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Abstract—This paper presents an approach for autonomous and
reliable localization of fugitive methane emissions and quantifica-
tion of source emission rates over large regions of interest. Previous
methods have used single mobile unmanned ground vehicle (UGV)
leak localization, but as a result cannot disambiguate multi-
ple sources when plumes overlap. The novel method presented
in this paper implements a mobile heterogeneous sensor net-
work comprised of aerial- and ground-based platforms equipped
with on-board concentration sensors. The UGVs use a recursive
Bayesian method to probabilistically determine all source rates
in a region of interest (RoI). Using a flux estimation method for
path integrated concentration measurements surrounding a point
source, unmanned aerial vehicles (UAVs) are shown to reliably
estimate source emission rates. By communicating information
about concentration measurements to the UAVs, the UGVs are
shown able to collaboratively plan efficient measurement paths
resulting in accurate disambiguation and estimation of all source
emission rates in the RoI.
Index Terms—Fugitive Emissions, Mobile Sensor Networks, Het-
erogeneous Sensor Networks.

1. INTRODUCTION AND PROBLEM
FORMULATION

Natural gas is considered to be one of the most beneficial fossil
fuels, that may help meet the need for reduced greenhouse gas
emissions and the desire to become less dependent on imported
petroleum resources. Also, domestic energy production is favored
by natural gas since there are large reserves within North America
[1], and accessible reserves are significantly larger now due to
recent advances in drilling technology [2]. Because natural gas is
composed primarily of methane, system leaks lead to increased
global warming potential, making natural gas less attractive when
compared to other fossil fuels [3]. In order for natural gas to
be a sustainable resource for future decades, rapid leak detection
systems are needed to help reduce overall methane emissions.

This paper demonstrates that the use of a heterogeneous mobile
sensor network comprised of UGVs and UAVs equipped with
point-concentration sensors, and path-integrated concentration sen-
sors, respectively, can estimate source emission rates more reliably
than a homogeneous sensor network in the presence of multiple
sources characterized by plumes that are potentially overlapping.
Overlapping plume footprints, or volumes where a concentration
measurement would be expected based on meteorological condi-
tions, lead to difficulty in determining which upwind source is
responsible for a single concentration measurement. A network
of heterogeneous, mobile sensors with complimentary capabilities
can intelligently plan their measurement trajectories such that
individual source emission rates are estimated with high confidence
even with multiple overlapping plume footprints.

This paper considers the problem of estimating the emission
rates of multiple sources in a region of interest (RoI) using an
inexpensive ground-based point-concentration sensor in collabora-
tion with an air-based laser. The ground-based sensor consists of
an UGV equipped with an on-board methane point concentration
sensor and with autonomous computing and wireless communi-
cation capabilities, which performs measurements along known
roadways to provide an initial probabilistic source emission rate
for all sources in the RoI. The air-based sensor consists of an
UAV equipped with a laser that provides methane path-integrated
concentrations processed by on-board computing and used to dis-
ambiguate source contributions with overlapping footprints.

Consider the RoI W ⊂ R3 populated by N point emission
sources T1, ..., TN labeled by the index set LT . Every potential
source Tl, where l ∈ LT , is located at a known position vector
xl ∈ R3 and has scalar source emission rate Sl ∈ R. Let xl be
defined with respect to a fixed Cartesian frame FW ∈ W , with
origin OW , and let FTl ∈ W denote a fixed Cartesian frame with
origin OTl at xl (figure 1). Each source is assigned a seperate
reference frame because the model used to calculate a sources
contribution to the net concentration at a point is a function of
the lateral (η) and downwind (ξ) position relative to the source
position. The frame FTl is rotated by an angle θw relative to FW
such that it is aligned with the average wind velocity u ∈ R3, as
shown in figure 1. The transformation from the source-fixed frame
FTl to FW is performed using the rotation matrix

R =

 cos θw sin θw 0
− sin θw cos θw 0

0 0 1

 (1)

The UGV is assumed to be a road vehicle that is constrained to
travel on known roadways in the RoI, W , denoted by H ⊂ W .
The UGV path Q ⊂ H is the set of all UGV positions q ∈ Q
defined with respect to FW . Q is chosen such that as many useful
measurements as possible are taken, given roadway constraints.
The UAV path R is constrained such that it flies at a constant
height for the entire path, and it can only fly a total distance d. The
UAVs position r ∈ R is defined with respect to FW . The problem
considered in this paper is to use the information, regarding all
sources within a RoI, collected by the UGV to plan a short path
for the UAV to collect information about select sources that proves
useful to the overall objective of accurately estimating all source
emission rates.

2. PLUME MODELING

The model used in this paper for calculating the time-averaged
concentration field has been proven useful for mobile sensing
applicationsin in previous work [4] . The methane concentration
of interest is defined as the difference from background ambient
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concentration, which is about 1.8 ppm. This model is also used
to simulate sensor measurements, as explained in the following
section. Simulation of instantaneous measurements using a time-
averaged concentration is performed by introducing a random
variable which accounts for both model inaccuracies and sensor
noise.

Consider an arbitrary point P ∈ W , with a position described
by the vector p =

[
ξ η z

]T , defined relative to FTl . The
time-averaged concentration at P caused by source Tl with source
rate Sl is,

Cl(p) =
Sl

Ū
Dη(ξ, η)Dz(ξ, z) (2)

where Ū is the effective speed of plume advection, and Dη(ξ, η)
and Dz(ξ, z) account for the lateral and vertical dispersion of the
plume, respectively. The lateral dispersion Dη(ξ, η) is commonly
assumed to be Gaussian with standard deviation related to wind
fluctuations. The vertical dispersion is modeled by,

Dz(ξ, z) =
A

z̄(ξ)
exp

{
−
(
Bz

z̄(ξ)

)s}
(3)

where z̄(ξ) is the average plume height at ξ, while A, s, and B,
are functions of atmospheric stability [5].

3. EMISSION RATE ESTIMATION

Two sensors are used in the proposed mobile network whose
measurements are used to calculate probabilistic source emission
rates; point concentration sensors mounted to UGV(s), and path-
integrated laser concentration sensors mounted to UAV(s). In order
to quantify the effectiveness of the proposed method, the sensing
capabilities must be modeled to simulate real-world performance
in the field, and also account for errors in the models used to
calculate expected concentrations.

3.1. UGV

The UGV uses a point concentration methane sensor to measure
the instantaneous concentration at the UGVs position q. This mea-
surement is simulated by summing the calculated time-averaged
concentrations from each source and adding a random variable
n, which follows a Gaussian distribution with zero mean, and
standard deviation σn to simulate sensor noise and model errors.
The simulated point-concentration measurement C̃(q, σn) is given
by

C̃(q, σn) =

N∑
l=1

Cl(q) + n(σn) (4)

This measurement is used to estimate the source emission rate of
the lth source using Bayes’ theorem. The probability of source
emission rate Sl, given the current measurement set M, RoI
information W , and meteorological conditions Λ, is given by

p(Sl|M,W,Λ) =
p(Sl)p(M|Sl,W,Λ)∫

M p(Sl)p(M = m|Sl,W,Λ)dm
(5)

Before the measurements are taken, there is no prior source
emission rate information p(Sl), so it is initialized as a uniform
distribution. The Gaussian likelihood function

p(M|Sl,W,Λ) =
1

σe
√

2π
exp

[
−1

2

(
m− Cl(q)

σe

)2
]

(6)

represents the probability of a measurement set M, assuming a
hypothetical Sl. Once a measurement is obtained at a location q,
and the posterior probabilistic source emission rate p(Sl|M,W,Λ)
is calculated for each source, the prior distribution for each source
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Figure 1. Diagram of Cartesian reference frames, where FW is an inertial
frame and FSl

is a fixed frame at source location xl and rotated an angle
θw with respect to FW . Also, the flux of fugitive gas across a point on
the imaginary surface A defined by the aerial vehicle’s path R and height
h.

is updated to the posterior distribution for the most recent mea-
surement.

3.2. UAV

The UAVs measure the path integrated concentration in the vertical
direction from the ground (z = 0) to the sensor’s height (z = h)
through laser reflections. These measurements are used to estimate
the mass flow rate ṁ of fugitive gas across an imaginary vertical
surface A, defined by the UAV path R, as shown in figure 1. The
advective flux f(r, z) of fugitive gas across a point a ∈ A is
the product of the concentration and air flow velocity component
perpendicular to A,

f(r, z) = C(r, z)u(z) · n̂(r) (7)

where n̂(r) is the outward unit vector normal to the surface A.
Since the flux will only be non-zero in the plume and the vertical
length scale of the plume is small compared to the length scale for
vertical variations in wind speed, the wind velocity u(z) can be
approximated as constant and equal to the velocity at the average
plume height z̄(ξ). The mass flow rate ṁ across the surface A can
now be calculated in terms of measurable quantities by integrating
the flux over A, which results in equation 8.

ṁ =

∫
R
C̃z(r)u(r) · n̂(r)dr (8)

where C̃z(r) is the measured depth integrated concentration based
on sensor precision and modeling errors.

C̃z(r) =

N∑
l=1

Czl (r) + n(σn) (9)

If the surface A is chosen to enclose a single source and the
vehicle flies sufficiently high such that negligible gas escapes from
above, then the mass flow rate of fugitive gas across the surface
surrounding the source Tl can be used to estimate the source
emission rate of that source Sl. From these measurements, the
probabilistic source rate, p(Sl|M,W,Λ), is modeled as a normal
distribution with a mean value equal to the mass flow rate through
a surface surrounding Tl, and a standard deviation accounting for
both model and sensor errors.
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Figure 2. All sources, indicated as blue circles, have zero emission rate,
except S1 = 10 and S2 = 3. All sensors are initially at the lower left
intersection. The UGV and UAV paths (left) and resulting probabilistic
emission rate estimates (right) are indicated as solid blue curves and dashed
red curves, respectively

4. SIMULATION RESULTS

The simple RoIW used in this section (Figure 2) has been chosen
for the purposes of demonstration, but the methods can be readily
applied to a larger RoI. Figure 2 is generated from a simulation
in which two sources (T1 and T2) leak and are characterized
by an overlapping footprint. In this case, both source emission
rates (S1 and S2) are overestimated by the ground vehicle (as
shown in Figure 2). These results demonstrate that the UGV
estimation is prone to significant error when there are overlapping
plume footprints. For this reason, an UAV is needed to determine
which upwind source is responsible for the high concentration
measurements reported by the UGV.

The effectiveness of the UAV in diambiguating overlapping
plumes is illustrated in Figure 2, where the UAV path corrects
the inaccurate prediction of the emission rate based on the UGV
data. Since the UAV is constrained by its battery life, the UAV
path is chosen to only obtain an estimate of S1 because the mean
probabilistic source emission rate predicted by the UGV is above
a predefined threshold (10 in this simulation). In this method, the
sources to be visited by the UAV are chosen by ranking their mean
emission rate estimate and determining if this mean is above a
specified actionable threshold. Then, the UAV path is chosen by
connecting the current UAV position to the closest source with
a mean above this threshold. The resulting path and probabilistic
emission rates for all sources are shown in Figures 3 and 4. The
simulation results are obtained using an arbitrary wind angle and
actual source emission rates. The resulting probabilistic emission
rates in Figure 4 show that the mean estimate for all sources
provides an accurate prediction of the actual emission rate once
the UAV completes its measurement path based on the feedback
provided by the UGV.

5. CONCLUSION

A novel hierarchical approach for robustly localizing and charac-
terizing fugitive methane leaks is presented to provide a means
for drastic mitigation of environmental impact from natural gas
production. With the ability to autonomously and reliably localize
fugitive emissions, sources found to be leaking above a prescribed
threshold may be mitigated quickly after leak detection. The
use of heterogeneous vehicles has proven to determine source
emission rates more confidently by leveraging the strengths and
weaknesses of the different mobile sensing platforms. Simulation
results obtained for one UGV constrained to drive along roadways
has proven to lead to incorrect estimation of source emission rates
when plume footprints overlap. However, when used to guide an
UAV to obtain additional path-integrated measurements, the leaks

Figure 3. Arbitrary wind angle and source emission rates for all sources
with the ground vehicle path indicated as the blue line, and the UAV path
indicated by the dashed red line.
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Figure 4. Probabilistic source emission rates. The blue curves are generated
from the UGV data and the red dashed curves are generated from the UAV
data. The vertical black lines are the actual emission rate.

are localized reliably and their emission rates estimated accu-
rately. Given the advancement of this robust source rate estimation
method, future work will focus on optimal path planning and
communication for heterogeneous mobile sensor networks with
realistic constraints on the mobile platforms and experimental
validation.
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