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Abstract— This paper proposed a randomized hybrid system
approach for planning the paths and measurements of a net-
work of robotic sensors deployed for searching and classifying
objects in a partially-observed environment containing multiple
obstacles and multiple targets. The sensor planning problem
considered in this paper consists of coordinating and planning
the motions of each robot, equipped with two on-board sensing
capabilities. One sensing capability is assumed to have low
classification accuracy and a large field of view (FOV), and
the other is assumed to have high classification accuracy and a
smaller FOV. A sampling function for rapidly-exploring trees
is presented that takes into account both sensor measurements
of obstacle locations and robot configuration and velocity to
generate new milestones for the tree online. The tree expansion
also takes into account the expected information value of the
targets, represented by conditional mutual information, in order
to favor expansions toward targets with higher measurement
benefit. The proposed method is implemented and demonstrated
on a network of robotic sensors simulated using the 3D physics-
based robotics software packages Player/Stage/Gazebo.

I. INTRODUCTION

Recently, it has been shown by several authors that the ge-

ometry of sensor’s field-of-view (FOV), or visibility region,

plays an important role in sensor motion planning [1]–[8].

The FOV can be considered as the region in which the sensor

can make measurements. Typically, it consists of a bounded

subset of a Euclidian space that depends on the sensor’s

configuration (e.g., position and orientation), and the sensor’s

parameters. Therefore, when a sensor is installed on a mobile

robot, such as an unmanned ground vehicle, its configuration

and FOV geometry must be taken into account in planning

the robotic sensor path [5]–[8]. In many applications, such as,

robotic mine hunting [9], cleaning [10], and monitoring of ur-

ban driving [11], industrial plants [12] or endangered species

[13], multiple, cooperating robotic sensors are deployed in an

obstacle-populated environment. Therefore, the geometries

and configurations of the robot and the obstacles must also

be taken into account to avoid collisions with obstacles and

other robots [10], [14], [15], while minimizing the distance

traveled, time, or fuel consumption.

Traditional path planning approaches, such as cell decom-

position and potential field methods, have been successfully

modified to address sensor path-planning problems for a

single robotic sensor in a two-dimensional workspace with

known obstacle geometries and locations [5], [8], [15]. This
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paper considers the problem of planning the paths of mul-

tiple robotic sensors operating in a partially-unknown three-

dimensional workspace. Randomized path planning methods,

such as probabilistic roadmap (PRM) and rapidly-exploring

random trees (RRT), are known to compute solutions effi-

ciently in high-dimensional problems [7], [16], [17].

RRT methods expand a trivial tree, containing the robot’s

initial configuration, iteratively over time, by performing two

key steps during each iteration. In the first step, a random

configuration is sampled from a known probability density

function, and in the second step it is connected to the nearest

node in the existing tree by an arc, with a predetermined

distance. If the path between the two configurations is

collision free, a new configuration and arc are added to

the existing tree and, otherwise, they are discarded and a

new random configuration is re-sampled. RRT methods have

been successfully applied to many path planning problems.

A method known as RRT-Connect was used in [18] to solve

a path planning problem without the need to constrain the

search to a pre-defined distance. In [19] a method known

as CL-RRT was proposed for path planning in real-time

autonomous urban driving. CL-RRT first selects the best

node in current tree to connect a new sample configuration,

and then evaluate its feasibility by generating a trajectory

which lies in free configuration space and satisfies all other

navigation constraints.

In this paper, we modify the RRT algorithm proposed in

[19] to plan the paths of multiple robotic sensors based on

their sensing objectives, namely target classification, and on

the geometry of their FOVs. This modified RRT method is

combined with hybrid system theory, to obtain a so-called

randomized hybrid system approach for cooperatively plan-

ning and coordinating the motion of multiple robotic sensors

that are deployed to classify multiple targets in a common

workspace through sensor fusion. In formation control, the

control of each robot is affected by other members as well

as the group objective. Once new targets are detected by a

sensor, they are assigned to a sensor in the network based on

a tradeoff between distance and expected information benefit,

such that classification may be improved through sensor

fusion over time. The approach is demonstrated by using

the robotics software packages is the Player/Stage/Gazebo

(PSG) [20]. The PSG project consists of libraries that provide

access to communication and interface functionality on robot

hardware. Users write client applications, such as control

algorithms, that connect to and command modules robot

drivers running on a Player server, and are then able to

visualize the results using a 3D physics-based simulation
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environment called Gazebo.

This paper is organized as follows. Section II describes

the sensor planning problem formulation and assumptions.

The background on RRT method is reviewed in section III.

Section IV describes the novel randomized hybrid system

approach presented in this paper, and the implementation

and simulation results are shown in section V and VI,

respectively.

II. PROBLEM FORMULATION AND

ASSUMPTIONS

This paper addresses the problem of planning the paths

of a network of r robotic sensors with the same platform

geometry Ai = A ∈ �3, i = 1, 2, . . . , r, a so-called

accurate FOV, denoted by Si = S ∈ �3, i = 1, 2, . . . , r,

and an approximate FOV, denoted by Gi = G ∈ �3,

i = 1, 2, . . . , r, all of which are assumed to be connected

compact subsets of �3. Let IA denote the index set of the

robotic platforms. Every sensor is assumed to be fixed on the

robot platform, and to navigate a common partially-observed

workspace denoted by W to measure and classify multiple

geometric targets. Prior information, such as airborne sensor

measurements and environmental maps, is used to estimate

the geometry and location of obstacles and targets in B and

T . However, we assume only a portion of target and obstacle

locations are known a priori. In this paper, A, S and G are

modeled as convex objects. The workspace is assumed to

be a compact (i.e., closed and bounded) subset of a three-

dimensional Euclidian space, W ∈ �3, and to be populated

with n fixed obstacles B = {B1, . . . ,Bn} and m fixed targets

T = {T1, . . . , Tm} with Bi ∩ Tj = ∅, ∀i ∈ IB and j ∈ IT ,

where IB and IT are the index sets of obstacles and targets.

An example of the workspace in two dimensional space is

shown in Fig. 1.

W�

B1�

B2�

T1�

T2�

Si�

Gi�

Ai�

Fig. 1. Relevant problem geometries and notation.

Let FAi be a moving Cartesian frame embedded in Ai.

Then, every point of Si, and every point of Gi have a fixed

position with respect to FAi, and the configuration qi =
(xi yi θi) ∈ SE(2) is used to specify the position (xi, yi)

and orientation θi of all Ai, Si and Gi with respect to a fixed

inertial frame FW , embedded in W . Obstacles and targets

are also assumed to be fixed and rigid in W , such that every

point of Bi, for ∀i ∈ IB , and every point of Tj , ∀j ∈ IT , have

a fixed position with respect to FW . Let C denote the space

of all possible robot configurations. Then, the path of the ith

robotic platform’s centroid is defined as a continuous map

τi : [0, 1] → C, with qi0 = τi(0) and qif
= τi(1), where qi0

and qif
are the initial and final configurations, respectively.

Since Si and Gi are mounted on Ai, the path τi determines

the targets in W that can be measured by this robotic sensor,

while traveling from qi0 to qif
. Let Q = {q1, . . . ,qr}

be the set of robotic sensors’ configurations, and Q0 =
{q10 , . . . ,qr0} and Qf = {q1f

, . . . ,qrf
} denote the sets of

initial and final sensors’ configurations, respectively. Then,

the set of paths Γ = {τ1, . . . , τr} determines the targets in

W that can be detected and classified by the robotic sensor

network traveling from Q0 to Qf .

It is assumed that the measurement process of every sensor

in the network can be modeled by a known joint probability

mass function (PMF) obtained from first principles or prior

experiments [5], [7], [21], [22]. Let Zi ∈ Z ⊂ �r denote

the sensor measurements from target Ti ∈ T that are used

to estimate or classify the unknown target state Xi ∈ X ⊂
�n. The sensor characteristics, including the sensor mode,

environmental conditions, and sensor noise or measurement

errors, are grouped in a vector of parameters λi ∈ �l. Then,

assuming that the targets’ state, sensor measurements, and

parameters are random vectors, the sensor measurements can

be modeled by a joint PMF that typically can be factorized

as follows [5], [7], [23], [24],

p(Zi,Xi, λi) = p(Zi | Xi, λi)p(Xi)p(λi), ∀i ∈ IT (1)

assuming that Xi and λi are independent variables. In this

paper, the sensor model represented by (1) is considered to

hold for all targets, and to remain constant regardless of

measuring distance at all times. A convenient approach for

modeling the sensor PMF in (1) is to construct a Bayesian

network(BN) from prior sensor data and experiments [24].

The robotic sensor network is deployed to search and clas-

sify targets in W , based on partial prior information about the

targets’ and obstacles’ locations and geometries. Therefore,

the path planning algorithm must take into account both

the value of exploration, for detecting new targets, and the

value of information, for correctly classifying targets that

have been detected up to the present time by airborne or

ground robotic sensors. Once a target i ∈ IT is detected, we

assume that its location and geometry Ti become known, but

its classification Xi remains uncertain, due to the random

nature of the measurement process (1). Therefore, the ith
target’s information value, denoted by Vi, is the expected

benefit of making additional measurements from Ti and, as

shown in Section IV, it can be represented by the expected

reduction in uncertainty associated with Zi, conditioned on

the sensor model and prior information.

Since each sensor is assumed fixed and mounted on

a robotic platform, Si and Gi are fixed with respect to

Ai, the platform motions must be planned in concert with

the sensor exploration and measurement processes. Let the

measurement set of the r robotic sensors along their paths

τ1, . . . , τr be defined as Z = {Zj | Tj ∩Si(qi) 	= ∅, τi(s) =
qi, s ∈ [0, 1], ∀j ∈ IT , ∀i ∈ IA}, where Si(qi) is the
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subset of W occupied by Si at a configuration qi, along τi.

Then, the robotic sensors paths must achieve the following

objectives: (i) explore W to detect new targets with Gi, (ii)
maximize the information value of Z, (iii) avoid all obstacles

and (iv) robots in W , while traveling the minimum total

distance between Q0 and Qf . Thus, while all platforms A
must avoid intersections (collisions) with each other and with

the obstacles B, the accurate FOVs G must explore W , and

the accurate FOVs S must intersect Tj , and obtain additional

measurements Zj for classification.

III. BACKGROUND ON RRT PATH PLANNING

Rapidly-Exploring Random Trees (RRTs), introduced by

Lavalle in [25], provide an efficient way to search for a

path in a configuration space online, and have been success-

fully applied to nonholonomic robots in high-dimensional

workspaces. Using the initial robot configuration qi0 , at

time tk = 0 the initial tree is defined as Tr(tk) = qi0 ,

and is expanded as follows, by iterating incrementally over

the discrete time index tk = 1, 2, . . .. First a configuration

q is randomly sampled in Cfree using a PDF p(q). Then,

based on a distance metric, the closest node to q in Tr(tk)
is computed, and extended toward q within a predefined

distance ε and obtains q′. If the path lies in Cfree, q′ is

added to Tr(tk), otherwise, it is discarded.

In [18], a modified RRT method was proposed for extend-

ing the nearest node in the current tree to the sample unless

an obstacle is reached. Another extension of RRT is to bias

the sample distribution based on a reference configuration

(x, y, θ), using the following equation,(
xs

ys

)
=

(
x
y

)
+

(
cos(θs)
sin(θs)

)
(|ls| + l0) (2)

θs ∼ N(θ, σ2
1)

ls ∼ N(0, σ2
2) (3)

taken from [19], where (xs, ys, θs) is the sampled config-

uration, and N(μ, σ2) is a normal distribution with mean

μ and variance σ2. In this paper, the vehicle path planning

method presented in [19] is modified for planning the paths

of a cooperative sensor network, by introducing a sampling

method in which the PDF p(q) is generated based on the

geometry and information value of the C-obstacles CB, using

a normal mixture. The sampled configurations are ordered

based on the robotic sensor state, the expected information

value of the target assigned to the sensor, and the distance

to the target, as explained in the next section.

IV. METHODOLOGY

In this section, a hybrid system approach is proposed for

coordinating a robotic sensor network deployed to detect and

classify multiple targets in a partially-observed workspace.

A modified RRT approach is presented to navigate the

workspace in search for important targets while avoiding

collisions with obstacles. A corresponding potential naviga-

tion function is designed to avoid collisions between robotic

sensors.

A. Hybrid Model of Robotic Sensor Network

Assume that the network of robotic sensor explores the

environment simultaneously and can communicate and share

the workspace information. A hybrid system model of sen-

sors, targets, and obstacles is developed and illustrated in

Fig. 2. The state of the system is updated when one of the

following events takes place: a new target Ti is detected by

a sensor FOV Gk, i.e., Gk ∩ Ti 	= ∅; a new obstacle Bj

is detected by a sensor FOV Gk, i.e., Gk ∩ Bi 	= ∅; or,

a target is measured by a high accuracy sensor Si. When

a new target Ti is detected, the measurement Zi, is used

to compute the expected information value and plan future

measurements from the same target. With every event, the

detected targets are assigned to the nearest robotic sensor,

and the corresponding potential field is updated based on the

current information. The dynamics of each robotic platform

are approximated by a unicycle model given by,⎛
⎝ẋi

ẏi

θ̇i

⎞
⎠ =

⎛
⎝cos(θi) 0

sin(θi) 0
0 1

⎞
⎠ (

vi

wi

)
(4)

where vi is the linear velocity, wi is the angular velocity,

The linear velocity command vc
i , and the angular velocity

command wc
i are used as the reference for a lower-level

feedback controller to track the reference trajectory τi.

TARGET�

Undetected�

Measured�by�low�
accurate�sensor�

Detected� Measured�

Measured�by�high�
accurate�sensor�

OBSTACLE�

Undetected�

Measured�by�low�accurate�sensor�

Detected�

ROBOT�
�

Exploration�

Assigned�with�targets�to�measure
�

Exploitation�
No target�is�assigned�to�the�sensor

Fig. 2. Finite-state model of robotic sensors, targets, and obstacles.

To avoid collisions with each other, the robotic sensors

are coordinated according to the following rules. Sensors

in the exploration state are assumed to have lower priority

than sensors in the exploitation state. For the jth sensor

at configuration q, any other sensor in W is considered as

an obstacle. Therefore, the corresponding C-obstacle of the

ith sensor, denoted by CAi, can be generated from the two

robots’ geometries as explained in [26]. A repulsive potential

function can then be used to avoid collisions between a

sensor with configuration q and the ith sensor. The repulsive
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potential is defined as,

Ui(q) =

{
1
2η1( 1

ρ(q,qi)
− 1

ρ0
)2 if ρ(q,qi) ≤ ρ0

0 if ρ(q,qi) > ρ0

(5)

where η1 is a scaling parameter, ρ0 is the influence distance

of each agent, qi is the ith sensor’s configuration, and

ρ(q,qi) is the shortest distance between q and qc for all

qc ∈ CAi. The gradient of the repulsive potential, given by,

∇Ui(q) =

{
η1( 1

ρ(q,qi)
− 1

ρ0
) ∇ρ(q)

ρ(q,qi)2
if ρ(q,qi) ≤ ρ0

0 if ρ(q,qi) > ρ0

(6)

can then be added to the lower-level feedback controller to

track τi, while avoiding Ai.

At tk = 0, the robotic sensors are randomly placed

in the workspace W , in the exploration state. At every

time step tk, the index sets It(tk) and Ir(tk) represent the

indices of robotic sensors in exploitation and exploration

states, respectively. Suppose the ith robotic sensor is in the

exploration state, at configuration qi. Then, the set of its

neighbors is defined as Nr(qi) = {j | ρ(qi,qj) < ρ0, ∀j ∈
IA, j 	= i}. When Nr(qi) 	= ∅, all known obstacles are also

taken into account to generate the repulsive potential for the

ith sensor, and is computed similarly to (5). Therefore, the

artificial potential field of the ith robotic sensor is,

Ur(qi) =
∑

j∈Nr(qi)

Uj(qi) +
∑
j∈IB

Uj(qi) (7)

and the artificial force applied to the ith robotic sensor by

the feedback controller is,

Fr(qi) = −∇Ur(qi) = −
∑

j∈Nr(qi)

∇Uj(qi)−
∑
j∈IB

∇Uj(qi)

(8)

The angular velocity command is,

wc
i =

{
±∠Fr(qi)−θi

Δt if
∠Fr(qi)

Δt < wmax

±wmax if
∠Fr(qi)

Δt ≥ wmax

(9)

where ∠Fr(qi) is the orientation of the force, and wmax is

the max angular velocity. The sign of wi is chosen to rotate

the robotic sensor to the orientation of force in the shorter

angle, and the velocity command is,

vc
i = vi + k‖Fr(qi)‖ (10)

where vi is current velocity, and k is a constant. In the

practical case, vi is bounded by the maximum velocity vmax.

Therefore, vc
i is pruned to vmax if vc

i is greater than vmax.

The vc
i and wc

i are sent to low-level controller embedded

in robot model of Gazebo. When Nr(q) = ∅, the modified

RRT method presented in Section IV-B is used to compute

the robotic sensor control.

When the robotic sensor is in the exploitation state, the

set of its neighbors is defined as Nt(qi) = {ρ(qi,qj) <
ρ0, ∀j ∈ It, j 	= i}, and its artificial potential field is

constructed as follows,

Ut(qi) =
∑

j∈Nt(qi)

Uj(qi) +
∑
j∈IB

Uj(qi) (11)

When Nt 	= ∅, the control for the ith robotic sensor is

computed similarly to (9) and (10). If Nt(q) = ∅, the

modified RRT method presented in Section IV-B is used to

compute the robotic sensor control. The process ends when a

predefined number of targets are measured by high accurate

sensors, or the running time reaches a defined threshold.

B. RRT Online Sensor Path Planning

A novel RRT approach is presented for online geometric

sensor path planning in partially-observed environments. In

this approach, the milestone sampling and tree expansion

are based on the expected information value of targets that

have been detected by an airborne or ground robotic sensor,

the distance between the robotic sensor platform and the

obstacles, and the distance between the sensor’s FOV and

the targets.

1) Milestone sampling: The approximate FOV is based on

the ability of the sensor to emit and receive the reflex signal

from different directions, such that the distance between the

robotic sensor and obstacles within its FOV can be computed.

Let L(q) = (l1, l2, . . . , ln) ∈ �n represent the distance

between the obstacles and the robotic sensor. When no reflex

is found for an orientation, the corresponding distance is

set as the sensor range. Then assume that the distribution

of sample orientation is a mixture normal distribution with

n components. Each normal distribution corresponds to an

orientation of the reflex signal. For the ith robotic sensor, we

have,

θs
i ∼

n∑
j=1

mj
iN(μj

i , σ
2
1i)

(12)

where mj
i is the weight for the jth normal distribution, μj

i

is the mean and is set to the direction of jth reflex, and σ1i

is the standard deviation and is set to,

σ1i =
avmax

vi + bvmax
(13)

where a and b are constant parameters, vmax is the max

allowed velocity for the robotic sensor, and vi is its current

linear velocity. By setting σ1i in this way, larger velocity

decreases the spread of the sample.

The weight mj
i is computed as,

mj
i =

lji∑n
j=1 lji

(14)

When a safety distance l0 is utilized to avoid collision, lji is

set to zero when lji ≤ l0. It can be seen that the direction

with lower lji has a lower weight mj
i . This results in a lower

probability of sampling configurations along the correspond-

ing orientation, and then can help the robotic sensor to move

to collision free region. By setting l0, it is possible that
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the robotic sensor can take a measurement of target near to

obstacles. With this definition, our method is able to adjust

the geometry of Cfree automatically online without adjust

the parameters or set multiple sample strategies for different

situations.

The sampled θs
i is utilized in (2) to generate the samples

for the current tree. In our case, we set σ2i in (3) as,

σ2i =
cvi

vi + dvmax
(15)

Here, c and d are constant parameters. When vi is large, σ2i

prefers to be big which may give a bigger sample distance.

In the simulation with Gazebo, the distance and direction of

obstacles around the agent is available from the low accurate

sensor. Then this information can be used to biased θs
i to a

region that navigates the robotic agent to avoid the obstacle

region.

After a number of milestones are sampled for the ith
sensor, they are ordered based on their important value

based on the robotic sensor’s state. When the sensor is in

exploration state, the value of a sample is defined as,

R(q) = ρi(q) (16)

where ρi(q) is the distance between q and the agent. The

sensor prefers to choose a milestone that is far away to its

current configuration which is consistent to the purpose of

exploration.

For a sensor in the exploitation state,

R(q) = k2e
− 1

2fρi(q)2 + k1

∑
j∈Ni

e
− ρt

j(q)2

2eV (j)2 (17)

where k1 and k2 are two constant representing the weight,

Ni is the index of targets that is assigned to the ith robotic

sensor, ρt
j(q) is the distance between q and CT j , and V (j)

is the expected information benefit of the jth target. It can

be seen that R(q) is a increasing function of V (j) and

ρi(q), and is a decreasing function of ρt
j(q). So the sampler

prefers to generate a sample with big distance to its current

configuration and small distance to the targets assigned to it.

By differentiating R(q) to ρt
j we have,

∂2R

∂ρt2
j

=
k1e

− ρt
j(q)2

2eV (j)2

eV (j)2
(
ρt

j(q)2

eV (j)2
− 1) (18)

Then,
∂2R

∂ρt2
j

= 0 ⇒ ρt
j =

√
eV (j) (19)

So the target’s expected information benefit determines the

influence distance to effect R. Similarly by differentiating

R(q) to ρi we can see the influence distance between the

sample and the robotic sensor configuration is ρi =
√

f . The

ordered samples then are used to expand the tree as described

in the next subsection.

2) Tree expansion: During online sensor path planning,

no global RRT exists for each robotic sensor. A local RRT

is constructed and updated for each robotic sensor during its

movement. Since the passed path has no use for the robotic

sensor, all nodes connected to a node that has been passed

by the robotic sensor are deleted and the root for the tree

constructed at next time step is set as the node the robotic

sensor moves towards. The tree is updated when the distance

from the robotic sensor to the new root is smaller than a

threshold ε.

The update process contains three steps. At the first step

a number of configurations are sampled which are ordered

in expectation descended by considering target and obstacle

locations, and expected information benefit of targets as

discussed in above subsection. Then the sample configuration

feasibility is checked by computing the expected path to the

selected sample, i.e., to check whether the expected path

lies in Cfree. The expected path is computed as follows. Let

the vector F s(qi) be the vector pointing from the agent i’s
current configuration to the selected sample. Define,

γ(qi) = min(∠F s(qi), θi) (20)

where min(α, β) gives the shortest angle to rotate a agent

heading angle from β to α. Then the angular velocity control

is defined as,

wc
i =

{
±aγ(qi) if aγ(qi) < wmax

±wmax if aγ(qi) ≥ wmax

(21)

where a is a constant parameter, and the sign of wc
i is chosen

to rotate the robotic sensor to the orientation of force with

the shorter angle. The angular velocity control is defined as,

vc
i =

e

f + hγ(qi)
l+mρ(qi)

(22)

where e, f, h, l, and m are positive constants, and ρ(qi)
is the distance from the agent i to the selected sampled

configuration. From (22) we can see that vc
i has the upper

bound as e
f and is a decreasing function of γ(qi), i.e.,

the bigger the angular velocity control, the lower the linear

velocity command. Furthermore, vc
i is an increasing function

of ρ(qi), which means that the further the distance between

the selected sample and the robotic sensor, the higher the

linear velocity command. The reason to set the robotic sensor

control in this way is to prevent the robotic sensor turning

over along the path. A centrifugal acceleration max value, g,

is further utilized to guarantee the movement of the robotic

sensor, i.e., when the computed vc
i (or wc

i ) from (22) is bigger

than g
wi

(or g
vi

), it is pruned to g
wi

(or g
vi

), where wi and vi

is the current angular and linear velocity. Then vc
i and wc

i

are used as the control commands for (4) to compute the

expected path.

At last, the feasible configuration with the highest value

as computed in (16) or (17) is set as the child of the current

configuration.

After the tree for next time step is updated, the control are

computed in (21) and (22) and then utilized to control the

robotic sensor movement in Gazebo.

3) Decidability with Differential Constraints: When ex-

panding a RRT tree, the most time consuming part is to check
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whether there exists a free path to a milestone. This leads

to another problem, the decidability of motion planning with

differential constraints (MPD) [27] for the Pioneer car model,

i.e. to decide in finite time whether the sampled milestone

can be reached. In this section, the above MDP problem is

proved to be decidable under proper assumptions. We assume

that the control of the Pioneer car to milestone can be divided

into k control steps in sequence. At each step, we assume

that the velocity command and turning rate command of the

Pioneer car can only be constant vc and wc under control u,

where u ∈ U , vc ∈ Uv , and wc ∈ Uw. Uv is a discrete set

defined as,

Uv = {v1, v2, · · · , vr} (23)

where vi is a value in velocity interval [0, vmax] and r is

the cardinality of set Uv . Uw is a discrete set defined as,

Uw = {w1, w2, · · · , wh} (24)

where wi is a value in turning rate interval [−wmax, wmax]
and h is the cardinality of set Uw. U is a discrete set defined

as,

U = {u1, u2, · · · , ud} (25)

where ui is a single step control, which specifies the linear

velocity vc and angular velocity wc, and d is the cardinality

of the control space, which is r × h. Also, we assume that

the v and w of the Pioneer car can converge to vc and wc

quickly enough so that v and w are constant under the single

step control u. With the above assumptions, the Pioneer car

is approximated to a dubin’s car [28]. The k-steps control

, u, is defined as a “concatenation” of k elements from U .

Let Uk denote the k-steps control space and defined as,

Uk = {u | u = {u1, u2, · · · ,uk}, ui ∈ U , i = 1, 2, · · · k}
(26)

The cardinality of Uk is r × h× k. Then the obstacles with

polygonal shapes can be represented by semi-algebraic sets

Cobs which are defined as the following set [27],

{q| ∨i=1,2,··· ,no
(∧m=1,2,··· ,ni

e
Hi,m(q)) ≤ 0}, (27)

in which ∨ and ∧ are boolean operators “or” and “and”, Hi,m

is polynomial function of q, no is the number of obstacles

and ni
e is the edge number of ith obstacle. Let qm denote a

milestone configuration and let T R(u) denote the trajectory

by control u ∈ Uk. Since the trajectory function T R(u)
by one step control u is a closed form polynomial function

and T R(u) is the“concatenation” of T R(u), T R(u) is also

closed form polynomial function [27]. We define the set,

Uk
free = {u ∈ Uk | T R(u) ∩ Cobs = φ} (28)

as the control subset free of collision in Uk and the set,

Uk
m = {u ∈ Uk | T R(u) ∩ qm 	= φ} (29)

as all controls that lead the sensor to reach a milestone.

The control set which can lead a Pioneer car to reach a

milestone is defined as Uk
goal = Uk

free∩Uk
m. Based on above

analysis, the trajectory T R(u) is a closed form polynomial

function. Furthermore, since Cobs is semi-algebraic, the two

sets Uk
free, and Uk

m are also semi-algebraic according to

Tarski’s theorem. Therefore, the MDP problem for Pioneer

car to a milestone under above assumptions is decidable [27].

V. SOFTWARE IMPLEMENTATION

In this paper, Matlab and Gazebo are interfaced to model

and control the robotic sensor network in the three-dimension

space. Simulation system Gazebo (originally developed at

USC robotics research lab) runs as a server, which maintains

all the robots, sensors, targets, map models, and the physical

relationships between all objects. The client program used

to control robots is individually connected to the server, and

it can get information of robots and sensors through the

interface of Gazebo. While Gazebo and parts of the client

program are written in C++, the control model is written in

Matlab. Therefore, an interface between C++ and Matlab is

needed. We use the functions in the dynamic link library

called engine.so, such as engEvalString, engGetPr and en-
gPutVariable to communicate Gazebo coding environment

with Matlab.

As shown in Fig. 3, the supercomputer is coded in Matlab

�

…
…

Gazebo�
Environment�

C++�

Super�computer
Matlab�

Client 2

Client 1

Client N

Matlab�
&�

�C++�
Mix�

Coding�

Fig. 3. The flow chart between modules of the coding system.

which obtains robot configuration and velocity information

from Gazebo environment, and allocates tasks to clients

separately. The client program is coded in both C++ and

Matlab, and has an interface with Gazebo. With this inter-

face, a client program can obtain the simulation data and

then control a unique robot by sending linear and angular

velocity commands to a lower-level feedback controller of

the robot. Furthermore, the client program has access to

all the information of this robot, such as its configuration

and velocity. Two types of sensors are used in this paper.

The first sensor is with limited sensor FOV but can detect

targets with high accuracy; the other can emit two frequency

waves. One frequency can detect targets with low accuracy

but wide FOV, and the other frequency can be reflected by the

obstacles to detect the distance to obstacles. Measurements

of target detection waves are modeled by Bayesian network

[24], which is coded in Matlab. The server written in C++

can interface with Matlab, input all parameters that the

sensor model needs to simulate sensor measurement, and

obtain simulated measurement results. The robot used in the

simulation is based on PIONEER2DX and is equipped with

the sensor described above. The robot utilizes a differential
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controller which calculates the command velocities of both

wheels according the linear velocity and angular velocity

commands.

VI. SIMULATIONS AND RESULTS

In this section, a number of simulations are implemented

to test the proposed method. It is assumed that 12 targets

and 11 obstacles are deployed in a square workspace with

side length of 50 meters. The high accurate sensor FOV S
is assumed to be a cone, and the low accurate sensor FOV G
is assumed as a set of half circle sharing the same diameter.

Each target and obstacle are assumed to be a polyhedron

whose cross section Hz by the plane Z = z, has the same

geometry and location for all z satisfying Hz 	= ∅. With

this assumption, the sensor FOV could be reduced to a two

dimensional polygon that varies based on the target geometry

and location. An example of the reduced sensor FOV for a

target is shown in Fig. 4. In this figure, the sensor FOV apex

position in FA is (0, 0, 5), and the target is assumed to be

float in the air with minimal height is 6.
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(a)� (b)�

Fig. 4. The Reduced FOV of a sensor with taper shape: (a) sensor FOV
in three dimensional space; (b) reduced sensor FOV.

The method similar to the one in [5] can be used to

compute the regions of robotic sensor configuration in C that

has intersection with obstacles or targets called C-obstacles

or C-targets. An example of the workspace is shown in Fig.

5.

�

Fig. 5. A simulation system in Gazebo: gray objects represent obstacles and
boundaries; the red objects represent targets which are grounded; the green
objects represent targets which are in the air; the robot has two sensors, one
is high accuracy with small range, another one is low accuracy with large
range.

In the simulation, we assume that prior information on a

portion of obstacles and targets is known, and the purpose

of the robotic sensor group is to measure and classify six

targets. An example of the predicted path for the robotic

sensor moving from the current configuration to the sample

is shown in Fig. 6.

1 2 3 4 5 6 7
2

3

4

5

6

Obstacle

Sampled�point�

Fig. 6. A sensor path from the current configuration to the sampled
configuration.

The performance of each simulation is represented by its

efficiency η, and is computed as,

η =
W1 − W0

D
(30)

where W1 is the number of targets that are correctly classified

at the end, W0 is the number of targets that are correctly

classified as the beginning, and D is the total distance

traveled by the robotic sensor group. η gives us the reward

of the robotic sensor group when they travel a unit distance

[7]. Each method runs ten times and the average results are

shown in Table I. The third row in Table I shows results

of a random search method, in which each robotic sensor

movement is controlled in a similar way but the expected

information value was not considered.

TABLE I

THE RESULTS OF THE EFFICIENCY OF THE ROBOTIC SENSOR GROUP BY

THE PROPOSED METHOD WITH AND WITHOUT UTILIZING PRIOR

INFORMATION

Use Information Known T Known B η
Yes All All 0.043

Yes None All 0.038

No All All 0.020

Among these simulations, two simulations utilize the prior

information to navigate the robotic sensor. In all cases, we

assume the geometries of all obstacles are known a priori.
From the results, we can see that in all three cases, the

proposed hybrid system can successfully utilize the high

accurate sensor to improve the classification correctness

of the targets in a field. Moreover, by utilizing the prior

information and information gathering from a low accurate

sensor along the process, the efficiency of the robotic sensor

group is significantly improved comparing to the one without

utilizing prior information. A path of our method is shown

in Fig. 7.

3863



0 10 20 30 40 50

0

10

20

30

40

50

��

0

10

20

30

40

0

Fig. 7. An example of the sensor group path. black area: obstacle, grey
area: target, dark yellow rectangle: sensor platform, red line: high accurate
sensor FOV (The geometry of low accurate sensor FOV is eliminated for
display).

VII. CONCLUSIONS

A hybrid system is proposed for a network of robotic

sensors in searching and measuring targets in a partial

observed environment containing multiple obstacles and

multiple targets. A modified rapidly-exploring random tree

(RRTs) method is designed for planning the path of the

robotic sensor network online. The proposed method is tested

with a number of simulations implemented with the software

environment Gazebo, and the simulation results show that the

robotic sensor network can measure the targets based on the

trade off on distance and the target’s information value.

The future work will lie in the following three parts.

First, the properties of the proposed hybrid system, such

as convergent, completeness, and computation complexity

will be studied. Second, heterogeneous sensors, for instance

unmanned aerial vehicles, will be included to perform as

a source of obtaining prior information on the targets with

cursory measurements. Finally, besides stationary targets,

moving targets will be considered in the workspace, and their

movement is assumed to be partially known and are inferred

along the process.
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