1983. 

[21] P. J. Werbos, “Applications of Advances in Nonlinear Sensitivity Analysis,”  
System Modeling and Optimization: Proceedings of the 10th IFIP Conference, R. 
F. Drenick and F. Kozin, Eds., Springer-Verlag, New York, NY, 1982. 

[22] C. Watkins, “Learning from Delayed Rewards,”  Ph.D. Thesis, Cambridge 
University, Cambridge, England, 1989. 

[23] T. H. Wonnacott and R. Wonnacott, Introductory Statistics for Business and 
Economics, 2nd Ed., Wiley, New York, NY, 1977. 

[24] D. Prokhorov and D. Wunsch, “Adaptive Critic Designs,”  IEEE Trans. on Neural 
Networks, Vol. 8, No. 5, pp. 997-1007, 1997. 

[25] S. Lane and R. F. Stengel, “Flight Control Design Using Non-linear Inverse 
Dynamics,”  Automatica, Vol. 24, No. 4, pp. 471-483, 1988. 

[26] M. G. Cox, “Practical Spline Approximation,”  Lecture Notes in Mathematics 965: 
Topics in Numerical Analysis, P.R. Turner, Ed., Springer Verlag, New York, NY 
1982. 

[27] A. Antoniadis and D. T. Pham, “Wavelets and Statistics,”  Lecture Notes in 
Statistics 103, Springer Verlag, New York, NY, 1995. 

[28] C. K. Chui, An Introduction to Wavelets, Academic Press, New York, NY, 1992. 

[29] T. Lyche, K. Mørken, and E. Quak, “Theory and Algorithms for Nonuniform 
Spline Wavelets,”  Multivariate Approximation and Applications, N. Dyn, D. 
Leviatan, D. Levin, and A. Pinkus, Eds., Cambridge University Press, Cambridge, 
UK, 2001. 



 227 

[30] J. H. Friedman, “Multivariate adaptive regression splines,”  The Annals of 
Statistics, Vol. 19, pp. 1-141, 1991. 

[31] S. Karlin, C. Micchelli, and Y. Rinott, “Multivariate splines: A probabilistic 
perspective,”  Journal of Multivariate Analysis, Vol. 20, pp. 69-90, 1986. 

[32] C. J. Stone, “The use of polynomial splines and their tensor products in 
multivariate function estimation,”  The Annals of Statistics, Vol. 22, pp. 118-184, 
1994. 

[33] G. Cybenko, “Approximation by Superposition of a Sigmoidal Function” , Math. 
Contr., Signals, Syst., Vol. 2, pp. 359-366, 1989. 

[34] K. Hornik, M. Stichcombe, and H. White, “Multilayer Feedforward Networks are 
Universal Approximators,”  Neural Networks, Vol. 2, No. 5, pp. 359-366, 1989. 

[35] A. R. Barron, “Universal Approximation Bounds for Superposition of a 
Sigmoidal Function,”  IEEE Transactions on Information Theory, Vol. 39, No. 3, 
pp. 930-945, 1993. 

[36] S. Ferrari and R. F. Stengel, “Algebraic Training of a Neural Network,” Proc. 
American Control Conference, pp.1605-1610, Arlington, VA, 2001. 

[37] S. Ferrari and R. F. Stengel, “Classical/Neural Synthesis of Nonlinear Control 
Systems,”  J. Guidance, Control and Dynamics, Vol. 25, No. 3, pp. 442-448, 
2002. 

[38] H. Demuth and M. Beale, “Radial Basis Networks,”  Neural Network Toolbox – 
For Use with MATLAB, Version 3, The MathWorks Inc., Natick, MA, pp. 6.2-
6.19, 1998. 

[39] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural Networks for 
Control Systems – A Survey,”  Automatica, Vol. 28, No. 6, pp. 1083-1112, 1992. 

[40] D. Marquardt, “An Algorithm for Least Squares Estimation of Nonlinear 
Parameters,”  J. Soc. Ind. Appl. Math, pp. 431-441, 1963. 

[41] M.T. Hagan and M. B. Menhaj, “Training feedforward networks with the 
Marquardt algorithm,”  IEEE Trans. Neural Networks, Vol. 5, No. 6, pp. 989 –
993, 1994. 

[42] R. F. Stengel, J. Broussard, and P. Berry, “Digital Controllers for VTOL 
Aircraft,”  IEEE Trans. Aerospace and Electronic Systems, Vol. AES-14, No. 1, 
pp. 54-63, 1978.  

[43] R. F. Stengel, J. Broussard, and P. Berry, “Digital Flight Control Design for a 
Tandem-Rotor Helicopter,”  Automatica, Vol. 14, No. 4, pp. 301-311, 1978. 

[44] R. F. Stengel, P. Berry, and J. Broussard, “Evaluation of Digital Flight Control 
Design for VTOL Approach and Landing, Guidance and Control Design 
Considerations for Low Altitude and Terminal Area Flight,”  AGARD CP-240, 
October 1977. 



 228 

[45] W. T. Baumann and W. J. Rugh, “Feedback Control of a Nonlinear System by 
Extended Linearization,”  IEEE Trans. Auto. Control, Vol. AC-31, No. 1, pp. 40-
46, 1986. 

[46] W. T. Baumann and W. J. Rugh, “Feedback Control of a Nonlinear System by 
Extended Linearization: The Multi-Input Case,”  Proc. 7th Int’ l Symp. on Math. 
Theory of Networks and Systems, pp. 107-113, Stockholm, Sweden, 1985. 

[47] J. B. Plant, Y. T. Chan, and D. A. Redmond, “A Discrete Tracking Control Law 
for Nonlinear Plants,”  Proc. IFAC 8th Triennial World Congress – Control 
Science and Technology, pp. 55-60, Kyoto, Japan, 1981. 

[48] H. Nijmeijer, A. J. Van der Schaft, Nonlinear Dynamical Control Systems, 
Springer Verlaf, New York, NY, 1990. 

[49] D. J. Bugajski, D. F. Enns, and M. R. Elgersma, “A Dynamic Inversion Based 
Control Law with Application to the High Angle of Attack Research Vehicle,”  
Proc. AIAA Guidance, Navigation, and Control Conf., pp. 20-22, 1990. 

[50] S. A. Snell, D. F. Enns, and W. L. Garrard, “Nonlinear Inversion Flight Control 
for a Supermaneuverable Aircraft,”  J. Guidance, Control and Dynamics, Vol. 15, 
No. 4, pp. 976-984, 1992. 

[51] J. M. Buffington, A. G. Sparks, and S. S. Banda, “Full Conventional Envelope 
Longitudinal Axis Flight Control with Thrust Vectoring,”  Proc. American 
Control Conf., pp. 415-419, 1993. 

[52] Q. Wang and R. F. Stengel, “Robust Nonlinear Control of a Hypersonic Aircraft,”  
J. Guidance, Control, and Dynamics, Vol. 23, No. 4, pp. 577-585, 2000. 

[53] J. S. Brinker and K. A. Wise, “Stability and Flying Qualities Robustness of a 
Dynamic Inversion Aircraft Control Law,”  J. Guidance, Control, and Dynamics, 
Vol. 19, No. 6, pp. 1270-1277, 1996. 

[54] R. J. Adams and S. S. Banda, “An Integrated Approach to Flight Control Design 
Using Dynamic Inversion and µ-Synthesis,”  Proc. American Control Conf., pp. 
1385-1389, 1993. 

[55] J. M. Buffington, R. J. Adams, and S. S. Banda, “Robust Nonlinear High Angle of 
Attack Control Design for a Supermaneuverable Vehicle,”  Proc. of the AIAA 
Guidance, Navigation, and Control Conf., pp. 690-700, 1993. 

[56] S. Golpaswami and J. K. Hedrick, “Robust Adaptive Nonlinear Control of a High 
Performance Aircraft,”  Proc. American Control Conf., pp. 1279-1283, 1990. 

[57] J. J. E. Slotine, “Sliding Controller Design for Nonlinear Systems,”  Int. J. 
Control, Vol. 40, No. 2, pp. 421-434, 1984. 

[58] S. H. Lane, “Theory and Development of Adaptive Flight Control Systems Using 
Nonlinear Inverse Dynamics,”  Ph.D. Thesis, Princeton University, Princeton, NJ, 
1988. 

[59] K. S. Narendra, “Adaptive Control of Discrete-time Systems Using Multiple 
Models,”  IEEE Trans. Auto. Control, Vol. 45, No. 9, pp. 1669-1686, 2000. 



 229 

[60] E. Ferreira and B. Krogh, “Switching Controllers Based on Neural Networks 
Estimates of Stability Regions and Controller Performance,”  Lecture Notes on 
Computer Science, Special Issue: Hybrid Systems VI, Springer Verlag, 1998. 

[61] B. S. Kim and A. J. Calise, “Nonlinear Flight Control Using Neural Networks,”  J. 
Guidance, Control, and Dynamics, Vol. 20, No. 1, pp. 26-33, 1997. 

[62] A. J. Calise and R. T. Rysdyk, “Nonlinear Adaptive Flight Control Using Neural 
Networks,”  IEEE Control Systems Magazine, pp. 14-25, December 1998. 

[63] K.A. Wise, et al., “Direct Adaptive Reconfigurable Flight Control for a Tailless 
Advanced Fighter Aircraft,”  Int. J. Robust and Nonlinear Control, Vol. 9, pp. 
999-1009, 1999. 

[64] R. F. Stengel, Flight Dynamics, (manuscript in preparation). 

[65] K. S. Narendra, “Neural Networks for Control: Theory and Practice” , Proc. of 
The IEEE, Vol. 84, No.10, pp. 1385-1406, 1996. 

[66] R. F. Stengel and C. Marrison, “Design of Robust Control Systems for 
Hypersonic Aircraft,”  J. Guidance, Control, and Dynamics, Vol. 21, No.1, pp.58-
63, 1998. 

[67] R. F. Stengel and L. R. Ray, “Stochastic Robustness of Linear-Time Invariant 
Control Systems,”  IEEE Trans. Automatic Control, Vol. 36, No. 1, pp. 82-87, 
1993. 

[68] R. F. Stengel and L. R. Ray, “A Monte Carlo Approach to the Analysis of Control 
System Robustness,”  Automatica, Vol. 29, No. 1, pp. 229-236, 1993. 

[69] R. F. Stengel and C. Marrison, “Stochastic Robustness Synthesis Applied to a 
Benchmark Control Problem,”  Int’ l. J. Robust and Nonlinear Control, Vol. 5, No. 
1, pp. 13-31, 1995. 

[70] R. F. Stengel and C. Marrison, “Robust Control System Using Random Search 
and Genetic Algorithms,”  IEEE Trans. Automatic Control, Vol. 42, No. 6, pp. 
835-839, 1997. 

[71] A. N. Kolmogorov, “On the Representation of Continuous Functions of Several 
Variables by Superposition of Continuous Functions of One Variable and 
Addition,”  Dokl. Akad. Nauk SSSR, Vol. 114, pp. 953-956, 1957. 

[72] D. Linse and R. F. Stengel, “Identification of Aerodynamic Coefficients Using 
Computational Neural Networks,”  J. Guidance, Control, and Dynamics, Vol. 16, 
No. 6, pp. 1018-1025, 1993. 

[73] A. Graham, Kronecker Products and Matrix Calculus: with Applications, Ellis 
Horwood Ltd, Chichester, UK, 1981. 

[74] G. Strang, Linear Algebra and Its Applications, 3rd Ed., Harcourt, Brace, 
Janovich, San Diego, 1988. 

[75] D. Nguyen and B. Widrow, “Improving the Learning Speed of 2-Layer Neural 
Networks by Choosing Initial Values of the Adaptive Weights,”  Proc. Intl. Joint 
Conf. on Neural Networks, San Diego, CA, Vol. III, pp. 21-26, 1990. 



 230 

[76] P. J. Werbos, “Backpropagation Through Time: What It Does and How To Do 
It,”  Proc. of the IEEE, Vol. 78, No. 10, pp. 1550-1560, 1990. 

[77] M. Reidmiller and H. Braun, “A Direct Adaptive Method for Faster 
Backpropagation Learning: The RPROP Algorithm,”  Proc. IEEE Int. Conf. on 
NN (ICNN), pp. 586-591, San Francisco, CA, 1993. 

[78] R. J. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer 
Academic Publisher, Boston/London/Dordrecht, 1997. 

[79]  D.E. Salane, “Adaptive Routines for Forming Jacobians Numerically,”  SAND86-
1319, Sandia National Laboratories, 1986. 

[80] J. J. D’Azzo and C. H. Houpis, “Nyquist, Bode, and Nichols Plots,”  The Control 
Handbook, W. S. Levine, Ed., pp. 173-181, CRC Press, Boca Raton, FL, 1996. 

[81] R. F. Stengel, Optimal Control and Estimation, Dover Publications, New York, 
NY, 1994. 

[82] C. Huang and R. F. Stengel, “Restructurable Control Using Proportional-Integral 
Model Following,”  J. Guidance, Control, and Dynamics, Vol. 13, No. 2, pp. 303-
309, 1990. 

[83] Flying Qualities of Piloted Airplanes, Military Specifications MIL-F-8785C, 
USAF ASD, Wright Patterson AFB, November 1980. 

[84] R. F. Stengel, “A Unifying Framework for Longitudinal Flying Qualities 
Criteria,”  J. Guidance, Control, and Dynamics, Vol. 6, No. 2, pp. 84-90, 1983. 

[85] H. Erzberger, “Analysis and Design of Model Following Control Systems by 
State Space Techniques,”  Proc. of the 1968 Joint Automatic Control Conf., pp. 
572-581, June 1968. 

[86] L. S. Cicolani, B. Sridhar, and G. Meyer, “Configuration Management and 
Automatic Control of an Augmentor Wing Aircraft with Vectored Thrust,”  NASA 
Technical Paper, TP-1222, 1979. 

[87] B. Etkin, Dynamics of Atmospheric Flight, John Wiley & Sons, Inc., Toronto, 
1972. 

[88] R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc., New 
York, NY, 1989. 

[89] J. Kalviste, “Spherical Mapping and Analysis of Aircraft Angles for Maneuvering 
Flight,”  J. Aircraft, Vol. 24, No. 8, pp. 523-530, 1987. 

[90] L. F. Shampine and M. K. Gordon, Computer Solutions of Ordinary Differential 
Equations, W. H. Freeman & Co., 1975. 

[91] P. J. Werbos, “Approximate Dynamic Programming for Real-time Control and 
Neural Modeling,”  Handbook of Intelligent Control, D. A. White and D. A. 
Sofge, Eds., pp. 493-526, Van Nostrand Reinhold, New York, NY, 1992. 

[92] K. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Prentice Hall, 
Englewood Cliffs, NJ, 1989. 



 231 

[93] B. Friedland, “Observers,”  The Control Handbook, W. S. Levine, Ed., pp. 607-
618, CRC Press, Boca Raton, FL, 1996. 

[94] T. H. Cormen, Introduction to Algorithms, 2nd Ed., MIT Press, Cambridge, MA, 
2001. 

[95] A. Gelb, Ed., Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974. 

[96] NSF Workshop on Learning and Dynamic Programming, Playacar, MX, April 
2002. 



 232 

Postscriptum 

“Know thyself” is all science.  Only when he will have finished knowing all things man 

will have known himself.  Things, in fact, are only man's limits. 

 Friedrich Nietzsche, The Gay Science 


