

ML2VR: Providing MATLAB Users an Easy Transition to Virtual Reality
and Immersive Interactivity

David J. Zielinski
1

Ryan P. McMahan
2

Wenjie Lu
3

Silvia Ferrari
4

Duke University University of Texas at Dallas Duke University Duke University

Fig. 1. Using ML2VR, a MATLAB user transitions from viewing a 3D surface plot on a desktop computer (left) to viewing and interacting with

the plot in a virtual reality system (right).

ABSTRACT—MATLAB is a popular computational system and programming environment that is used in numerous engineering
and science programs in the United States. One feature of MATLAB is the capability to generate 3D visualizations, which can be
used to visualize scientific data or even to simulate engineering models and processes. Unfortunately, MATLAB provides only
limited interactivity for these visualizations. As a solution to this problem, we have developed a software system that easily
integrates with MATLAB scripts to provide the capability to view visualizations and interact with them in virtual reality (VR)
systems. We call this system “ML2VR” and expect it will introduce more users to VR by enabling a large population of
MATLAB programmers to easily transition to immersive systems. We will describe the system architecture of ML2VR and
report on a successful case study involving the use of ML2VR.

Index Terms—Virtual reality, MATLAB, 3D visualizations, immersive interactivity.

1 INTRODUCTION

MATLAB, commercially produced by The MathWorks, Inc., is a
computational software system and programming environment that
allows for mathematical calculations, complex data processing, and
visualizations of functions and data. We desired a way for MATLAB
users to easily access head-mounted displays and CAVE-type
systems, which often have a cluster-based architecture (e.g. one
screen per computer). We first examined several existing solutions.
Simulink 3D Animation is another product from MathWorks that
provides an interface for linking MATLAB algorithms to 3D
graphical objects [1]. However, the product is targeted at desktop
systems and not cluster-based immersive VR systems. We also
investigated prior research in porting graphical desktop applications
to cluster-based systems. Two well-known projects are WireGL [2]

and Chromium. Both of these software systems were designed to
distribute an application’s OpenGL calls to a cluster of computers for
rendering by using an OpenGL intercept method (i.e., using a
replacement OpenGL driver to process calls before they are passed
on to the true OpenGL driver). However, neither of these libraries
supported developing VR applications, as both lacked support for
handling devices like six-degrees-of-freedom (6-DOF) trackers.
 So we decided to develop a cross-platform, open-source software
system that easily integrates with MATLAB. We are hoping our new
system will introduce more users to VR by enabling those MATLAB
users with access to VR systems (e.g., CAVEs and head-mounted
displays) to easily transition to them from their desktops.

2 METHOD

2.1 OpenGL Intercept

When designing ML2VR, we decided to utilize a preexisting VR
software library, Syzygy [3], to provide the features of cluster-based
rendering and access to VR input devices. ML2VR takes advantage
of the fact that MATLAB can use OpenGL for rendering. By
intercepting the OpenGL calls made by a running instance of

1
email: djzielin@duke.edu

2
email: rymcmaha@utdallas.edu

3
email: wl72@duke.edu

4
email: sferrari@duke.edu

MATLAB, the system’s “Intercept Handler” (a modified version of
GLTrace) is able to communicate content data to “Intercept
Listeners”, which are threads running on each Syzygy node. After
receiving and storing the data, a ready signal is sent to the “Swap
Manager”. The Swap Manager then utilizes Syzygy’s variable
distribution method to distribute the ready signal. Due to our careful
construction of the content distribution and synchronization methods,
we were able to have the head-based rendering of the Syzygy
application run at a high frame rate and not be slowed down by
MATLAB’s lower frame rate. This is especially useful when dealing
with larger scenes.

2.2 Interface Server

To provide more interactivity and high fidelity techniques for
MATLAB, we designed the system architecture of ML2VR to
provide access to the VR input devices supported by the Syzygy
framework. This access is provided via the “Interface Server” and a
MATLAB script that we call the “VR Interface”. The MATLAB user
can query the VR Interface to determine if any button events (i.e.,
presses and releases) have occurred. Every event also contains the
position and orientation of the wand device when that event
occurred. By tracking the state of the wand when they occur, events
provide more-accurate interactions than simple polling, since the
current wand position usually has changed since the button press.
Overall this allows the MATLAB user to construct scripts as a loop:
query user activity, update the simulation, and then render the
resulting scene.

3 CASE STUDY: SENSOR PATH PLANNING S IMULATION

As an initial case study of using ML2VR, we have been working
with roboticists to extend their MATLAB applications beyond the
desktop. One such application is a simulation involving sensor path
planning to navigate a robotic sensor to a predefined target. The
simulation uses an artificial potential function [4] to plan the motion
of the robot. By utilizing ML2VR our colleagues were able to judge
the dynamic capabilities of their sensor path-planning algorithm by
manipulating the obstacles during simulation, while immersed in the
VR system. We consider this case study of using ML2VR to have
been a success.

4 FUTURE WORK

We would like to support more of the OpenGL geometries, lighting,
and textures in our intercept code. Our source code will be made
available at http://sourceforge.net/projects/ml2vr/

ACKNOWLEDGMENTS

This work has been supported by the National Science Foundation,
under IGERT Grant No. DGE-1068871. The authors would like to
thank Rachael B. Brady for her involvement in the early stages of the
project, and also Sarah V. Goetz and Eric E. Monson for helping
with the videos, figures, and diagrams presented with this project.

REFERENCES

[1] "Simulink 3D Animation," 2012;

http://www.mathworks.com/products/3d-animation/.

[2] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P.

Hanrahan, “WireGL: A Scalable Graphics System for Clusters,” in

ACM International Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH), 2001, pp. 129-140.

[3] B. Schaeffer, and C. Goudeseune, “Syzygy: Native PC Cluster VR,” in

IEEE Virtual Reality (VR), 2003, pp. 15-22.

[4] G. Zhang, and S. Ferrari, “An Adaptive Artificial Potential Function

Approach for Geometric Sensing,” in IEEE Decision and Control,

2009, pp. 7903-7910.

Fig. 3. ML2VR is used to view and dynamically manipulate the

obstacles within the sensor path planning simulation.

vr = vr_interface(ServerIP,ServerPort);

while 1

 [event,btn,pos]=vr.get_button_event();

 if event==1 && btn==0

 % modify data here

 end

 clf;

 surf(dataX,dataY,dataZ);

 drawnow;

end

Fig. 2. A Matlab script (left) that uses ML2VR to the change the visualization based on wand button events. To the right, the System

architecture of ML2VR: The Intercept Handler intercepts MATLAB’s OpenGL calls and distributes content to all of the nodes in the Syzygy
master/slave framework. On reception, the Intercept Listeners notify the Swap Manager, which synchronizes the swapping of content.

