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Automatic Pan–Tilt Camera Control for Learning
Dirichlet Process Gaussian Process (DPGP)
Mixture Models of Multiple Moving Targets
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and Silvia Ferrari , Senior Member, IEEE

Abstract—Information value functions based on the
Kullback–Leibler (KL) divergence have been shown the
most effective for planning sensor measurements by means
of greedy strategies. The problem of optimizing information
value over a finite time horizon to date has been considered
computationally intractable and, as proven here, is NP-hard.
This paper presents new information value functions that
are additive and can be optimized efficiently over time by de-
riving a lower bound of the KL divergence. Combined with
a convex approximation of the sensor field of view, these
information value functions can be used to obtain real-time
sensor control by a lexicographic approach, and to derive
performance guarantees. Numerical and experimental
results on pedestrian data show that the lexicographic con-
trol system significantly improves target modeling and pre-
diction performance when compared to existing algorithms.

Index Terms—Active sensing, automatic control, cam-
era, information value, lexicographic control, multiobjective
optimization (MO), target, tracking.

I. INTRODUCTION

THE problem of learning the behavior of many moving tar-
gets by means of a reconfigurable sensor, such as a camera,

is relevant to a wide range of applications, including security and
surveillance [1], [2], environmental monitoring [3], and tracking
of endangered species [4]. In many of these applications, little
or no prior information exists about the target behavior or the
number of targets that is present in the region of interest (ROI).
Also, the number of targets and possible behaviors may change
rapidly over time as new targets arrive and old targets leave the
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ROI. When the sensor remains in place over long periods of
time, it produces a growing database of target measurements
that can cause parametric statistical learning methods to fail
to accurately predict/track/model target behaviors due to over-
fitting or underfitting. Bayesian nonparametric models, and in
particular Dirichlet process Gaussian process (DPGP) mixtures,
have been shown very effective at learning models of multiple
mobile targets, such as pedestrians [5], urban traffic [6], and
migrating animals [7], exclusively from data. The advantages
of DPGP mixtures over other probabilistic models are that they
do not require a parametric form of target dynamics a priori,
and they adjust the dimensionality of the model based on data
to avoid overfitting and underfitting [8]–[10].

Automatic control is crucial to sensors tasked with observing
multiple targets using a bounded field of view (FOV) because
the set of useful measurements far exceeds the measurements
that can be obtained in practice [2], [11]. The FOV geometry
and sensor kinematic constraints must both be taken into ac-
count to guarantee that a desired FOV placement is realizable,
or that targets are observed for a sufficient period of time be-
fore they leave the sensor workspace [12], [13]. It was recently
shown that the value of camera measurements used for learn-
ing a DPGP mixture model (MM) can be represented in closed
form by an information value function derived from the expected
Kullback–Leibler divergence (EKLD) [14]. However, as proven
in Section IV-A, the problem of optimizing the DPGP EKLD
over a finite time horizon, subject to the FOV and kinematic
constraints, is NP-hard. Therefore, previous methods sought
greedy or approximate solutions that lacked reachability and
performance guarantees [14]–[18].

This paper presents an approach for casting the camera con-
trol problem as a multiobjective optimization (MO) problem that
can be solved and implemented in real time. The approach is
based on new theoretical developments that include the deriva-
tion of a cumulative DPGP KL information value function (see
Section IV-A), and an additive lower bound that can be op-
timized in place of the cumulative DPGP KL function (see
Theorem 3). The MO control problem is further simplified by
obtaining a linear approximation of the FOV constraints that
guarantees target observability by means of a convex poten-
tial function in lieu of expensive disjunctions of nonlinear in-
equality constraints (see Section V-A). As a result, the lexico-
graphic solution presented in Section V-B can be obtained in
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Fig. 1. PT camera observing three mobile targets inW.

polynomial time and is accompanied by both reachability and
performance guarantees. Studies based on real indoor pedestrian
datasets obtained from two MIT buildings [10] show that the
lexicographic control method can be implemented in real time
to improve camera performance by well over 100% compared to
algorithms based on greedy entropy [19], greedy KL divergence
[20], potential field [21], patrol [22], and randomly exploring
trees [17].

II. PROBLEM FORMULATION AND ASSUMPTIONS

This paper considers the problem of controlling a pan–tilt
(PT) camera used to learn the kinematics of multiple mobile tar-
gets traversing a workspace or ROI,W ⊂ R2 . It is assumed that
the target kinematics inW are to be learned entirely from cam-
era measurements, and that each target obeys a time-invariant
nonlinear ordinary differential equation

ẋj (t) = fi [xj (t)] � vj (t), j = 1, . . . , N(t) (1)

where xj ∈ W and vj ∈ R2 denote the position and velocity of
the jth target in inertialXY -coordinate frame, respectively, and
I(t) denotes the target index set at time t. The vector function
fi : R2 → R2 , referred to as a velocity field (VF), is drawn from
a set of continuously differentiable VFs, F = {f1 , . . . , fM },
where both fi and M are unknown a priori. The number of
VFs, M , and the number of targets, N , are both unknown and
change over time, as targets enter and exit the workspace. Since
multiple targets may be characterized by the same kinematics,
N is not necessarily equal to M .

Assuming a constant sampling interval Δt, at any discrete
time k the camera obtains target position and velocity measure-
ments using simple computer vision algorithms [23] applied to
consecutive frames obtained from the FOV projection ontoW ,
denoted by the compact subset S(k) ⊂ W , and illustrated in
Fig. 1. The camera obeys a nonlinear measurement model with
additive Gaussian noise

zj (k) =
{

yj (k) + n(k), if xj (k) ∈ S(k)
∅, if xj (k) �∈ S(k) (2)

where

yj (k) = h[xj (k),vj (k)] (3)

Fig. 2. Pinhole camera model.

Fig. 3. Sequence of yaw and roll Euler angle rotations comprised of
the camera pan angle ψ and tilt angle φ, respectively.

and the noise vector n ∈ R4 is a white, zero-mean Gaussian ran-
dom sequence with a known and symmetric covariance matrix
Q. The form of the nonlinear measurement model, described by
the vector function h[·], is obtained from first principles in the
remainder of this section.

Based on the pinhole camera model [24], the camera lens
is symmetric about a so-called optical axis, and images of S
are projected onto a two-dimensional (2-D) virtual image plane
perpendicular to the optical axis and located at a distance λ from
the pinhole [25], [26]. The distance λ between the virtual image
plane and the pinhole is also known as focal length [27]. A
camera-fixed frame of reference is defined by placing the origin
at the pinhole (see Fig. 2), aligning the z-axis with the optical
axis and the x-axis parallel to the XY plane, and obtaining
the y-axis by the right-hand rule. Then, the camera pan and tilt
angles can be represented by the Euler angles known as yaw
(ψ) and roll (φ) angles, respectively, and illustrated in Fig. 3.
These two Euler angles are defined by two successive right-hand
rotations: a rotation by an angle ψ about the Z-axis, leading
to the intermediate frame (x1 , y1 , z1) [see Fig. 3(a)], followed
by a rotation by an angle φ about the x1-axis, leading to the
camera-fixed frame (x, y, z) [see Fig. 3(b)]. Then, any vector
in inertial frame can be resolved into the camera-fixed frame by
the following transformation:

x|camera = RφRψ x|inertial (4)

defined in terms of the Euler rotation matrices

Rφ �

⎡
⎣1 0 0

0 cosφ sinφ
0 − sinφ cosφ

⎤
⎦ , Rψ �

⎡
⎣ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦.
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Consider now a 2-D frame of reference (xp, yp) embedded in
the virtual image plane, such that its origin lies at the intersection
between the virtual image plane and the optical axis, the xp -axis
is chosen parallel to XY plane, and the yp -axis is orthogonal to
the xp -axis and the optical axis, as shown in Fig. 2. The position
of the target with respect to the camera-fixed frame is given by

qj = RφRψ

(
[xTj 0]T − xc

)
� [qx qy qz ]T (5)

where xc = [xc yc zc ]T is the pinhole position with respect
to the inertial frame (see Fig. 2). Then, it can be easily shown
that the projection of a target position xj onto the virtual image
plane with respect to the (xp, yp)-frame is

pj = λ [qx/qz qy /qz ]T � [px py ]T . (6)

The projection of the target velocity vj onto the (moving) cam-
era virtual image plane is found by differentiating both sides of
(6) with respect to time

ṗj = [ṗx ṗy ]T = H
[
RφRψ 0

0 −Rφ

]
[ẋTj 0 φ̇ 0 ψ̇]T (7)

where

H �

⎡
⎣− λ

qz
0 px

qz

px py
λ
− λ2 +p2

x

λ
py

0 − λ
qz

py
qz

λ2 +p2
y

λ
− px py

λ
−px

⎤
⎦ (8)

is the image Jacobian matrix, derived in [24].
Using the above projections and transformations, the vector

function h[·] in the measurement equation (2) is derived by
recognizing that the camera output vector yj consists of the
target position and velocity in the (xp, yp)-frame

yj (k) = h[xj (k),vj (k)] = [pTj (k) ṗTj (k)]T (9)

and, thus, the functional elements of h[·] are given by (6) and
(7), completing the definition of the PT camera measurement
and output equations (2) and (3).

The PT camera kinematic equations can be obtained from the
kinematic constraints on the motor and pinhole or lens move-
ments, which determine the motion constraints on the FOV S.
Furthermore, the FOV shape changes based on the orientation of
the camera with respect toW . Let s = [ψ φ ψ̇ φ̇]T denote
the dynamic state of the camera. In this paper, it is assumed that
the camera kinematics are linear [28] and the camera control in-
put, u = [u1 u2 ]T , consists of two voltage levels that, applied
to the motors, can independently adjust the pan and tilt angles
[29]. Then, the camera kinematic equation can be expressed by
a difference equation in the state-space form

s(k + 1) = As(k) + Bu(k) (10)

where

A =

⎡
⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
0 0
b1 0
0 b2

⎤
⎥⎥⎦ (11)

and b1 and b2 are two constant motor parameters [30].

In addition to the kinematic constraint (10), the camera
state and control must also obey inequality constraints that
reflect physical bounds imposed by the instrumentation. The
pan and tilt angles are constrained to the ranges ψ ∈ [0, 2π)
and φ ∈ [π/2, π], and the pan and tilt angular velocities are
bounded by the constants ψ̇max and φ̇max , respectively. Then,
by normalizing the camera input voltages such that their up-
per bounds are equal to one, the full set of camera inequality
constraints can be expressed as

{
b1 ≤ s ≤ b2

|u| ≤ 12
(12)

where ≤ denotes elementwise inequalities, b1 = [0 π/2 −
ψ̇max − φ̇max]T , b2 = [2π π ψ̇max φ̇max]T , 1n denotes an
n× 1 vector of ones, and input scaling coefficients have been
absorbed into the matrix B in (11).

The automatic control problem addressed in this paper is
to determine a control sequence {u∗(�)}�=k,...,kf that at any
time k optimizes the expected PT camera performance over
a finite time horizon [k, kf ]. The PT camera performance is
represented by the information value of future target measure-
ments, in the form (2), and is to be maximized subject to the
PT camera kinematic equation (10) and inequality constraints
(12), and FOV geometric constraint S(k). The length of the
time horizon T = (kf − k) is determined by the time it takes to
update a probabilistic model of the target kinematics (1) based
on all measurements obtained up to time k, using the Bayesian
nonparametric approach reviewed in Section III.

III. BACKGROUND ON BAYESIAN NONPARAMETRIC MODELS

AND INFORMATION VALUE

Several authors have recently shown that the kinematics of an
unknown number of mobile targets in the form (1) can be learned
entirely from data using DPGP MMs adapted automatically to
learn the number and form of target VFs from noisy measure-
ments [5], [9], [10], [31]. Because the number of targets, N(t),
and the number of VFs,M(t), are both unknown and not neces-
sarily equal, the target–VF associations are modeled by a set of
hidden discrete random variables,Gj ∈ {1, . . . ,M}, for j ∈ I,
with a distribution of mixture weights, π = [π1 · · · πM ]T ,
modeled via DP.

A multioutput GP defines a multivariate distribution over
functions, P (fi), for fi :W → Rd , where, in this paper, d =
2, and i = 1, . . . ,M [9]. Let F = {fi(x1), . . . , fi(xn )|xj ∈
W} be a set of vector function values obtained at n
points in W . Then, P (fi) is a multioutput Gaussian pro-
cess if for any finite set {x1 , . . . ,xn} the distribution
P (F ) is a joint multivariate Gaussian distribution. Now, let
θi(xj ) � Evj

[fi(xj )] denote the GP mean, and Ψi(xj ,x′j ) �
Evj ,v ′j

{
[fi(xj )− θi(xj )][fi(x′j )− θi(x′j )]

T
}

denote the GP
covariance, where E[·] is the expectation operator [32]. To-
gether, θi and Ψi fully specify the ith GP. For simplicity, it
is assumed that all the GPs share the same known covariance
matrix Ψ.
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Under proper assumptions [14], the following DPGP MM:

{θi ,π} ∼ DP
(
α,GP(0,Ψ)

)
, i = 1, . . . ,∞

Gj ∼ Cat(π), j ∈ I
fGj

(x) ∼ GP(θGj
,Ψ),x ∈ W, j ∈ I (13)

can be used to describe the target kinematics in (1) from the
position and velocity measurements (2), where “Cat” denotes
the categorical distribution, α is a positive real number, and “∼”
denotes “is distributed as.” Each VF is modeled as a Gaussian
process, and the target–VF association is modeled by π.

Recent works [14], [20], [33] have shown that, at time k,
the information value of a (future) measurement in the form
(2) can be estimated by an expected information theoretic func-
tion, such as the EKLD, derived from the DPGP model. Be-
cause traditional information theoretic functions are defined in
terms of probability distributions, in [14] Wei et al. proposed
a collocation-point method to derive computationally tractable
DPGP information theoretic functions. The approach consists
of evaluating the VFs inF atL collocation points distributed on
a uniform grid in W , and denoted by {ξl ∈ W|l = 1, . . . , L}.
From finite difference analysis [34], every VF fi(·) learned by
the DPGP can be approximated by the (2L× 1) random vector

υi � [fi(ξ1)
T · · · fi(ξL )T ]T . (14)

By arranging all M VFs approximations into a 2LM × 1 vec-
tor, υ � [υT

1 · · · υT
M ]T , a finite-difference approximation

is obtained for the set of VFs F learned by the DPGP up to
time k.

Then, the KL divergence between two multivariate distribu-
tions, p(υ) and q(υ), of the random vector υ ∈ R2LM , defined
as

D
(
p(υ)‖ q(υ)

)
=
∫

R2L M
p(υ) ln

p(υ)
q(υ)

dυ (15)

can be used to represent the information value associated with
the change in distribution for υ. Let the set of measurements
obtained from an initial time (� = 1) up to but not including
time k be denoted by Z(1, k) = {zj (�)|j ∈ I(�), 1 ≤ � < k},
where zj (�) obeys (2) for all j and �. The information value
associated with the next measurement zj (k), resulting in a
change in the distribution of υ, can be represented by the KL
divergence between the prior and posterior distributions

D
(
p(υ|zj (k), Z(1, k))‖ p(υ|Z(1, k))

)

=
∫

R2L M
p(υ|zj (k), Z(1, k)) ln

p(υ|zj (k), Z(1, k))
p(υ|Z(1, k))

dυ.

(16)

Because the posterior distribution of υ is unknown before
the values of zj and Gj are obtained by the camera, the KL
divergence in (16) is estimated by taking the expectation with
respect to these two random variables

D̂
(
p(υ|zj (k), Z(1, k))‖ p(υ|Z(1, k))

)
= Ezj (k)

{
EGj (k)

{
D
(
p(υ|zj (k), Z(1, k))

‖ p(υ|Z(1, k))
}}

� D̂ (υ; zj (k)) (17)

resulting in the EKLD of measurement zj (k).

IV. ADDITIVE BAYESIAN NONPARAMETRIC

INFORMATION VALUE

Previous work on Bayesian nonparametric (BNP) informa-
tion value and related control methods have focused on greedy
strategies that consider the information value of the next single
sensor measurement, e.g. the EKLD information value function
in (17), and that do not account for the camera kinematic con-
straints [14], [20], [33], [35]. However, in real-world applica-
tions, the camera kinematic and FOV constraints (see Section II)
impose real limitations on possible measurement realizations.
For example, during the time it takes the camera to reposition
its FOV targets may have moved elsewhere and, because their
behavior is unknown or highly uncertain, they may have left the
workspace altogether. This section obtains a closed-form repre-
sentation of the camera information value that is additive over
time and computationally tractable, so as to capture and opti-
mize the camera ability to build the target models in (1) over a
finite time horizon. As shown in Section IV-A, the DPGP EKLD
is not additive, and its optimization is proven NP-hard (see
Section IV-A). Thus, a new information value function that is
additive and tractable is obtained from the EKLD lower bound
derived in Section IV-B. Based on this result, the constrained
camera control problem is cast as an MO optimization prob-
lem that can be solved efficiently by the lexicographic approach
presented in Section V.

A. Cumulative BNP Information Value Optimization

Consider a finite time horizon of T time steps, where T
is a finite and known positive integer. Now, let Zj (k1 , k2) =
{zj (�)|j ∈ I(�); k1 ≤ � < k2} denote the set of measurements
obtained from the jth target between time steps k1 and k2 , and let
Z(k1 , k2) � ∪jZj (k1 , k2) denote the set of all measurements
obtained between k1 and k2 . Then, at any time k, the cumu-
lative DPGP information value of the jth target measurements
obtained over the T time horizon can be represented by the
EKLD of the measurement set Zj (k, kf ), where kf = (k + T ),
such that from (17)

D̂ (υ;Zj (k, kf )) = EZj (k,kf )
{

EGj (k)
{
D
(
p
(
υ|Zj (k, kf )

∪ Z(1, k)
)‖ p

(
υ|Z(1, k)

))}}
(18)

where it is assumed that the target–VF association Gj remains
constant from k to kf .

Because the EKLD of any two random variables X and Y
can be expressed in terms of mutual information, as follows:

I(X;Y ) � EY {D[p(X|Y )‖p(X)]} (19)

the cumulative EKLD in (18) can be written as

D̂ (υ;Zj (k, kf )) =
M∑
i=1

wij I
(
υi ;Zj (k, kf )

)
(20)

where wij denotes the posterior probability of event {Gj = i},
and υi is defined in (14). Let Z̄j (1, k) denote the complement
set of Zj (1, k) in Z(1, k). Then, from Bayes’ rule, the posterior
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probability of a target–VF association event is

wij =
πi · p(Zj (1, k)|Z̄j (1, k), Gj = i)∑M
i=1 πi · p(Zj (1, k)|Z̄j (1, k), Gj = i)

(21)

where πi = p(Gj = i) is the prior probability that the jth target
follows the ith VF, and all likelihood functions in (21) can be
obtained from the cross-covariance matrix of the GP regression,
as shown in [14] and [36].

We will now show that the computational complexity of max-
imizing the cumulative EKLD in (20) subject to the camera
kinematic constraints (10)–(12) and the bounded FOV (2) is
NP-hard. From (20) and (21), maximizing the cumulative EKLD
with respect to future measurements is equivalent to maximiz-
ing the mutual information I

(
υi ;Zj (k, kf )

)
since the posterior

wij is independent of Zj (k, kf ). From the properties of mu-
tual information [37], I(X;Y ) = H(X)−H(X|Y ) for any
two random variables X and Y , where H(X) denotes the en-
tropy of X , and H(X|Y ) denotes the conditional entropy of X
given Y . The computational complexity of determining entropy
bounds is given by the following Lemma (from [38]).

Lemma 1: Given rational number n and rational covariance
matrix Σ over a set of Gaussian random variables S, deciding
whether there exists a subsetA ⊂ S of cardinality |A| = d such
that H(A) ≥ n is NP-complete.

From the above Lemma, the computational complexity of
determining bounds on mutual information is as follows.

Theorem 1: Given a rational number m and a rational co-
variance matrix Λ over a set of Gaussian random variables
V = S ∪ U , deciding whether there exists a subset A ⊂ S,
where |A| = d, such that I(A;U) ≥ m is NP-complete.

Proof: Letting Q1 and Q2 denote the problems studied in
Lemma 1 and Theorem 1, respectively, Q2 can be shown NP-
complete by the reducing Q1 to Q2 as follows. Consider a
positive constant σc <

√
λmin(Σ), where the smallest eigen-

value λmin of a covariance matrix is always positive. Then ∀S,
∃U such that any random variable in V is multivariate Gaussian
distributed with covariance matrix

Λ =
[
Σ I
I (Σ− σ2

c I)
−1

]
. (22)

The conditional distribution ofS givenU is a multivariate Gaus-
sian distribution with covariance matrix σ2

c I. Thus, the random
variables in S are conditionally independent given U .

Now let I(A;U) = H(A)−H(A|U), where H(A) is max-
imized in Q1 , and H(A|U) can be shown constant as follows.
Since A ⊂ S, all random variables in A also are conditionally
independent given U and, thus, H(A|U) = d log(2πeσ2)/2 is
constant for known |A| = d. It also follows that maximizing
I(A;U) is equivalent to maximizingH(A), thus the solution to
Q2 can be used as a black-box to solve Q1 in polynomial steps
and, since Q1 is NP-complete, Q2 is NP-hard. Furthermore,
calculating I(·) for a set of Gaussian random variables requires
polynomial time, therefore, Q2 is NP-complete. �

From Theorem 1, the complexity of optimizing the cumula-
tive DPGP information value over a finite time horizon subject
to the camera constraints is given by the following result.

Theorem 2: Determining the measurement setZj (k, kf ) that
maximizes the EKLD function, D̂ (υ;Zj (k, kf )) in (20), sub-
ject to the camera kinematic constraints (10)–(12) and bounded
FOV (2), is NP-hard.

Proof: The proof shows that the constrained optimization of
D̂, denoted by Q3 , contains the NP-complete problem Q2 de-
fined in Theorem 1 [39]. In particular, three restrictions are intro-
duced to demonstrate thatQ2 is a special case ofQ3 . The first re-
strictionM = 1 considers the case of a unique VF f1 associated
with all N targets, such that S = {f1 [xj (�)] | 1 ≤ j ≤ N, k ≤
� ≤ kf }. The second restriction considers an FOVS sufficiently
small to obtain one and only one target measurement zj at any
time step k. It follows that d = |Zj (k, kf ) | = (kf − k) = T
in Q2 . The third restriction is placed on the collocation points
used to evaluate the DPGP EKLD, namely, considers one col-
location point ξl . Then, υ = υ1 = f1(ξl), and the VF f1 [·]
specifies the set U = {f1(ξl) | 1 ≤ l ≤ L}. Because from (20)
maximizing D̂(U ;A) is equivalent to maximizing I(U ;A), and
I(U ;A) = I(A;U), under the above restrictions Q3 is equiva-
lent to Q2 and, since Q2 is NP-complete, Q3 is NP-hard. �

In order to reduce the computational complexity of the above
optimization problem, the following section derives a lower
bound for the DPGP-EKLD that represents the camera worst
case performance and is shown to be additive over time.

B. BNP Cumulative Information Value Lower Bound

Because the cumulative EKLD in (20) is a nonadditive func-
tion of the future measurements, Zj (k, kf ), maximizing D̂ is
a combinatorial optimization problem. This section shows that
the problem complexity can be greatly reduced by the following
additive lower bound of the DPGP EKLD.

Theorem 3: Given a time horizon [k, kf ], the cumulative
DPGP EKLD function, D̂ (υ;Zj (k, kf )), in (20), is charac-
terized by the lower bound, D̂L (υ;Zj (k, kf )), obtained from
the discounted mutual information of every future measurement,
zj (�) (� = k, . . . , kf ), as follows:

D̂
(
υ;Zj (k, kf )

) ≥
M∑
i=1

kf∑
�=k

wij (1− γ)γ�−k I
(
υi ; zj (�)

)

� D̂L

(
υ;Zj (k, kf )

)
(23)

where γ ∈ [0, 1) is a constant discount factor.
Proof: Let V , A1 , and A2 denote any three sets of ran-

dom variables, and A � A1 ∪A2 . Since A1 , A2 ⊂ A, it fol-
lows from the properties of conditional entropy [37] that
H(V |A) ≤ H(V |A1) and H(V |A) ≤ H(V |A2) and, also, for
any constant γ ∈ (0, 1), the following holds:

I(V ;A) ≥ γI(V ;A1) + (1− γ)I(V ;A2). (24)

By induction, from the above inequality it also follows that

I
(
υi ;Zj (k, kf )

) ≥
kf∑
�=k

(1− γ)γ�−k I(υi ; zj (�)
)

(25)
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and, thus, substituting (25) in (20) yields the cumulative lower
bound of the EKLD

D̂
(
υ;Zj (k, kf )

) ≥
M∑
i=1

kf∑
�=k

wij (1− γ)γ�−k I
(
υi ; zj (�)

)
.

�
The information value function in (23) is evaluated using the

DPGP mutual information and regression, as shown by (19),
(21), and Section III (see [14] for more details).

V. LEXICOGRAPHIC MO CAMERA CONTROL METHOD

The new camera information value function in (23) can be
viewed as the sum of multiple objective functions, each pro-
portional to the mutual information representing the expected
improvement of the ith VF brought about by a future measure-
ment zj (�) obtained from the jth target at time � ≥ k. Thus,
the automatic control problem formulated in Section II can be
viewed as a constrained MO problem [40] comprised of MN
objective functions to be optimized simultaneously subject to
the dynamic and inequality constraints (10)–(12), and the geo-
metric FOV constraints in (2). By solving the constrained MO
problem over the finite time horizon [k, kf ], the PT camera
can be automatically controlled so as to obtain the most infor-
mative measurements for learning the target DPGP model hy-
perparameters {θi ,Ψ,π} in (13). As a result, many problems
associated with greedy algorithms, such as local minima, are
mitigated and the camera performance is significantly improved
(see Section VI).

The lexicographic approach belongs to the class of meth-
ods with a priori articulation of preference, which assumes the
objectives can be ranked in order of importance [41]. When
compared to other methods in this class, such as weighted
global criterion methods, the lexicographic approach avoids un-
favorable local optima [42]. Also, the lexicographic approach is
more computationally efficient than methods with a posteriori
articulation of preference [43], and it does not require close-
ness between solutions as do methods without articulation of
preference, such as compromise solutions methods [44]. The
camera MO problem is cast in a form suitable to the lexico-
graphic approach in Section V-A, and a solution method is pre-
sented in Section V-B along with theoretical results that include
guarantees on the MO solution obtained by convex quadratic
programming (QP).

A. MO Problem and Ordering of Objectives

The FOV geometric constraints in (2) can be formulated as a
set of inequality constraints on the state and control by means of
disjunction operators that significantly increase the complexity
of the constrained optimization problem [45]–[47]. This paper
presents an alternative approach that adjoins the FOV constraint
to the objective function (23) by means of a convex potential
function, g : R2 → [0, 2π)× [π/2, π], mapping any target po-
sition, xj , to pan and tilt angles that position the centroid of S

at xj , as follows:

[
ψj

φj

]
=

⎡
⎢⎣

tan−1 [(yc − yj )/(xc − xj )]

π − tan−1
[√

(yc−yj )2 +(xc−yj )2

zc

]
⎤
⎥⎦�g(xj ) (26)

where xc is the pinhole position in inertial frame and the above
transformation is obtained from (5) (see Section II). Then, the
quadratic function

P (s,xj ) = 1− ‖Us− g(xj )‖2/h (27)

is maximized to achieve xj ∈ S (time arguments omitted for

brevity), where U �
[

1 0 0 0
0 1 0 0

]
, and h > 0 is a user-defined

weight known as shape parameter.
From (23) and (27), an objective function that represents the

improvement of the ith VF by measurements of the jth target
can be formulated as follows:

Jij �wij
kf∑
�=k

(1− γ)γ�−k I(υi ; zj (�)
)
P
(
s(�),xj (�)

)
(28)

for i = 1, . . . ,M , and j = 1, . . . , N . Then, the MO problem to
be solved at time step k can be stated as follows:

max
[
J11 · · · JMN

]T
sbj. to s(k) = s0

s(�+ 1) = As(�) + Bu(�), � = k, . . . , kf

b1 ≤ s(�) ≤ b2 , � = k, . . . , kf

− 12 ≤ u(�) ≤ 12 , � = k, . . . , kf (29)

where s0 is the known state of the camera at time k. Be-
cause the state of the PT camera s(�+ 1) depends on the con-
trol input u(�), the variables of the above MO problems are
as follows:

χ � [sT (k) · · · sT (kf ) uT (k) · · · uT (kf )]T (30)

The constraints on the camera states and control inputs in (29)
can be expressed compactly as

U � {χ ∈ R6T |Cχ = d1 , Dχ ≤ d2} (31)

where

C �

⎡
⎢⎢⎢⎢⎢⎢⎣

I4 0 0 · · · 0
−A I4 0 · · · 0

0 −A I4
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −A I4︸ ︷︷ ︸

4T

0 · · · · · · 0
B 0 · · · 0

0 B
. . .

...
...

. . .
. . . 0

0 · · · 0 B︸ ︷︷ ︸
2T

⎤
⎥⎥⎥⎥⎥⎥⎦

d1 � [sT0 01×4(k−1) ]T , D �
[−I4T I4T 04T ×4T
02T ×8T − I2T I2T

]T

d2 �
[

bT1 · · · bT1︸ ︷︷ ︸
4T

bT2 · · · bT2︸ ︷︷ ︸
2T

11×4T
]T

(32)
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In is an n× n identity matrix, and 0m×n and 1m×n denote
m× n matrices of zeros and ones, respectively.

Assume the MN objective functions defined in (28) can be
arranged in an ordered set {J ′1 , . . . , J ′R}, where objective J ′j is
more important than J ′ı if j < ı (j �= ı), for all j, ı = {1, . . . , R},
R = MN . Then, the lexicographic approach obtains the solu-
tion to the MO problem in (29) by solving a sequence of single-
objective optimization problems

max
χ

J ′ı(χ) (33a)

sbj. to J ′j(χ) ≥ (J ′j)
∗, j = 1, . . . , ı− 1, ı > 1 (33b)

χ ∈ U (33c)

ı = 1, . . . , R (33d)

where (J ′j)
∗ is the optimum of the jth objective function, found

in the jth iteration [41].
For the PT camera MO problem in (29), the above ordering

assumption can be satisfied as follows. From (28), Jij denotes
the expected improvement in the ith VF brought about by mea-
surements obtained from the jth target. Let the order notation
Jij � Ji ′j ′ (Jij ≺ Ji ′j ′ ) denote an objective Jij that is more
(less) important than Ji ′j ′ (∀i′ �= i and ∀j′ �= j). For a given
target j, objective functions corresponding to higher target–VF
association probabilities (21) are more important because they
correspond to a higher target detection probability, thus

Jij � Ji ′j ⇔ wij ≥ wi ′j , 1 ≤ i �= i′ ≤M (34)

and the M objective functions can be rearranged in order of
decreasing importance, such that

J1j � J2j � · · · � JM j , j = 1, . . . , N. (35)

Also, for different targets (j �= j′) objective functions corre-
sponding to smaller VF indices are considered more important
because learned earlier in the observation process, thus

Jij � Ji ′j ′ , 1 ≤ i < i′ ≤M, 1 ≤ j �= j′ ≤ N (36)

and combining (35) and (36) leads to the order

Jij � Ji ′j ′ , 1 ≤ i < i′ ≤M, 1 ≤ j, j′ ≤ N. (37)

In the special case i = i′, the relative importance of objectives
cannot be determined by the target–VF association probability.
Let J̌ij denote the objective value obtained by optimizing Jij
independently of the other objectives, or

J̌ij � max
χ

{
Jij (χ)|χ ∈ U}. (38)

Then, for i = i′, it is reasonable to assume that objective func-
tions corresponding to larger optima are more important, or

Jij � Jij ′ ⇔ J̌ij ≥ J̌ij ′ , 1 ≤ j, j′ ≤ N (39)

for i = 1, . . . ,M . When combined, (37) and (39) completely
specify the ordered set for the MO problem in (29), which can
then be reduced to the sequence of single-objective optimization

problems

max
χ

Ji ′j ′(χ) (40a)

sbj. to Jij (χ) ≥ J∗ij , ∀Jij ≺ Ji ′j ′ (40b)

χ ∈ U (40c)

i = 1, . . . ,M, j = 1, . . . , N (40d)

where the optimum J∗ij is known from the previous iteration.
An efficient solution to the above single-objective optimization
problems is presented in the next section.

B. Sequential Optimization of Information Objectives

Because the mutual information, I
(
υi ; zj (�)

)
, is not an ex-

plicit function of χ, the single-objective optimization problem
in (40) is equivalent to maximizing a weighted sum of the poten-
tial functions, P

(
s(�),xj (�)

)
. Also, during the first iteration of

the lexicographic method [ı = 1 in (40)], the camera state and
control inputs are only subject to the linear constraints (40c).
In the weighted sum of potential functions in (28), choose the
weight of the �th potential function in Jij to be

β(�) = wij (1− γ)γ�−k I
(
υi ; zj (�)

)
, � = k, . . . , kf .

Then, Jij is a quadratic function of χ, because

Jij =
kf∑
�=k

β(�)−
kf∑
�=k

β(�)
h

∥∥Us(�)− g[xj (�)]
∥∥2

=

( kf∑
�=k

β(�)− cT c

)
−
(
χT PT Pχ− cT Pχ

)
(41)

where

P �

⎡
⎢⎢⎢⎢⎢⎢⎣

√
β (k)
h U 0 · · · 0

0
√

β (k+1)
h U

. . .
...

...
. . .

. . . 0

0 · · · 0
√

β (kf )
h U

∣∣∣∣∣∣∣∣∣∣∣∣
02T ×2T

⎤
⎥⎥⎥⎥⎥⎥⎦

(42)

c �
[√

β(k)
h

gT [xj (k)] · · ·
√
β(kf )
h

gT [xj (kf )]

]T
. (43)

Hence, the first iteration of the lexicographic method can be
solved by a QP algorithm, such as interior point, in polynomial
time [48].

Subsequent iterations [ı > 1 in (40)] can be cast in the form
(41)–(43), with an added set of constraints (40b). Although the
constraints in (40b) are nonlinear, they can be approximated by
linear constraints with a bounded loss in performance, as shown
in the remainder of this section. From the measurement model
(2), if xj (�) ∈ S(�) at time �, then zj (�) is independent of χ.
Because the cumulative EKLD bound in (23) is also independent
of χ, the constraints in (40b) can be replaced by the following
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T geometric constraints:

Jij (χ) ≥ J∗ij ⇔

⎧⎪⎪⎨
⎪⎪⎩

xj (�) ∈ S(�), xj (�) ∈ S∗(�),
� = k, . . . , kf

unconstrained, o.w.

(44)

without decreasing the information value (23).
Because the target position, xj ∈ W , is beyond our control,

(44) translates into geometric constraints to be satisfied by the
PT camera state and control (χ) and, in particular, by the cam-
era pan and tilt angles, ψ and φ. Thus, in order to reduce the
single-objective optimization problems in (40) to QP form, the
nonlinear constraints (44) are approximated by a linear set as
follows. In W , the geometry of the FOV, S(�), is an irregular
convex tetragon that changes with respect to time by virtue of
the camera PT angles (see Fig. 1). When projected onto the
virtual image plane (see Fig. 2), however, S(�) is a rectangle
with the same size as the image sensor. Let a and b denote the
width and height of the image sensor, respectively. Given that
the projection of xj (�) onto the virtual image plane pj is known
from (5) and (6), it follows that xj (�) ∈ S(�) iff

pj = [px py ]T ∈ [−a/2, a/2]× [−b/2, b/2]. (45)

Then, the relationship between the PT camera angles and
the convex function defined by (26) and (27) is obtained by
substituting (5) and (6) in (26){

φ− φj � φ′j = − tan−1(py /λ)

ψ − ψj � ψ′j = − tan−1 [px sec(φj ) cos(φ′j )/λ
] (46)

and the analytical form of (44) is obtained by substituting (45)
in (46) as follows:⎧⎨
⎩
|φ′j | ≤ tan−1 [b/(2λ)] � φλ

|ψ′j | ≤ tan−1
[ a
2λ
| sec(φj )| cos(φ′j )

]
� g(φ′j ).

(47)

The above constraint is illustrated in Fig. 4 for [ψj φj ]T =
[π/2 π/4]T .

Because the FOV constraint in (47) is proven to be convex by
the following theorem, all iterations of the lexicographic method
presented in this section require polynomial time.

Theorem 4: The FOV constraint (47) is convex with respect
to the camera PT coordinates [ψ φ]T , given any camera pa-
rameters a, b, λ > 0 and target PT coordinates [ψj φj ]T .

Proof: The inequalities in (47) can be rewritten as{ |φ′j | ≤ φλ

|ψ′j | ≤ g(φ′j )
(48)

a constraint equivalent to the intersection of the epigraph of
−g(φ′j ) and the hypograph of g(φ′j ), for φ′j ∈ [−φλ, φλ] (e.g.,
see Fig. 4), where the epigraph (hypograph) of a function is
defined as the set of points lying on or above (below) its graph
[49]. From (47), the second derivative of g(φ′j ) is

d2g(φ′j )
dφ′2j

= −g0 cos(φ′j )[1 + g2
0 + g2

0 sin2(φ′j )]
[1 + g2

0 cos2(φ′j )]2
(49)

Fig. 4. Example of nonlinear constraint (47) (blue region bounded by
arcs ÂBC , D̂EF , and segments CD, FA) and corresponding linear
approximation (50) (polygon ABCDEF ).

where g0 � g(0). Since g0 is a positive constant, d2g/dφ′2j ≤
0 for φ′j ∈ [−π/2, π/2]. Also, since b, λ > 0, it follows that
0 < φλ < π/2. Therefore, g(φ′j ) and −g(φ′j ) are concave and
convex functions of φ′j , respectively, where φ′j ∈ [−φλ, φλ].
Because the epigraph (hypograph) of a function is a convex
set, if the function is a convex (concave) function [50], then
the epigraph of −g(φ′j ) and the hypograph of g(φ′j ) are both
convex sets. Finally, since the intersection of two convex sets is
also a convex set, the intersection of the epigraph of −g(φ′j )
and the hypograph of g(φ′j ) is a convex set. �

The computational complexity of the camera MO problem is
further reduced by approximating the convex FOV constraint in
(47) by the set of linear constraints⎧⎪⎨

⎪⎩
|φ′j | ≤ φλ

|ψ′j | ≤ g0 ± [g0 − g(φλ)]
φλ

φ′j
(50)

accompanied by a bounded loss in performance. The above
linear approximation is illustrated in Fig. 4, where it can be
seen that φλ is half of the vertical angle of view with respect to
the focal length λ. Then, letting the minimum focal length be
λm > 0, φλ is characterized by the upper bound

φλ ≤ tan−1 [b/(2λm )] � φu (51)

and the performance loss brought about by replacing (47) with
(50) is guaranteed to be bounded by approximately 9 % as
proven by the following theorem and remarks.

Theorem 5: The ratio of the area of the camera FOV repre-
sented by the linear constraint (50) over the area of the FOV
represented by the convex constraint (47) is bounded below by

r(φu ) � 1− 1
4

[√(
π

φu
− 2
)
−
√

π

φu

]2

(52)

where φu is a camera parameter defined in (51).
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Fig. 5. Linear approximation (50) of nonlinear constraint (47) in the first
quadrant when (a) φλ ≤ φd and (b) φλ > φd , where polygons of area S1
and S2 are denoted by blue and red dashed lines, respectively.

Proof: Since (48) and (50) are symmetric about both the φ′j
and ψ′j axes, the ratio of the area of (50) over the area of (48) is
the same as the area ratio in the first quadrant: {(φ′j , ψ′j )|φ′j ≥
0, ψ′j ≥ 0}. Let point A denote the intersection between the
ψ′j -axis and g(φ′j ) (see Fig. 5). Let point E denote the pair
(φu , g(φu )), where φu is the upper bound of φ′j . Now, let S1
denote the area of the convex set specified by the nonlinear
constraint (48) in the first quadrant (blue dashed line in Fig. 5),
and line l0 denote a horizontal line through A, as illustrated in
Fig. 5. The first derivative of g(φ′j ) is

dg(φ′j )/dφ
′
j = −g0 sinφ′j /(g

2
0 cos2 φ′j + 1) ≤ 0 (53)

for all φ′j ∈ [0, π/2]. Therefore, g(φ′j ) is monotonically de-
creasing for all φ′j ∈ [0, π/2], and is bounded above by l0 . Let
l1 denote a line through points E and F , defined graphically in
Fig. 5. Since g(φ′j ) is a concave function for all φ′j ∈ [0, π/2]
(see Theorem 4), g(φ′j ) is bounded above by line l1 for all
φ′j ∈ [0, φu ]. Let pointD denote the intersection of lines l0 and
l1 , and let φd denote the φ′j -axis coordinate of pointD. Then, if
φλ ≤ φd , S1 is bounded above by the area of polygon OAB′C
[dashed blue line in Fig. 5(a)], and if φλ > φd , S1 is bounded
above by the area of polygon OADB′C [dashed blue line in
Fig. 5(b)], or

S1 ≤
{
g0φλ, if φλ ≤ φd
g0φd + 1

2 (gλ + g0)(φλ − φd), if φλ > φd
(54)

where g0 � g(0) and gλ � g(φλ).
Now, let S2 denote the area of the convex set specified by the

linear constraints (50) in the first quadrant. Let l2 denote a line
through points A and E, defined graphically in Fig. 5. Since
g(φ′j ) is a concave function in [0, π/2], it is bounded below by
line l2 for all φ′j ∈ [0, φu ], and S2 is greater than the area of
polygon OAB′′C or

S2 ≥ (gλ + g0)
2

φλ =
[
(gu − g0)

2φu
φλ + g0

]
φλ (55)

where gu � g(φu ). For φλ ≤ φd , substitute (55) into (54) such
that the area ratio satisfies the inequality

S2

S1
≥ 1− (g0 − gu )

2g0φu
φλ (56)

and since φλ ≤ φd and g0 ≥ gu , it also follows that

S2

S1
≥ 1− (g0 − gu )

2g0φu
φd

= 1− (g0 − gu )
2g0φu

[
π

2
−
(π

2
− φu

) g0

gu

]

= 1 +
(1− gu/g0)
gu/g0

(π − 2φu )
4φu

− (1− gu/g0)
4φu

π

= 1− c1 − c2 + c1
g0

gu
+ c2

gu
g0

(57)

where c1 � (π − 2φu )/(4φu ) > 0 and c2 = π/(4φu ) > 0 are
known constants.

From (57), it can be shown that the area ratio satisfies

S2

S1
≥ 1− c1 − c2 + 2

√
c1c2 = 1− (

√
c1 −√c2)2

= 1− 1
4

(√(
π

φu
− 2
)
−
√

π

φu

)2

(58)

and that the derivative of the lower bound in (58) with respect
to φu is

d

dφu

(
S2

S1

)
= − π

4φ2
u

[√
(π − 2φu )−

√
π
]2

√
(π − 2φu )π

≤ 0 (59)

where equality holds for φu = π/2.
For φλ > φd , the area ratio satisfies the inequality

S2

S1
≥
⎧⎨
⎩

g0[
(gu −g0 )

2φu
φλ + g0

] φd
φλ

+
(

1− φd
φλ

)⎫⎬
⎭
−1

(60)

where the right-hand side is a monotonically increasing function
of φλ and, thus

S2

S1
≥
⎧⎨
⎩

g0[
(gu −g0 )

2φu
φd + g0

]
⎫⎬
⎭
−1

= 1− (g0 − gu )
2g0φu

φd

≥ 1− (g0 − gu )
2g0φu

φu . (61)

Then, similarly to (56), it can be shown that

S2

S1
≥ 1− 1

4

[√(
π

φu
− 2
)
−
√

π

φu

]2

(62)

because g(φ′j ) is a monotonically decreasing function of φ′j ,
for all φ′j ∈ [0, π/2]. Finally, the area ratio bounds in (58) and
(62) are met in the limit of λ→∞ when φλ = φd . �

Remark 1: r(φu ) is a monotonically decreasing function of
φu for all φu ∈ [0, π/2].

Remark 2: For a PT camera with a vertical angle of view
φu < π/4, the lower bound on the FOV area ratio obeys

r(φu ) > r(π/4) = 1− (
√

2−1)2

2 ≈ 91.4%.
Based on Theorem 5 and Remark 2, the optimization prob-

lems in (40) can each be formulated as QP problems with objec-
tive function (41) and linear constraints (50). Then, the optimal
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Fig. 6. Two experimental datasets consisting of time-stamped se-
quences of position and velocity measurements of pedestrians at a fre-
quency of 2 Hz. Initial positions are denoted by diamonds. (a) Dataset I:
88 pedestrians measured at the intersection of two corridors. (b) Dataset
II: 61 pedestrians measured in a lobby area.

Algorithm 1: Lexicographic Algorithm for kth Time Step.

1: Given C, D, d1 , d2 , and {Jij , wij}i,j
2: for j = 1, . . . , N do
3: Sort {wij}i such that w1j ≥ w2j ≥ · · · ≥ wM j

4: Order J1j , . . . , JM j according to sorted {wij}i
5: end for
6: U ← {χ ∈ R6T |Cχ = d1 , Dχ ≤ d2}
7: for i = 1, . . . ,M do
8: Sort {J̌ij}j , such that J̌i1 ≥ J̌i2 ≥ · · · ≥ J̌iN
9: Rearrange {Jij}j according to sorted {J̌ij}j

10: for j = 1, . . . , N do
11: χ∗ ← arg max

χ
{Jij (χ)|χ ∈ U}

12: for � = k, . . . , kf do
13: if xj (�) ∈ S[s∗(�)] then

14: V ←
{

χ
∣∣|φ(�)− φj (�)| ≤ φλ,

15: |ψ(�)− ψj (�)| ≤ g0 ± g0−gλ

φλ
(φ− φj )

}
16: U ← U ∩ V
17: end if
18: end for
19: end for
20: end for
21: return χ∗

PT camera state and control sequence χ∗ can be obtained ef-
ficiently by the lexicographic method in Algorithm 1. Unlike
the original camera control problem, Algorithm 1 can be imple-
mented in polynomial time and is applicable in real time with a
performance loss described by Remark 2.

VI. SIMULATIONS AND RESULTS

In this section, the EKLD lower bound D̂L derived in closed
form in Theorem 3, and used to obtain the MO objective func-
tions in (28), is first verified for a variety of target kinematics
(see Section VI-A). Then, in Section VI-B, the effectiveness of
the lexicographic method (see Algorithm 1) is demonstrated in

TABLE I
PT CAMERA PARAMETERS

Fig. 7. Four examples of targets from Dataset I in Fig. 6(a) superim-
posed with the collocation points.

Fig. 8. Comparison between the cumulative lower bound (23) (red line
with triangles), and the DPGP-EKLD (18) (black line with circles). Panels
(a)–(d) correspond to targets 1–4 in Fig. 7, respectively.

simulations and compared to the optimal solution obtained of-
fline, and to solutions obtained by existing algorithms based on
entropy reduction [19], greedy [20], potential field [21], patrol
[22], and random [17] methods. For all of these methods, the
camera constraints are taken into account. Finally, the compu-
tational complexity of the lexicographic algorithm and of the
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Fig. 9. DPGP KL divergence obtained by the seven camera control algorithms for (a) pedestrian dataset I [see Fig. 6(a)] and (b) pedestrian dataset
II [see Fig. 6(b)].

other six algorithms is analyzed theoretically and tested experi-
mentally in Section VI-C.

The simulations are performed using two experimental
datasets obtained by PT cameras observing pedestrians inside
MIT buildings [10], as shown in Fig. 6. For each of the two ex-
perimental datasets, 75% of the pedestrians measurements are
selected at random and introduced as the targets in the simula-
tions, and the remaining 25% of the pedestrian measurements
are used as test datasets to evaluate the performance of the DPGP
camera control algorithms. The PT camera is assumed to be lo-
cated above the center of the workspace. Camera parameters are
adopted from commercial PT cameras, such as the AXIS M5013
Dome Network camera [51], and are summarized in Table I.

A. EKLD Lower Bound Simulation Results

The distance between the DPGP-EKLD (18) and its lower
bound (23) is evaluated for four targets shown in Fig. 7. Both
the EKLD and its lower bound are calculated using the squared-
exponential covariance function

Ψ(x,x′) = exp
(
−‖x− x′‖2

2l2

)
I2 (63)

where l = 1 is the characteristic length scale. The collocation
points are distributed on a uniform grid in W . The discount
factor in (23) controls the shape of the cumulative lower bound.
Larger values of γ make the cumulative lower bound follow
the trend of the DPGP-EKLD more closely and, therefore, in
this paper γ = 0.9 in all simulations. Studies using other length
scales and discount values were also performed but produced
similar results and, therefore, are omitted for brevity. The results
in Fig. 8 show that D̂L in (23) is typically lower than D̂ in (18)
by a constant distance on a logarithm scale, for all four targets in
Fig. 7. This distance is approximately equal to the factor (1− γ)
in the EKLD lower bound (23), thus confirming that the bound
can be maximized in lieu of the original (nonadditive) EKLD
function (18).

TABLE II
RMSES OF DPGP-MMS

B. Lexicographic Camera Control Results

The effectiveness of the lexicographic method is compared
to that of five existing algorithms referred to as entropy re-
duction [19], greedy [20], potential field [21], patrol [22], and
random [17] algorithms. The entropy reduction algorithm de-
cides the next camera state by maximizing the DPGP expected
entropy reduction of the next measurement, zj (k), for one time
step [19]. The greedy algorithm maximizes the DPGP-EKLD of
zj (k), shown in (18), for one time step using a computationally
efficient particle-filter-based search method presented in [20].
The entropy and greedy algorithms do not take into account the
PT camera constraints but only the next measurement value. The
potential field algorithm, inspired by [21], controls the camera
movement by building attracting fields centered at estimates of
the target states projected onto the PT space. The patrol algo-
rithm taken from [22] adopts a sliding-mode-based method to
predefine a fixed route for the camera.

The random algorithm generates multiple number of random
control trajectories based on an extension of the rapidly ex-
ploring random tree in [17], and chooses the control trajectory
with the highest DPGP-EKLD. Then, the camera control inputs
are determined by solving a nonlinear programming problem
with the greedy DPGP-EKLD in (18) as objective function.
The optimal camera control solution is obtained offline, for
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Fig. 10. Target kinematic models (VFs with the highest likelihood) learned by the lexicographic algorithm at the final time are superimposed on
actual trajectories of test targets for the pedestrian dataset I in Fig. 6(a).

comparison, by maximizing the cumulative DPGP-EKLD in
(18) over the entire time horizon [k, kf ] using the sequen-
tial quadratic programming (SQP) algorithm implemented by
the MATLAB optimization toolbox fmincon function [52]. Al-
though too computationally intensive for real-time applications
(see Section VI-C), the optimal solution is useful in assessing
the performance of the lexicographic algorithm presented in this
paper.

After the measurements are obtained by all seven algorithms,
the actual DPGP KL divergence,D

(
υ;Z(1, k)

)
in (16), is eval-

uated and used to compare their performance. The time histories
of the DPGP KL divergence for all seven algorithms are plotted
in Fig. 9, using the datasets in Fig. 6, and the camera parameters
in Table I. It can be seen from Fig. 9 that the lexicographic algo-
rithm developed in this paper achieves the highest information
value of all algorithms, with the exception of the optimal solu-
tion. Furthermore, these results show that the performance of
the lexicographic algorithm is very close to that of the optimal
solution (obtained offline).

In order to evaluate the accuracy of the DPGP model of
target kinematics learned by the camera control algorithms at
the final time kf (with T = 400 or 200), the root-mean-square
error (RMSE) of the DPGP-MM is evaluated as follows. Let
Kj denote the number of measurements obtained from the jth
pedestrian in each of the two test datasets, and let v̂j represent
the jth target velocity estimated from the DPGP-MM (as shown
in [14]). Then, the RMSE is defined as follows:

ε =
1
Ntot

NT∑
j=1

M∑
i=1

wij

√√√√ 1
Kj

Kj∑
k=1

‖vj (k)− v̂j (k)‖2
‖vj (k)‖2 (64)

where the total number of targets in the test dataset,Ntot, is used
in lieu of N , because N is a function of time.

The RMSEs obtained for all seven camera control algorithms,
using the pedestrian datasets I and II shown in Fig. 6, are
summarized in Table II. The case referred to as “all data” is one
where all available measurements of the pedestrian movements
are used for learning the DPGP-MMs and, thus, is characterized
by the lowest possible error achievable by any camera control al-
gorithm. Although not physically realizable by a single camera,
the results for this case are included in Table II for compari-
son. The results in Table II show that the DPGP-MMs learned
from the measurements obtained by the optimal solution and
the lexicographic algorithm are the most accurate. As additional
validation, the VFs learned by the lexicographic method at the
final time of the simulation for dataset I are plotted in Fig. 10,
superimposed on the actual trajectories of the test targets. These
results provide a visual verification that the target kinematics
learned from the lexicographic camera measurements are very
close to the ground truth.

C. Computational Complexity Analysis

Because solving the PT camera control problem optimally
was proven to be NP-hard in Section IV-A, the computational
complexity of the proposed lexicographic algorithm is analyzed
in this section and compared to that of the five existing al-
gorithms tested in Section VI-B. The complexity of the lex-
icographic algorithm is dominated by the calculations of the
cumulative lower bounds (23), which require O(L2T ) time for
every target and every VF, where L is the number of collocation
points (defined in Section III), andT is the number of steps in the
time horizon (defined in Section IV-A). Each single-objective
quadratic optimization in (40) takes O(T 3) time. Therefore,
the computational complexity of the lexicographic method is
O((L2 + T 2)MNT ), where M is the number of VFs and N is
the number of targets in the workspace.
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TABLE III
COMPUTATIONAL COMPLEXITY

The computational complexity of the other six algorithms was
also analyzed for comparison and the results are summarized in
Table III (individual analysis omitted for brevity). Table III also
shows the computation times obtained experimentally for all
seven algorithms on a Dell Precision T7400 workstation, with a
3.20 GHz Intel(R) Xeon(R) CPU, and 16.0 GB installed mem-
ory. It can be seen from both the theoretical and experimental
results that the computational complexity of the lexicographic
method is much lower than that of the optimal solution. Al-
though other algorithms require less computation, the lexico-
graphic algorithm affords much higher performance and can be
easily implemented in real time. Hyper-parameter optimizations
and sparsifications of the GPs may also be performed during the
DPGP-MM update to further reduce the computation time if
deemed necessary by other applications.

VII. CONCLUSION

The problem of learning the behavior of many moving tar-
gets by means of a reconfigurable camera is relevant to a wide
range of applications, including security and surveillance, en-
vironmental monitoring, and tracking of endangered species.
Information value functions based on the KL divergence have
been shown the most effective for planning future measurements
using greedy strategies. However, when utilized to optimally
control a sensor subject to kinematic and FOV constraints, the
resulting problem is NP-hard. This paper presents a new ad-
ditive lower bound on the cumulative information value that
significantly reduces computational complexity while provid-
ing satisfactory performance guarantees. Based on the results
in this paper, the camera control problem can be solved as a
sequence of quadratic programs by a lexicographic approach.
Extensive tests involving real pedestrian data show that this
approach is applicable in real time and is significantly more
effective than existing methods based, for example, on greedy
entropy reduction, greedy KL divergence, potential field, patrol,
and randomly exploring trees.
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