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Abstract— A novel artificial-potential approach is presented
for planning the minimum-exposure paths of multiple vehicles
in a dynamic environment containing multiple mobile sensors,
and multiple fixed obstacles. This approach presents several
advantages over existing techniques, such as the ability of com-
puting multiple minimum-exposure paths online, while avoiding
mutual collisions, as well as collisions with obstacles sensed
during the motion. Other important advantages include the
ability of utilizing heterogenous sensor models, and of meeting
multiple objectives, such as minimizing power required, and
reaching a set of goal configurations. The approach is demon-
strated through numerical simulations involving autonomous
underwater vehicles (AUVs) deployed in a region of interest
near the New Jersey coast, with ocean currents simulated using
real coastal ocean dynamics applications radar (CODAR) data.

I. INTRODUCTION

Path exposure can be described as the ability of detecting

a target moving in a region of interest populated by a

wireless sensor network. In [1], exposure was defined as

the time integral of the cumulative energy received by all

sensors in the network. In [2], a new definition of exposure

was introduced pertaining the probability of detection by

a cooperative sensor network that arrives at a consensus

decision only when the number of detections exceeds a

user-defined threshold. In both definitions, each sensor is

considered to be omnidirectional, and is modeled by a

decaying exponential function of its distance from the target,

which represents its received energy. The problem of finding

a target path of minimum exposure can then be formulated as

a trajectory optimization problem in which the cost function

to be minimized is the path exposure. As reviewed in [2], this

problem is of concern in a number of applications employing

wireless sensor networks for detecting, tracking, and mon-

itoring unauthorized targets traversing a region of interest.

As a result, approaches based on calculus of variations and

Voronoi diagrams have been proposed in the literature in

order to compute a single-target path of minimum exposure

in a given sensor network [1], [3], [4].

In this paper, a novel artificial-potential field approach

is presented for finding a set of minimum-exposure paths

in a given sensor network. Potential field presents several

advantages over existing techniques, such as the ability of

computing paths online for many targets moving simulta-

neously through the sensor network, while avoiding mutual

collisions and collisions with obstacles detected in the region
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of interest. By computing paths online, the target paths

computed by this approach can minimize exposure to a

mobile sensor network, and avoid collisions with obstacles

that are sensed while the motion is being executed. Other

important advantages include the ability of utilizing het-

erogenous sensor models, and the ability of meeting multiple

simultaneous objectives, such as minimizing power required,

and reaching a final goal configuration.

Potential field is an effective path planning technique that

was developed and refined in [5]–[8] for the purpose of

online obstacle avoidance. Several artificial potential func-

tions have, therefore, been developed to represent the robot’s

objective of navigating a region of interest to reach a goal

configuration, while avoiding collisions with the obstacles.

This paper presents an adaptive novel potential function

that represents the exposure of any path in the region of

interest over time, as well as a novel potential function

for minimizing power required in a current velocity field,

which is applicable to targets moving in a water body, or in

the atmosphere. The approach is demonstrated by planning

multiple minimum-exposure paths in a mobile ocean sensor

network deployed in a region of interest near the New

Jersey coast. The sensors and the targets are simulated

using a high-fidelity simulation of an autonomous underwater

vehicle described in [9], and using real ocean current data

obtained from the Coastal Ocean Observation Lab of Rutgers

University [10].

The paper is organized as follows. The minimum-exposure

path-planning problem formulation and assumptions are

presented in Section II. A review of the background on

artificial potential field is provided in Section III, and the

novel potential-field methodology for computing minimum-

exposure paths is presented in Section IV. The simulation

results presented in Section V show that this methodology

minimizes a tradeoff of exposure and power required, and

computes collision free paths online, subject to a mobile

sensor network and fixed obstacles that are sensed while the

motion is executed.

II. PROBLEM FORMULATION AND

ASSUMPTIONS

Consider a rectangular region of interest (ROI) populated

by a field of n mobile sensors deployed at time-varying

locations si(t), i = 1, . . . , n, during a time interval t ∈
[t0, tf ]. The ith sensor located at si(t) is modeled by its

received energy which is given by,

Ei(q, t) =
Ki

||q− si(t)||αi
+Ni (1)
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where, Ki and αi are known positive constants that depend

on the sensor and environmental conditions, q = [x y]T is

the target position, and Ni is additive white Gaussian noise

(AWGN). Thus, for a target located at q the total received

energy of the sensor network at time t is given by,

Etot(q, t) =

n∑
i=1

[
Ki

||q− si(t)||αi
+Ni

]
(2)

and the network declares a consensus target detection when

Etot ≥ θ [2]. For simplicity, it is assumed that the sensors’

paths and characteristics are known without error at any t ∈
[t0, tf ]. Since the method presented in Section IV uses a

time-varying potential function, it can be implemented using

real-time estimates of si(t), Ki, and αi.

The ROI, denoted by S = [0, L] × [0, L] ⊂ R
2, has

a boundary ∂S and is populated by N fixed and convex

obstacles {B1, . . . ,BN} ⊂ S that are not necessarily known

a priori, but may be detected at any time t ∈ [t0, tf ]. This

paper develops an approach for computing the minimum-

exposure paths for a network of m autonomous underwater

vehicles (AUVs) that must traverse S , while all obstacles and

mutual collisions. Each AUV in the network is described by

the following dynamical model [8], [11].

M(qj)q̈j + f(qj , q̇j) + g(qj) = u(qj), j = 1, . . . ,m (3)

where M(qj) is the robotic sensor’s inertia matrix, f(qj , q̇j)
is the fictitious force, g(qj) is the gravitational force, and

u(qj) is the torque input. Although the method can be

applied to heterogenous networks, for simplicity in this paper

it is assumed that all AUVs obey the same dynamic model.

In many applications, an unauthorized vehicle in a sensor

field is detected when the sensors have reached a consensus

and their total received energy, Etot, exceeds a value fusion

threshold denoted by θ. Therefore, we adapt the definition

of exposure from [1], as follows:

Definition 1: The exposure of a path or trajectory qj(t)
in S during the interval [t0, tf ] is the total received energy,

E[qj(t), t0, tf ] =

∫ tf

t0

Etot[qj(t), t]

∣∣∣∣dqj(t)

dt

∣∣∣∣ dt (4)

where |dqj/dt| is the element of arc length, and Etot(·) is
given by (2).

Since the AUV is subject to the ocean currents, its velocity

in inertial frame is q̇j = νj + υj , where νj ∈ R
2 is

the velocity vector in body coordinate frame (fixed to the

vehicle), and υj ∈ R
2 is the local current velocity vector. As

shown in [12]–[15], the instantaneous AUV’s power required

is proportional to νj ∈ R
2, and can be approximated by the

quadratic cost,

e[νj(t)] = νT
j (t)Rνj(t) (5)

in order to penalize large power dissipations more heavily

than small dissipations [16, pg.190]. Where, R ∈ R
2×2 is a

diagonal weighting matrix with elements that represent the

relative importance of velocity components. In this paper,

all components are considered equivalent, and thus R = I2,

where I2 is a 2× 2 identity matrix. The power required by

the network of AUVs during the interval [t0, tf ] is then

modeled by the integral cost,

E [q̇j(t), t0, tf ] =

∫ tf

t0

m∑
j=1

[q̇j(t)−υj(t)] I2[q̇j(t)−υj(t)]dt

(6)

where, υj(t) can be estimated from the forecast models of

the ocean dynamics, and on-line measurements, as explained

in Section IV.

The path exposure problem considered in this paper can

be summarized as follows:

Problem 2.1: Exposure in Multi-Target Multi-Sensor Net-
works. Given on-line information about the ROI, W , con-

taining N fixed and convex obstacles {B1, . . . ,BN} and

n mobile sensors with received energy (1), find a set of

minimum-exposure paths, P = {q1(t), . . . ,qm(t)}, for a

network of m AUVs that minimize the power required (6),

and avoid collisions in W during the interval [t0, tf ].
The methodology for computing P , presented in Section IV,

is based on the potential field approach reviewed in the next

section.

III. BACKGROUND ON POTENTIAL FIELD

METHODS

Potential field is well-known approach to robot motion

planning that treats the robot as a particle under the influence

of an artificial potential field or function, U , that captures the

geometric characteristics of the workspace or ROI, W . So

far, several potential field methods have been developed for

generating a collision-free path for a robot that must travel

from an initial configuration q0 to a goal configuration qf ,

without a prior model of the obstacles. The advantage of

potential field over other motion planning approaches, such

as, cell decomposition and probabilistic roadmap methods,

is that it can easily account for obstacles that are sensed

online, i.e., during the motion execution [5]. Since the robot

follows the direction of steepest descent, however, it can

potentially get stuck at a local minimum of U . In this

case, the method can be combined with a graph searching

technique, or a random-walk algorithm, to help the robot

escape local minima.

Several potential functions have been proposed in the

literature to generate U , such that the robot can be guaranteed

to reach qf , while effectively avoiding obstacles in W
[6]–[8]. Typically, the potential function is the sum of an

attractive potential Uatt that “pulls” the robot toward qf , and

a repulsive potential Urep that “pushes” robot away from the

obstacles, i.e.:

U(q) = Uatt(q) + Urep(q) (7)

The method is implemented by discretizing the robot

workspace obtained by the Cartesian product, A× C → W ,

between the robot geometry A, and the configuration space

C. The potential function is evaluated for all q ∈ C, using a

finite resolution grid [17] which, in on-line motion planning,

can be limited to the neighborhood of the configuration at
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the present time t. Subsequently, at any time t ∈ [t0, tf ],
an artificial force F(q) that is proportional to the negative

gradient of the artificial potential, −∇U(q), is applied to the

robot, in order to follow the steepest-descent direction of U .

Every obstacle Bi in W maps in C to a C-obstacle that is

defined as the subset of C that causes collisions with Bi, i.e.,

CBi ≡ {q ∈ C | A(q) ∩ Bi 	= ∅}, where A(q) denotes the

subset of W occupied by the platform geometry A when the

robot is in the configuration q. The union of all C-obstacles

in W is referred to as the C-obstacle region. Thus, to avoid

collision, the robot is free to explore the free configuration

space, defined as the complement of the C-obstacle region

CB in C, i.e., Cfree = C\CB [5]. As shown in [5], the

repulsive potential for a set of obstacles {B1, . . . ,BN} can

be defined as,

Urep(q) =

{
1
2η(

1
ρ(q) − 1

ρ0
)2 if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0
(8)

where, ρ(q) is the distance from q to CB,

ρ(q) = min
q′∈CB

‖q− q′‖, CB ≡ ∪N
i=1CBi (9)

η > 0 is a scaling factor, and ρ0 > 0 is a distance-of-

influence parameter that is chosen by the user. The attractive

potential is given by,

Uatt(q) =
1

2
ερ2goal(q) (10)

where ε > 0 is a scaling factor, and ρgoal(q) is the distance

between the robot and qf . By this approach, only the

obstacle closest to q is considered in Urep(q), and the goal

configuration is assumed to be a single point in Cfree.

In the following section, a novel time-varying potential

function is presented that captures the robot exposure to

a heterogeneous sensor network, as well as the geometric

characteristics of multiple obstacles in W that may be

moving or may be sensed on line, during path execution.

IV. POTENTIAL FIELD METHOD FOR

MINIMUM-EXPOSURE PATH PLANNING

A potential field approach to solving Problem 2.1 is pre-

sented in this section, and demonstrated through numerical

simulations involving a network of AUVs in a dynamic

ocean environment in Section V. The approach consists

of generating a novel potential function that differs from

those previously presented in the literature in that it is

time-varying, it is applicable to multiple robotic targets and

multiple obstacles, and captures the geometric characteristics

of the targets’ exposure to a mobile sensor network, and of

the power required to navigate a known velocity field. For

simplicity, it is assumed that each AUV is a point mass, and

thus C = W . However, the method can be easily extended to

account for a finite geometry A by computing the C-obstacle

region, as described in Section III.

Collisions between the m targets (AUVs) are avoided by

introducing a repulsive potential that target j must follow to

avoid collisions with target �,

U�rep(qj , t) =

⎧⎨
⎩

1
2η

(
1

ρ�j(qj ,t)
− 1

ρ0

)2

if ρ�j(qj , t) ≤ ρ0

0 if ρ�j(qj , t) > ρ0
(11)

where ρ�j is the Euclidian distance between the jth target

and the nearest �th target at time t, defined as,

ρ�j(qj , t) = min
q�

‖qj(t)− q�(t)‖, � = 1, . . . ,m, � 	= j

(12)

and the other quantities are defined as in Section III.

Collisions with a set fixed obstacles B(t) ≡ {B1,B2, . . .}
in W that are sensed online at or before t are avoided by

means of an additive repulsive potential that can be easily

updated as new obstacles are sensed during [t0, tf ] [18].

Let Uiobs(qj , t) represent the repulsive potential for target

j that is generated by the ith obstacle sensed at or before

time t. Where, Uiobs is computed from (8)-(9), by letting

q = qj(t), and q′ ∈ CBi. Then, the repulsive function for

the C-obstacle region at time t ∈ [t0, tf ] is,

Uobs(qj , t) =
∑
i

Uiobs(qj , t), ∀Bi ∈ B(t) (13)

where, i = 1, . . . ,m′ < m.

The artificial potential presented in this paper has no

attractive component, although one could be included in

case the targets need to reach a set of goal configura-

tions. Instead, two new potentials are included in order

to minimize the power required and the exposure to the

sensor network. First, consider the power required in (6),

which is proportional to the AUV’s velocity vector in body

coordinate frame. As shown in [19], the influence of ocean

currents on the AUV’s motion can be modeled in order

to exploit the natural dynamics for AUVs’ transport and

minimize the power required. A forecast of the ocean current

field can be computed from a physical model of the ocean

initialized with real-time measurements and estimates of the

currents [20], using state-estimation techniques [21], [22].

This forecast, denoted by F , consists of a multi-dimensional

array containing estimated values of υj at sample points

in space and time. The approach presented in [19] obtains

from F a smooth functional representation of the forecasted

current velocity field over W , for a future time interval.

Let ηj(t) ≡ [qT
j (t) t]T ∈ N , where N = W × [t0, tf ].

The current forecast F = {qκ
j ,υ

κ
i , t

κ}κ=1,...,p contains

the value υκ
i of the local current velocity vector at the

configuration qκ
j , and at time tκ, for p sample points in

N . Then, F can be considered as the training set of a

feedforward neural network,

υj [qj(t), t] = W2Φ[W1 η(t) + b1] + b2 (14)

with two linear output neurons, and one hidden layer of s
sigmoidal functions represented by the operator Φ(n) ≡
[σ(n1) · · · σ(ns)]

T , where σ(ni) ≡ 1/(1 + e−ni). As

shown in [19], the weights W1 ∈ R
s×3, W2 ∈ R

2×s,

b1 ∈ R
s, and b2 ∈ R

2, can be determined from F by a
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Bayesian regularization backpropagation algorithm (‘trainbr’

[23]). The effectiveness of the approach has been verified in

[19] through numerical experiments with real measurements.

It was recently in [12], [13], [19], [24] that the total

power required (5) can be minimized by computing AUVs’

trajectories that account for the local current velocity vector

υj estimated from F . As can be expected, minimum-energy

trajectories utilize knowledge of the ocean’s velocity field,

thereby minimizing deviations from the trajectories of La-

grangian fluid particles in an irrotational flow with a vector

field given by the model (14). The ocean flow velocity υj

is a vector field that is equal to the negative gradient of the

velocity potential ϕ, i.e., υj = −∇ϕ [25]. It follows that

the power required by the jth target can be minimized by

including an attractive potential given by the potential flow

corresponding to ocean current forecast F .

In order to minimize exposure and avoid collisions with

minimum energy consumption, the artificial potential func-

tion for target j is defined as,

U(qj , t) = wE Etot(qj , t) +
m∑

�=1,� �=j

U�rep(qj , t) (15)

+ Uobs(qj , t) + wE ϕ[qj(t), t], ∀t ∈ [t0, tf ]

where wE , wE > 0 are constant weights chosen by the

user based on the desired tradeoff between the exposure and

energy objectives, and every potential component is defined

as shown in (11)-(13). Although the velocity potential may

be computed by integrating (14), in practice it is never

needed because the paths of the AUVs are computed from

the gradient of U .

According to the potential field approach, the force applied

to target j is proportional to the negative gradient of U at t,

F(qj , t) = −∇U(qj , t) = −
[
∂U(qj , t)

∂xj
. . .

∂U(qj , t)

∂yj

]T
(16)

where qj = [xj yj ]
T . However, in this paper, every AUV

(target) j is assumed to move in the workspace with a

constant speed relative to a fixed point. This is achieved

by using the constant speed value as a reference for a PID

controller that returns the appropriate propeller rotational

speed to compensate for a changing ocean flow velocity, vj .

Since the speed of target j in the workspace is independent

of F(qj , t), the gradient of the potential U is only used to

determine the optimal heading angle of the AUV. Target j
adjusts to the heading angle by using it as a reference for

a second PID controller that computes a rudder position.

In future work, the method will be further improved such

that the artificial potential in (15) may be used directly to

compute the input to the AUV. For example, the following

time-varying feedback control law,

u = −∇U(qj , t) + d(qj , q̇j) (17)

where d(q, q̇) is an arbitrary dissipative force, may be

adapted from [8], and applied to the jth AUV with dynamic

equation (3) for inner-loop control.

V. SIMULATIONS AND RESULTS

The methodology presented in the previous section is

demonstrated here on a simulated ocean sensor network

comprised of n = 12 sensors, m = 5 targets and N = 3
static obstacles deployed at arbitrary positions in a ROI, S =
[0, L1]× [0, L2] where L1 = 90 km and L2 = 82.51 km.

The simulation was run over the time interval t ∈ [t0 tf ] in

increments of ts = 1 sec with t0 = 0 and tf = 8 hr. The

sensors’ trajectories were chosen as arbitrary linear paths

across the ROI. The coefficients Ki and αi were chosen as

10 and 2 respectively for all sensors, and Ni was modeled

in MATLAB using the function ’awgn’ [2]. The repulsive

potential constants η and ρ0 were chosen as 200 and 5 km,

respectively. Identical repulsive potentials were applied to

target vehicles, static obstacles and the boundaries of S .

The time-varying ocean current velocity field within S was

generated from the feedforward neural network (14) and

CODAR data given by COOL at Rutgers University [10].

A snapshot of the velocity field is shown in Figure 1.

:  NN approximated trajectory 
:  Measured trajectory 

:  Velocity vector of current 

Fig. 1. Example ocean current velocity field obtained from the neural
network and from CODAR measurements in ROI S (black rectangle) with
longitude of 72.7◦ W to 74.1◦ W, and a latitude of 38.6◦ N to 39.5◦ N
(taken from [19]). t = 4.0 hr.

The dynamic equation (3) was simulated using a high-

fidelity simulation of the REMUS 100 AUV (described in

[9]), obtaining the AUV state over time. For every state

value, the simulation implements two proportional-integral-

derivative (PID) controllers to calculate the vehicle propeller

rotational speeds and rudder angles based on the desired

heading angles and speeds. In this paper, since the paths P
are produced by the potential function approach described

in Section IV, the desired heading angles are computed

from the optimal directions of movement in P . In particular,

the gradient of U(qj , t) is computed by evaluating all of

the potentials at several points around qj . The ’gradient’

function in MATLAB can also be used for this purpose.

The desired speeds were set to be constant at 2.0 m/s

relative to a fixed point, but the vehicle speeds relative to the

ocean current velocities, and therefore the propeller rotational

speeds, were continuously changed depending on the ocean

movements at the AUVs’ positions. Figure 2 shows the

AUVs’ state values at several instants during the simulation
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with the resulting headings of the targets. The potential field

evaluated from (15) is illustrated in the background of Fig. 2,

and in Fig. 4, and the targets are seen to continuously move

down the slopes as they follow the potential field gradients.

Figure 3 represents the received sensor energies for the same

vehicle positions and shows how the effectiveness of the

sensors is high within a certain range but rapidly decreases at

further distances. The full AUVs’ trajectories are also plotted.

The effectiveness of this methodology is shown by evalu-

ating performance metrics (exposure, power required, and

number of sensor detections) and comparing them to the

those obtained using alternate strategies. The method pre-

sented in this paper, labeled as Potential Field in Table I, uses

the technique discussed in Section IV and generates paths for

the targets that minimize the exposure and power required

while also avoiding obstacles. The strategy Minimum Energy

finds paths that avoid obstacles and minimize the power re-

quired. The method Obstacle Avoidance instructs the targets

to move in linear trajectories towards arbitrary goal positions

only altering their paths to travel around obstacles. Each

technique was implemented in 5 simulations with n = 12
sensors, m = 5 targets and N = 3 static obstacles in the ROI,

S over the time interval t ∈ [t0 tf ] in increments of ts = 1
sec with t0 = 0 and tf = 6 hr. The vehicles and obstacles

were given random initial and goal positions. The results are

averaged and displayed in Table I with a sensor detection

of target j defined as an event in which Etot(qj , t) ≥ θ
where θ = 1 for a single target. Each target vehicle was

limited to one recorded detection per simulation, and the

maximum exposure per target at any instant was bounded

to 1.5 since it asymptotically approaches infinity near the

sensor. It can be seen that Minimum Energy requires the least

power but has very high exposure. Potential Field sacrifices

some movement efficiency to minimize exposure and, thus,

it drastically decreases the number of detections per path.

The user may tune the tradeoff between exposure and energy

consumption through the weights wE and wE .

TABLE I

PERFORMANCE COMPARISON

Performance
Metric

Potential
Field

Minimum
Energy

Obstacle
Avoidance

Exposure 3.4·103 6.6·103 6.4·103

Power Required 4.1·10−1 3.8·10−1 4.2·10−1

Sensor Detections 0.6 4.0 4.0

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel artificial-potential approach

for planning the minimum-exposure paths of multiple AUVs

in an ROI containing multiple mobile sensors. The ap-

proach presents several advantages over existing calculus-of-

variations and Voronoi-diagrams techniques, such as the abil-

ity of computing multiple minimum-exposure paths online,

while avoiding mutual collisions and collisions with obsta-

cles sensed during the motion. The novel exposure-based po-

(a)

(b)

(c)

Fig. 2. Potential field contour plot and target paths for five targets (solid
black triangles), twelve sensors (white triangles with black borders), three
fixed obstacles (black squares), with targets’ heading angles illustrated by
vectors, and paths illustrated by dotted lines at (a) t = 0.1 hr, (b) t = 2.5
hr, and (c) t = 4.0 hr.

339



(a)

(b)

(c)

(d)

Fig. 3. Received sensor energy and generated target paths. solid black
triangles: targets; white triangles with black outlines: sensors; solid black
squares: static obstacles; dotted lines: targets’ generated paths; solid lines:
sensors’ paths. (a) t = 0.1 hours, (b) t = 2.5 hours, (c) t = 4.0 hours, (d)
paths of all AUVs after t = tf hours.

Fig. 4. Example of artificial-potential field (with repulsive potential from
boundary omitted) at t = 4.0 hr.

tential function presented in Section IV is augmented with a

novel potential-flow component that minimizes energy based

on an available forecast of current velocities in the ROI.

The numerical simulations presented in Section V, involv-

ing a network of autonomous underwater vehicles (AUVs)

deployed in a dynamic ROI near the New Jersey coast,

show that the approach can be successfully implemented to

minimize a desired tradeoff between energy consumption and

path exposure, thereby significantly reducing the number of

sensor detections over time.
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