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Abstract— This paper develops a decentralized approach
for mapping and information-driven path planning for Very
Large Scale Robotic (VLSR) systems. In this approach, ob-
stacle mapping is performed using a continuous probabilistic
representation known as a Hilbert map, which formulates the
mapping problem as a binary classification task and uses kernel
logistic regression to train a discriminative classifier online.
A novel Hilbert map fusion method is presented that quickly
and efficiently combines the information from individual robot
maps. An integrated mapping and path planning algorithm is
presented to determine paths of maximum information value,
while simultaneously performing obstacle avoidance. Further-
more, the effect of how percentage communication failure
effects the overall performance of the system is investigated. The
approach is demonstrated on a VLSR system with hundreds
of robots that must map obstacles collaboratively over a large
region of interest using onboard range sensors and no prior
obstacle information. The results show that, through fusion and
decentralized processing, the entropy of the map decreases over
time and robot paths remain collision-free.

I. INTRODUCTION

Large multi-robot autonomous systems are highly desir-
able as their effectiveness of cooperatively performing a
given task can far surpass that of a single robot. These
systems, also known as Very Large Scale Robotic (VLSR)
systems, are becoming increasingly more practical as the
cost of small, but computationally powerful robots decreases,
and onboard communications and functionalities allow them
to collaborate and share information on common goals [1],
[2]. Systems comprised of hundreds of small, homogeneous
robots are being considered as a solution to tasks that were
previously done by a single robot such as mapping, search
and rescue, and other industrial and military applications.
These systems are especially powerful when tasks involve
large spatio-temporal operations in changing environments,
such as ocean surface or underwater regions [3]. For ex-
ample, the search for a lost vessel at sea can be performed
more effectively with a large number of autonomous vehicles
than with one or few vehicles, but the performance gains
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scales reasonably with cost only if the vehicles collaborate
and share information effectively.

Many approaches to mapping and information-driven path
planning and control have been explored over the past few
decades, but most methods do not scale with the number
of robots, or decompose the problem in such a way that
information fusion and collaboration are not necessarily
optimal [3]. Prioritized path planning, for example, plans
the path of every robot individually and then accounts for
mutual collisions at the expense of optimality [4]. Distributed
optimal control (DOC) has been shown to optimize the
performance of VLSR systems in tasks such as traversing
an obstacle populated environment, maintaining a desired
formation, or optimizing the coverage of a distributed sensor
network [5]–[10]. Existing DOC approaches, however, are
centralized and rely on prior information, such as known
obstacle geometries, and sharing of robot information state.
To move toward increased autonomy over large spatio-
temporal scales, however, VLSR systems must be capable
of planning with little or no prior information about the
region of interest (ROI), and thus, the environment must
be mapped through limited information exchange, such as
bounded communication range.

Existing multi-robot mapping methods to date have con-
sidered teams of less than a dozen robots in a small
environment, where each robot is capable of performing
simultaneous localization and mapping (SLAM) [11]. To
overcome drawbacks of classic occupancy grid methods,
which assume cells in the map are independent, a novel
continuous occupancy mapping approach has been recently
presented in [12], by combining binary classification with a
kernel logistic regression classifier, in what is now known
as Hilbert mapping. Other continuous occupancy mapping
approaches, such as Gaussian Process Occupancy Maps
(GPOM) [13]–[15], are more computationally complex and
cannot be implemented online. The Hilbert mapping ap-
proach is adopted and extended here because it uses efficient
kernel approximations and stochastic gradient descent to
train a discriminative classifier in a shorter amount of time,
and thus, scales to large datasets obtained by VLSR systems.

This paper presents a novel kernel logistic regression fu-
sion method for merging maps obtained by many distributed
robots efficiently online, while simultaneously computing
information-driven paths using the expected entropy reduc-
tion (EER) computed from the robot Hilbert maps. The
integrated mapping and path-planning problem is described
in Section II. The kernel logistic regression method for map-
ping, fusion, and path planning is described in Section IV.
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The effectiveness of the proposed approach is demonstrated
numerically in Section V by controlling 200 robots that
explore a large ROI by mapping unknown obstacles using
only onboard range sensors.

II. PROBLEM FORMULATION

Consider the problem of optimally planning the trajectory
of a VLSR system comprised of N cooperative robots
engaged in environmental mapping through a large, obstacle-
populated ROI. The robot workspace is denoted by W ⊂ R

2.
A set of fixed, unknown rigid obstacles B1, ...,Br ⊂ W
populate W , where B =

⋃r
i Bi. Let U ⊂ R

m denote the
space of admissible actions or controls. The dynamics of
each robot are governed by a stochastic differential equation
(SDE),

ẋi(t) = f [xi(t),ui(t), t] +Gw(t),

xi(T0) = xi0(T0), i = 1, ..., N
(1)

where xi(t) ∈ W denotes the ith robot state, ui(t) ∈ U
denotes the ith robot action or control, and xi0 denotes the
robot initial conditions at initial time T0. The robot dynamic
equation (1) is characterized by an additive Gaussian distur-
bance vector of independent and identically distributed (iid)
random variables, denoted by w(t) ∈ R

2, and G ∈ R
2×2 is

a constant matrix.
The objective of the VLSR system is to cooperatively

map an environment by building a model of the obstacles
B in W . The quantity, location, and geometry of these
obstacles are unknown a priori. Each robot constructs only
a portion of the map using onboard (local) measurements
and shares information only with neighbors within a limited
communication range ρ, i.e. communication occurs only if
‖xi(t) − xj(t)‖2 < ρ, where ‖ · ‖2 denotes the Euclidean
norm. Every robot must be capable of building a local map
for obstacle avoidance, while also improving it over time
by communicating with other robots within a distance ρ.
For simplicity, the state of each robot is assumed fully
observable and known without error. All robots are equipped
with identical omnidirectional range sensors, e.g. rotating
laser range finders, characterized by operating conditions and
parameters represented by λ ∈ R

℘. The field of view (FOV)
of the sensor onboard robot i, denoted by S(xi) ⊂ W , can be
defined as a disk of constant radius r centered at xi, where
r is the sensor maximum range.

Measurements at any location xM ∈ S(xi) take the form
xM = xi+dêr, where êr = x̂ cos θ+ ŷ sin θ is a unit vector
pointing radially outwards from xi and x̂, ŷ are unit vectors
defining a coordinate frame FA fixed to the robot. θ is the
angle of êr measured with respect to x̂ and d ≤ r is the
length of the vector. As shown by the schematic in Fig. 1,
xM can be localized in an inertial coordinate frame FW ,
given xi, d, and θ. Let Y be a discrete random variable such
that Y : W → Y where Y = {0, 1}. Y is a discontinuous
function with a finite range such that, for x ∈ W

Y (x) =

{
1, if x ∈ B
0, if x �∈ B (2)

Fig. 1. Schematic of the ith robot and sensor

Y is assumed hidden, and thus, it can never be observed.
Therefore, Y must be inferred from a set of measurements
Mk = {Z1, ..., Zk} where Zk denotes a measurement taken
at a discrete time k = kΔt for some small Δt. Measurements
are modeled as a random vector Z = [X̂M , Ŷ ]T , which
is used to estimate the true values T = [XM , Y ]T , where
(̂·) represents an estimated quantity and [·, ·]T indicates the
matrix transpose. Z is related to Y through a known mixed
joint probability function p(Z, Y, λ). The joint probability
function is known as mixed because it contains both contin-
uous type random variables (XM ) and discrete type random
variables (Y ). Y can be thought of as a discriminative
classification variable, partitioning W into two disjoint sets:
Cfree = {x ∈ W : x �∈ B} and B, representing the empty
and occupied regions of W .

The uncertainty associated with the onboard sensors can
be thought of as two-fold: uncertainty associated with mis-
classification, and uncertainty associated with the returned
measurement location. The first type of uncertainty is spec-
ified by the discrete portion of p(Z, Y, λ) which defines
how often a sensor misclassifies a measurement location,
P (Ŷ = ŷ | Y = y). This PMF can be defined by two
parameters β and γ ∈ [0, 1] which are generally close to
1 and 0, respectively. The probabilities can be defined as
P (Ŷ = 1 | Y = 1) = β and P (Ŷ = 1 | Y = 0) = γ.
The second type of uncertainty relating to the returned angle
and distance can be modeled as an exponential power law.
This formulation is widely applicable to sensors such as
acoustic, magnetic, and optical sensors, where measurements
are governed by linear wave propagation models [16]. The
exponenital power law models the received isotropic energy
generated by a constant target source level and attenuated by
the environment [17].

Consider a measurement such that the true distance from
the target to the sensor is d. The distance d can be estimated
from a measurement D obtained according to the following
power law

D = a‖d‖−α
2 + ν (3)

where the true distance is altered by an attenuation coefficient
α and a scaling constant a that are chosen based on the
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environmental conditions and target characteristics. Both the
final distance and angle measurements are subject to zero-
mean Gaussian noise ν ∼ N (0, σd) and υ ∼ N (0, σa),
respectively, representative of sensor noise and accuracy. In
this way, X̂M returned by the sensor is subject to error with a
known covariance. The sensor and environmental parameters
can be represented by λ = [a, α, σ]T . If the sensor returns a

Fig. 2. Mapping Process Schematic

distance value d < r, this measurement is called a “hit” point
and it is assumed reflected by the boundary of an obstacle
and considered as “occupied”. All other observed points
can be considered “not occupied,” or “empty.” Essentially,
a map of W is determined by where these hit points are
located, determining the boundaries of obstacles Bi. These
measurements are stored onboard each robot and used to
learn the parameters of the Hilbert map. A schematic of the
mapping process can be seen in Fig. 2. Since each agent
has a finite range FOV, every area of the ROI needs to be
observed in order to accurately infer Y (x). Areas of the map
with little or no measurement data will not represent the
ROI accurately. This motivates a path planning problem to
maximize the information obtained by each onboard sensor.

The performance of the VLSR system over a fixed time
interval [T0, Tf ] is expressed as an integral cost function
of the expected information gain, denoted ϕ̂(Y ;Z | M, λ),
given all past measurements M, an obstacle avoidance term,
and control usage

J =

∫
W

ϕ̂(Y ;Z | M, λ)dx+

∫ Tf

T0

xT
i U(xi)xi + uT

i Rui dt

(4)
where U(xi) is an obstacle repulsion term that penalizes
robots for being in close proximity to an obstacle, and R is
a positive definite matrix that weighs the importance of the
elements of u.

The VLSR optimal planning problem becomes finding the
optimal robot state xi and control ui, for all i, that minimizes
the cost function J over the time interval [T0, Tf ], subject
to (1).

III. INFORMATION THEORETIC OBJECTIVE FUNCTIONS

Information theoretic functions are very well suited to
quantify the information gained through sensor measure-
ments and can be used to plan the path of a robot in order to
maximize the expected gain in information value of future
measurements. A natural choice for measuring information

value is entropy [18]. The entropy H(X) of a discrete
random variable X with finite range X is defined by

H(X) = −
∑
x∈X

p(x) log p(x) (5)

and is a measure of the uncertainty of X . If the logarithm is
to the base 2, this is called Shannon Entropy and is expressed
in bits. Even though it is a great choice for measuring
uncertainty, entropy is not well suited for estimating the
information gain of future measurements, as computing it
requires the probability mass function to be known. Entropy
is also nonadditive, not a true metric, and myopic, meaning
that it does not consider the effects of prior measurements
to those that are performed subsequently [19].

Two other useful quantities are the conditional entropy and
the expected entropy. Let X , Y , and Z be discrete random
variables. The conditional entropy of Y given X can be
expressed as the following

H(Y | X) = −
∑
Y

P (Y | X) logP (Y | X) (6)

and the expected conditional entropy is given by

E[H | X] =
∑
Z

H(Y | Z)P (Z | X) (7)

These quantities can be used to compute information theo-
retic objective functions such as the expected discrimination
gain or the expected entropy reduction. Often, these functions
are used in sensor planning applications to estimate the
information gain of measurements that have not been taken
yet. This allows for a planning method to be constructed to
maximize the expected information gain over a trajectory.

IV. METHODOLOGY

In order to cooperatively map the ROI, each robot must be
capable of constructing a map given data collected from its
onboard sensor. The chosen map representation in this paper
is a Hilbert map, originally presented by Fabio Ramos and
Lionel Ott in [12]. Hilbert mapping formulates the mapping
problem as a binary classification task using kernel logistic
regression. Below is an in depth treatment of kernel logistic
regression and how it can be used to construct a spatial map.

A. Mapping with Kernel Logistic Regression

A Hilbert map is a continuous occupancy map developed
by formulating the mapping problem as a binary classifica-
tion task. Let x ∈ W be any point in W and y ∈ {0, 1} be
defined as a categorical variable such that

y =

{
1, if x ∈ B
0, if x �∈ B (8)

The classification task is as follows: given any point x,
predict which class y it belongs to.

There are many different classification methods, but not all
can be applied to this task. The classifier must be able to learn
non-linear decision boundaries, be updated incrementally and
online, and give outputs with confidence levels. A logistic
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regression model is chosen. Although it does not supply any
covariance information, it outputs a value in the range [0, 1],
which can be interpreted as the probability of x belonging
to a certain class y.

Define the feature space to be the same space as the
workspace, W . The features used here are the spatial co-
ordinates q1 and q2 that make up the vector q = [q1, q2]

T

These spatial features are separate from the robot state, which
is denoted by xi = [x, y]. This is an important distinction as
a robot mitigates the risk of collision by not entering areas
of the ROI with a high probability of collision. Therefore, a
robot needs to know the probability of occupancy of points
it will visit in the future and not only of its current position.

In order to capture the complex nonlinearities of the
obstacles in W , the feature space is enlarged using a basis
expansion [20]. Define the lifting operator Φ : W → R

μ,
where μ ∈ N and μ > 2, as an operator that transforms any
point in W to an enlarged feature space of dimension μ. As
the robots navigate the environment, each capture a data set
Di = {qj , yj}μi

j=1, where Di is the data set stored by robot i
and μi is the current dimension of the training set of robot i.
It is important to note that μi grows with time as the robots
are constantly collecting data and any two robots will most
likely have a different number of training samples. A q with
a subscript j represents the jth data sample in a robot’s data
set, but since the following relations hold for all q ∈ W , not
only the ones stored by a robot, the subscript is dropped for
the following discussion.

The function defining the lifting operator Φ(q) never has
to be explicitly specified for the following reasons. The
equations in logistic regression depend only on the inner
product between these functions, i.e. 〈Φ(q),Φ(q′)〉, q,q′ ∈
W . Therefore, only knowledge of a Kernel function

K(q,q′) = 〈Φ(q),Φ(q′)〉 (9)

that computes the inner products in the transformed space
needs to be known. A kernel function K must be a sym-
metric positive definite function, i.e. K(x, y) = K(y, x) and
K(x, x′) ≥ 0 ∀x, x′. In this paper, the Radial Basis Function
kernel (10) is used

K(q,q′) = exp
(
− 1

2σ2
‖q− q′‖22

)
(10)

where σ is the variance. The Radial Basis Function kernel is
a Mercer kernel, as it is continuous, symmetric, and positive
definite. According to Mercer’s theorem, any Mercer kernel
K(q,q′) induces a mapping Φ(q) from the input space W
to a high-dimensional feature space such that the property
seen in (9) holds [21]. Therefore, the lifting operator Φ(q)
never has to be explicitly specified.

Let Y (q) be a random variable defined as it is in Section
II, i.e. representing the occupancy of q, and define Q as a
random variable such that realizations are spatial points in
W . Define P (Y = 1 | Q = q∗;wi) as the probability that
queried point q∗ is occupied (q∗ ∈ B), given a vector of
parameters wi, which is to be learned online. The subscript
i indicates that vector wi is stored by robot i. The probability

of occupancy can now be formulated by the following

P (Y = 1 | Q = q∗;wi) = 1− 1

1 + e(wT
i Φ(q∗)+b)

(11)

where b is a scalar known as the intercept or bias. The bias
can be made part of wi by appending a 1 to the data, i.e.
[1 Φ(q)T ]T . This parameter will therefore be omitted as
it is assumed to be absorbed in the data. Equation (11) is
known as the primal form of the classifier.

Learning the parameters of the model presented in (11) can
be accomplished as follows. Define the parameter vector wi

to be learned as:

wi =

μi∑
j=1

αjΦ(qj) (12)

The basis expansion is clear here. Φ(qj) is a basis function
constructed from the jth data sample and αj (a scalar) is
its coefficient. While this means learning μi parameters,
which grows as the data grows, kernel approximation or
feature selection methods can be used to limit the number
of parameters needed to be learned. The kernel in (10)
can be approximated by Nystroem Features or Random
Fourier Features [22], [23], which will limit the number of
basis functions to some user chosen number, or a feature
selection method can be used such as quantization [21]. In
this problem, a heuristic quantization that is similar to the
method presented in [21] is used to limit the size of the kernel
matrix used in learning the parameters αj for computational
reasons.

Plugging (12) into (11):

P (Y = 1 | Q = q∗;wi) = 1− 1

1 + e(
∑μi

j αjΦ(qj)·Φ(q∗))

= 1− 1

1 + e(
∑μi

j αjK(q∗,qj))

(13)
The inner product 〈Φ(qj),Φ(q∗)〉 is expressed in terms of
the chosen kernel function. This is known as the dual form
of the classifier.

The coefficients αj that define the function can be learned
by defining a loss function

L =

M∑
m=1

�m +
λ

2
‖f‖2H (14)

where �m = − ln [P (Y = ym|Q = qm)] is the negative
likelihood (NLL) of the data (qm, ym). The coefficents αj

can therefore be found by minimizing L with respect to αj .
This can be done using gradient descent or Newton-Rhapson
method, both of which have their own advantages.

B. Map Fusion
Consider that there are two agents with learned functions

f1and f2 from the data sets D1 and D2, respectively. Then,
the posteriors of these two agents at the location q can be
expressed by

P (Y = 1|Q = q,D1) = P (Y = 1|q,D1) =
ef1(q)

1 + ef1(q)
(15)
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P (Y = 1|Q = q,D2) = P (Y = 1|q,D2) =
ef2(q)

1 + ef2(q)
(16)

Then the posterior after these two agent sharing their
information can be expressed by

P (Y = 1|q,D1,D2) =
ef1(q)+f2(q)−ln γ

ef1(q)+f2(q)−ln γ + 1
(17)

where γ = P (Y = 1|q)/P (Y = 0|q) is the ratio between
the prior at the location q. According the above equation,
the posterior P (Y = 1|q,D1,D2) can also be expressed in
a same form as the posterior before information sharing, such
as

P (Y = 1|q,D1,D2) =
efF (q)

1 + efF (q)
(18)

Here, fF is the fusion function, which is updated by

fF (q) = f1(q) + f2(q)− ln γ. (19)

Assuming that the prior is even, γ = P (Y = 1|q)/P (Y =
0|q) = 1, then the fusion function is rewritten as

fF (q) = f1(q) + f2(q). (20)

C. Path Planning on Hilbert Maps

From the measurement model p(Z, Y, λ) presented in
Section II, the expected benefit of future measurements can
be computed using the prior belief,

P (Y |Mk−1, λ) =

P (Zk−1 | Y, λ)P (Y | Mk−2, λ)∑
y∈Y P (Zk−1 | Y = y, λ)P (Y = y | Mk−2, λ)

(21)
which assumes measurements obtained at different time
instants are conditionally independent given the target state
[17].

Then, as shown in [17], the posterior belief can be
computed by applying Bayes’ rule for every z ∈ Z , i.e.

p(Y | Z = z,Mk−1, λ) =

p(z | Y, λ)p(Y | Mk−1, λ)∑
y∈Y p(z | Y = y, λ)p(Y = y | Mk−1, λ)

(22)
The terms p(Zk−1 | Y, λ) and p(z | Y, λ) are known from
the measurement model and p(Y | Mk−2, λ) and p(Y |
Mk−1, λ) are known from the Hilbert map. Therefore, the
EER can be computed as

ΔH(Zk) = H(Y | Zk−1, λ)− E[H | Zk, λ]

= −
∑
Y

p(Y | Mk−1, λ) log p(Y | Mk−1, λ)

−
∑
z∈Z

∫
F
H(Y | Zk = z,Mk−1, λ)p(Z = z | Mk−1, λ)

(23)
where

p(Zk | Mk−1) =
∑
Y

p(Zk | Y )p(Y | Mk−1) (24)

and F denotes the area covered by the FOVs of all robots.
Therefore, the EER can be computed prior to acquiring the

next measurement Zk, using the sensor model p(Z, Y, λ), the
PMFs in (21), (22), and the current Hilbert map.

Then, an information-driven path can be planned by each
robot using the information roadmap method presented in
[24]. Let Gi(Vi, Ei) represent a topological graph where
Vi is a set of nodes or vertices and Ei is a set of edges
connecting nodes. Each robot constructs a local roadmap by
sampling nodes from a probability distribution constructed
from the EER and the repulsive potential computed from
the Hilbert map, with higher EER areas being sampled more
often. Since some of the obstacles in W are unknown or
uncertain, sampled nodes are connected by an edge only
if the corresponding path intersects cells characterized by
a probability of occupancy less than 0.5.

From Gi, an adjacency matrix is constructed and a tree
search algorithm is implemented to find the path of highest
reward value. The branch lengths are limited to only a few
nodes, as the total number of nodes in each local roadmap is
small, and the algorithm is greedy in that it maximizes the
information gain over a small horizon. A greedy algorithm is
used because a large portion of the ROI displays high EER
while unexplored, as illustrated in Fig. ??. After the optimal
path is found, each robot moves to the next node, obtains
a new measurement, updates the map, and constructs a new
optimal path.

V. SIMULATION AND RESULTS

The VLSR system consists of a network of N = 200
robots characterized by single integrator dynamics,

ẋi = ui + I2wi, i = 1, . . . , N (25)

where xi = [x, y]T is the robot state vector, x, y are the
inertial coordinates, ui = [u1, u2]

T is the robot control
vector comprised of the x- and y-velocity components, and
wi is a random disturbance, with elements sampled from the
bivariate normal distribution N (0,Σ) where Σ = 0.01× I2.
The robot state is assumed fully observable and error free.
The above VLSR system is tasked with mapping a ROI
W = [0, Lx] × [0, Ly] where Lx = 20km and Ly = 16km,
with an unknown obstacle layout shown in black in Fig. 3,
and over a fixed time interval [0, TF ] where TF = 100.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

x (km) 

y
 (
k

m
) 

Fig. 3. ROI and obstacle layout.
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(a) (b) (c)

Fig. 4. Hilbert map at three sample moments in time.

The robots are initialized by sampling from a given
Gaussian Mixed Model with 2 components where μ =
{[2, 2], [2.5, 12]} and the corresponding covariance matrices,
where values are placed down the diagonal, are Σ =
{[1, 1], [1, 4]}. The robots sense the environment with a
simulated range finder with a maximum range r = 2km,
and zero-mean Gaussian perturbations added to the final
measurements with σn = 0.05. Each robot scans the en-
vironment individually, but for computational purposes, all
data are stored by a centralized computer. As shown in
Section IV-B, data can be fused by robots within a limited
communication range to obtain the centralized map. From
each scan, a dataset D = {xp, yp}μp=1 is used to construct
a Hilbert map. A heuristic quantization algorithm is used
to limit the size of the resulting kernel matrix. A set of
quantization points Q = {q} is chosen on a grid that is
100×100 points. For every xp ∈ D, each quantization point q
keeps a running average of the sum yp divided by the number
of times q = argminq∈Q ‖x − q‖. In this way, the number
of data points used to train the kernel logistic regression
classifier is limited, regardless of the size of D, but redundant
data is not discarded. The kernel logistic regression classifier
is initialized with kernel size σ = 0.03, and a regularization
parameter of λ = 0.15 with an L2 penalty.

The expected entropy reduction is computed as a function
of robot position over the entire workspace for the specific
measurement model and robot FOV size and geometry. The
measurement model uses parameters β = 0.95 and γ =
0.01. A cost function, J = wrΔH(Zk) + wbUrep(xi) is
constructed based on the EER and the Hilbert map, where
wr and wb are user defined weighting terms. Urep(xi) is
a potential field function similar to one used in traditional
potential field methods [25](Chapter 7, Sec. 2.3), but altered
to accept values in [0, 1], as supplied by the Hilbert map.
J depends on the EER and Hilbert map and is updated
after each measurement. The probabilistic roadmap method
uses J to sample roadmap points and only connects points
that do not cross through the repulsion potential. Since mea-
surements are constantly updating the Hilbert map, which
updates J , this ensures that a robot will not collide with an
obstacle.

The mapping performance of the VLSR system is repre-
sented by the conditional entropy of Y , in (2), given the set

Fig. 5. Entropy of the map as the robots navigate the ROI

of measurements M. By using the EER as a “reward”, every
robot always moves towards a portion of the ROI that reduces
the conditional entropy most dramatically. The conditional
entropy over time is depicted in Fig. 5. From this figure, it
is clear that the conditional entropy of the map is decreasing
over time and far exceeds the performance of robots moving
randomly in the same workspace. As the robots take more
and more measurements and update their Hilbert maps, they
are attracted to areas where entropy will be reduced the most,
and therefore, the entropy is certain to decrease while robots
are guaranteed to avoid collisions.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a decentralized approach for mapping
and information-driven path planning in Very Large Scale
Robotic (VLSR) systems. Obstacle mapping is performed
using a continuous probabilistic representation known as
a Hilbert map and a novel Hilbert map fusion method is
presented that quickly and efficiently combine information
from many robots. The approach is demonstrated on a VLSR
system with hundreds of robots that must map obstacles
collaboratively over a large region of interest using onboard
range sensors and no prior obstacle information. The results
show that, through fusion and decentralized processing, the
entropy of the map decreases over time and robot paths
remain collision-free.
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