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Abstract—This paper presents a hybrid adaptive dynamic pro-
gramming (hybrid-ADP) approach for determining the optimal
continuous and discrete control laws of a switched system online,
solely from state observations. The new hybrid-ADP recurrence
relationships presented are applicable to model-free control of
switched hybrid systems that are possibly nonlinear. The compu-
tational complexity and convergence of the hybrid-ADP approach
are analyzed, and the method is validated numerically showing
that the optimal controller and value function can be learned
iteratively online from state observations.

Index Terms—Adaptive dynamic programming, hybrid systems,
learning, model-free control, switched systems.

I. INTRODUCTION

Hybrid systems are described by coupled time-driven and event-
driven dynamic equations. Event-driven dynamics involve discrete
state and control variables that can be represented by finite alphabets.
Time-driven dynamics involve differential or difference equations
defined in terms of continuous state and control vectors in Euclidean
space. An important example of a hybrid system is a collection of
subsystems comprised of time-driven dynamics and selected according
to an event-driven switching rule [1], [2]. The discrete control law
determines when to switch between subsystems, while the continuous
control law regulates the subsystem selected by the switching rule [3].

Several approaches have been proposed to obtain the optimal dis-
crete and continuous control laws for linear switched systems with
quadratic cost functions [2]–[4]. The optimality conditions for the
optimal control of switched linear-quadratic (LQ) systems were first
derived in [5] using Pontryagin Minimum Principle [6]. A relaxation
framework was proposed in [7] to simplify the computation of the
value function for infinite-horizon switched linear quadratic regulator
(LQR) problems. In [8], a relaxed dynamic programming (DP) ap-
proach was applied to the optimal control and scheduling of switched
systems by relaxing optimality within pre-specified bounds.

Adaptive dynamic programming (ADP) is an iterative approach for
determining model-free optimal control laws in the presence of nonlin-
earities, unmodeled dynamics, control failures, or parameter variations
[9], [10]. This paper presents a new hybrid-ADP approach that learns
the optimal continuous and discrete control laws for a hybrid switched
system online. The approach is based on novel ADP recurrence
relationships that are derived from the switched system optimality
conditions presented in [5]. Based on these relationships and state
observations, the hybrid-ADP approach solves Bellman’s equation
iteratively over time, thereby adapting and optimizing the continuous
and discrete control laws subject to actual system dynamics.
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Novel hybrid-ADP recurrence relationships, transversality condi-
tions, and learning algorithm are presented in Section III. The com-
putational complexity of the hybrid-ADP algorithm is analyzed in
Section III, and a proof of convergence is presented in Section IV.
The hybrid-ADP approach is validated numerically using a switched
LQ hybrid system for which an optimal solution can be obtained
by solving a switched differential Riccati equation presented in [5].
The simulation results in Section V demonstrate that the hybrid-ADP
approach converges to the optimal solution by learning the continuous
and discrete control laws online from simulated system dynamics.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Switched hybrid systems are commonly used to model processes in
which both discrete and continuous control inputs are crucial to system
performance. The possible values of the discrete state or mode ξ are
taken from a discrete and finite index set E = {1, . . . , E}, where E
typically is a small integer. The discrete control ν selects the next
system mode, such that ξ, ν ∈ E . This paper considers a discrete-
time switched dynamical system

x(k + 1) = fξ [x(k),uξ(k)] , ξ(k + 1) = ν(k) (1)

where x ∈ X ⊂ R
n is the continuous state, X is the state space,

uξ ∈ Uξ ⊂ R
m is the continuous control input, and Uξ is the space

of admissible control inputs for mode ξ. For every possible value of ξ,
the system dynamics, described by the function fξ : X × Uξ → X , are
possibly nonlinear. The initial state x(0) = x0 and mode ξ(0) = ξ0
are assumed given, and the final time N is known and finite. The
switched system is also assumed to obey the following assumptions:

Assumption 1: Mode switching can occur at any time step k and is
determined solely by ν with zero cost. k+ is the time after the switch
occurs, such that ξ(k+) = ξ(k + 1) for any k.

Assumption 2: The continuous state x is fully observable and the
measurement error is negligible.

The system performance is represented by the cost function

J
Δ
= φ [x(N)] +

N−1∑
j=0

Lξ [x(j),uξ(j), ν(j)] (2)

to be minimized with respect to the continuous and discrete control laws

uξ(k) = cξ [x(k), k] , ν(k) = a [x(k), ξ(k), k] (3)

respectively, where ξ = 1, . . . , E. Then, the goal of the hybrid-ADP
algorithm is to determine the switched system policy, defined as the
tuple π = {a,cξ : ξ ∈ E}.

III. HYBRID ADP APPROACH

ADP seeks to approximate the policy of an optimal control problem
by using a recurrence relationship to improve the approximations of
the optimal value function and control law over time. The two function
approximations can be obtained through aggregation functions [11],
[12], such as support vector regression or neural networks. The value
function approximation, commonly referred to as a critic network, and
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the controller approximation, referred to as an actor network, are both
optimized based on observations of the state obtained from the real
system or its simulation, assuming the state is fully observable. In
order to accelerate converge to the optimal solution, the gradient of the
value function with respect to the state can be used as the critic in lieu
of the scalar value function.

This section presents new ADP recurrence relationships and trans-
versality conditions for solving the switched optimal control problem
presented in Section II iteratively over time. From Bellman’s principle
of optimality [13], the optimization of the objective function (2) can be
embedded in the optimization of a switched system value function or
cost-to-go which, at any time k, is defined as

V [x(k), ξ(k), π, k]
Δ
= φ [x(N)] +

N−1∑
j=k

Lξ [x(j),uξ(j)] . (4)

From the above definition, the value function obeys the recurrence
relationship

V [x(k), ξ(k), π, k] = Lξ [x(k),uξ(k)]

+ V [x(k + 1), ξ(k + 1), π, k + 1] (5)

and, thus, from [14], a necessary optimality condition for an extremal
of (5), denoted by u∗

ξ , is[
∂Lξ [x(k),uξ(k)]

∂uξ(k)
+

(
∂fξ [x(k),uξ(k)]

∂uξ(k)

)T

× ∂V [x(k + 1), ξ(k + 1), k + 1]

∂x(k + 1)

]∣∣∣∣∣
uξ(k)=u∗

ξ

= 0. (6)

A sufficient condition for the extremal u∗
ξ to be a minimum of the

value function is that the Hessian be positive definite [14]. Since, in
practice, the sufficient condition is easily verified once an extremal is
found [15], hereon (·)∗ will denote optimality.

In order to accelerate evaluation and converge in (6), the critic

network is used to approximate the gradient λ
Δ
= ∂V/∂x, also known

as costate or adjoint vector [15]. Noting that uξ is a function of x, (5)
is differentiated with respect to x to obtain the recurrence relationship
for the critic

λ [x(k), ξ(k), π, k]

=
∂Lξ [x(k),uξ(k)]

∂x(k)
+

(
∂cξ [x(k), k]

∂x(k)

)T ∂Lξ [x(k),uξ(k)]

∂uξ(k)

+

(
∂fξ [x(k),uξ(k)]

∂x(k)
+

∂fξ [x(k),uξ(k)]

∂uξ(k)

∂cξ [x(k), k]

∂x(k)

)T

× λ [x(k + 1), ξ(k + 1), π, k + 1] (7)

with boundary condition

λ(N) = ∂φ [x(N)]/∂x. (8)

From Assumption 1, before and after a mode switch the Lagrangian
remains constant or

Lξ [x(k),uξ(k)] = Lξ

[
x(k+),uξ(k

+)
]

(9)

and, thus, from (4) the following holds:

V [x(k), ξ(k), π, k] =V
[
x(k+), ξ(k+), π, k+

]
=V [x(k), ξ(k + 1), π, k] (10)

because x(k+) = x(k) and ξ(k+) = ξ(k + 1). Now, differentiating
(10) with respect to x, the recurrence relationship

λ [x(k), ξ(k), π, k] =λ
[
x(k+), ξ(k+), π, k+

]
=λ [x(k), ξ(k + 1), π, k] (11)

is obtained for the costate vector during a mode switch. Sinceλ is an im-
plicit function of π, the argument will be omitted hereon for simplicity.

The optimality condition for the discrete control input is found by
introducing the Hamiltonian

H
Δ
=Lξ [x(k),uξ(k)]+λ [x(k+1), ν(k), k+1] fξ [x(k),uξ(k)]

=H [x,uξ,λ, ν, k]. (12)

Then, given λ and uξ, the discrete control law can be optimized using
the discrete-time minimum principle [13], or

ν∗ = argmin
ν

H [x,uξ ,λ, ν, k]. (13)

The optimality conditions (6) and (13), and the recurrence relationships
(7) and (11) are used in the next subsection to obtain approximations
to the optimal control and costate approximations known as actor and
critic networks.

A. Actor and Critic Network Approximations

The optimality conditions and recurrence relationships obtained
in the previous subsection are used to iteratively improve upon ap-
proximations of the continuous and discrete control laws and value
function gradient, until convergence to their optimal counterparts is
obtained, as shown in Section IV. Artificial neural networks (NNs) are
chosen here based on their universal function approximation proper-
ties [16]. Let the NN approximations of the continuous control law,
costate vector, and discrete control law be denoted by c̃ξ [x(k), k;wξ],
λ̃[x(k), ξ(k), k;v], and ã[x(k), ξ(k), k;ω], where wξ, v, and ω
denote vectors of adjustable parameters, and the remaining arguments
denote NN inputs.

At every cycle, l, of the hybrid-ADP algorithm a new improved NN
approximation is obtained by holding the others fixed, such that the

policy (actor) π̃l={ãl, c̃lξ : ξ ∈ E} and the critic λ̃
l
, obtained during the

lth cycle, are closer to optimal than those obtained during previous cy-
cles. As a first step of cycle l, the continuous actor network is updated
to satisfy the optimality condition (6) while holding the critic from the

previous cycle, λ̃
(l−1)

, fixed. By introducing the vector function

ΓA =
∂Lξ

∂uξ

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂fξ
∂uξ

)T
∣∣∣∣∣
uξ=c̃l

ξ
(k)

λ̃
(l−1)

(k + 1) (14)

the continuous actor parameters wξ can be updated to minimize the
squared L2-norm, ‖ΓT

AΓA‖2, by means of the learning rule

Δwξ = −ε

(
2ΓT

A

∂ΓA

∂uξ

∂c̃lξ
∂wξ

)T

(15)

where ε is a positive learning rate, and c̃lξ(k) and λ̃
(l−1)

(k + 1) are
short-hand notations for the continuous actor and the critic approxi-
mations evaluated at k and k + 1, respectively.

As in classical ADP [10], the critic network is updated by holding
the actor network c̃lξ(k) fixed and by using the previous critic net-

work λ̃
(l−1)

(·) to approximate the derivative of the cost-to-go in the
recurrence relationship (7). Therefore, as a second step of cycle l in the
hybrid-ADP algorithm, a target vector function

ΓC =
∂Lξ

∂x

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂c̃ξ
∂x

)T ∂Lξ

∂uξ

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂fξ
∂x

+
∂fξ
∂uξ

∂c̃lξ
∂x

)T
∣∣∣∣∣∣
uξ=c̃l

ξ
(k)

λ̃
(l−1)

(k + 1) (16)
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Fig. 1. Actor and critic network hybrid-ADP updates.

is obtained from (7) and (11), such that the critic parameters v can be

updated to minimize the squared L2-norm, ‖ΓC − λ̃
l
(k)‖, by means

of the learning rule

Δv = 2η

(
∂λ̃

l

∂v

)T
∣∣∣∣∣∣
k

[
ΓC − λ̃

l
(k)

]
(17)

where η is a positive learning rate. Finally, as a third step of cycle l in
the hybrid-ADP algorithm, the discrete actor network is updated ac-
cording to the optimality condition in (13) by updating the parameters

ω, while holding c̃lξ and λ̃
l

fixed.

IV. HYBRID-ADP ANALYSIS AND PROOF OF CONVERGENCE

The computational complexity and convergence properties of the
hybrid ADP approach presented in the previous section are analyzed
in this section under the assumption that the value function and NN
approximations have Lipschitz continuous gradient. For continuous
state values x1,x2 ∈ X , V has a Lipschitz continuous gradient if the
inequality ‖(∂V/∂x)|x=x1

− (∂V/∂x)|x=x2
‖ ≤ L‖x1 − x2‖ holds

for a constant modulus L [17]. This and other regularity conditions
are common assumptions in the optimization literature and can be
satisfied by a suitable choice of Lagrangian function, provided the
design objectives are not highly nonlinear with respect to the state and
the control [17]–[19].

Assumption 3: Assume gradients ∂V/∂x, ∂x/∂uξ, ∂Lξ/∂uξ,
∂c̃ξ/∂wξ, and ∂λ̃/∂v are Lipschitz continuous with modulus L1, L2,
L3, L4, and L5 respectively.

Let NH and NS denote the number of hidden neurons and training
samples for a critic/actor network. From [20], an approximation error
ε can be guaranteed by choosing NS = vol(X )L/(ε)n, where vol(X )
is the volume of the state space X ⊂ R

n. Because NNs are univer-
sal function approximators on a compact space X , ε can be made
arbitrarily small by increasing NH [16], [21]. One choice is NH =
(n+

√
NS)/NL, where NL is the number of hidden layers [22]. A

zero approximation error for gradient and output training samples can
be guaranteed when NH = NS for NL = 1 [23]. For each mode one
critic and one actor are used to approximate λ and cξ, respectively.
Thus, a total of 2E networks are implemented. Then, the compu-
tational complexity of each epoch (15) or (17) is O(NL

H + nNH),
and the total complexity of each hybrid-ADP cycle is O[E(NL

H +
nNH)TN ], where T is the number of epochs. Based on these results,
it can be assumed that ε can be made negligibly small by a suitable
choice of NH and NL, with reasonable computational requirements.

Four lemmas are presented and then used to obtain the hybrid-
ADP proof of convergence. The first two lemmas build connections
among the recurrence relationship, the value function, and updating
rules of the actor and critic networks. The last two lemmas establish
the progression of the policy and value function updates at consecutive
iterations, as schematized in Fig. 1. Then, the hybrid-ADP algorithm
presented in Section III can be guaranteed to converge to a globally or
locally optimal solution.

Lemma 1: Let π̃l denote the policy obtained from the lth cycle of

the hybrid-ADP algorithm. Then, for any (TN) � 1, the critic λ̃
l
,

obtained from (17) while holding π̃l fixed, satisfies

λ̃
l
[x(k), ξ(k), k] =

∂Lξ[x(k),uξ(k)]

∂x(k)

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂c̃lξ[x(k), k]

∂x(k)

)T

× ∂Lξ [x(k),uξ(k)]

∂uξ(k)

∣∣∣∣
uξ=c̃l

ξ
(k)

+

[
∂x(k + 1)

∂uξ(k)

∂c̃lξ [x(k), k]

∂x(k)
+

∂x(k + 1)

∂x(k)

]

× λ̃
l
[x(k + 1), ξ(k + 1), k + 1] (18)

where x(k + 1) and ξ(k + 1) are the state values obtained by imple-
menting the control policy π̃l in (1).

Proof of Lemma 1: For any x0 ∈ X , the trajectory of x(k),
k = 1, . . . ,N , obtained by policy π̃l, is fixed. Then, at time step

k, the coefficients of λ̃
l
(k + 1) are all constant. The remaining

terms in (17) are all constant matrices or vectors evaluated at x(k),
and can be denoted as A(k) and b(k), respectively. Thus, the
recurrence relationship (7) can be written as,

λ̃
l
(k) = A(k)λ̃

l
(k + 1) + b(k) (19)

which is the kth equation in a linear system of equations, where

the N th equation is λ̃
l
(N) = ∂xφ[x(N)]. Thus, (17) follows the

successive over-relaxation (SOR) method with relaxation factor η [24].
The eigenvalue of the iteration matrix for this linear system is 1− η,
and thus has an absolute value less than one. Then, when (TN) � 1,
the solution of (19) can be computed by SOR [25], and the resulting

approximation λ̃
l

satisfies (18). �
Remark 1: Any critic λ̃

l
[x, ξ, k] obtained from (17) also satisfies

the boundary condition λ̃
l
[x(N), ξ(N), N ] = ∂xφ[x(N)].

Lemma 2: When holding π̃l fixed, the critic network λ̃
l
[x, ξ, k] and

its corresponding value function V l(x, ξ, k) obey the relationships

V l [x(k), ξ(k), k] = Lξ [x(k),uξ(k)]

+V l[x(k+1), ξ(k+1), k+1] (20)

V l [x(N), ξ(N), N ] = φ [x(N)] (21)

∂V l [x(k), ξ(k), k] /∂x(k) = λ̃
l
[x(k), ξ(k), k] (22)

for all x(k) and ξ(k), and at any time step k.
Proof of Lemma 2: Equations (20) and (21) follow from (4).

Equation (22) is proven by induction for any k ≤ N as follows.
Base case: At k = N , ∂xV

l|N = ∂xφ[x(N)]. Therefore, from
Remark 1

∂xV
l|N = λ̃

l
[x(N), ξ(N), N ] (23)

and thus (22) holds for k = N .
Induction step: Let k < N be given and suppose (22) is true at time

k + 1, such that

∂xV
l|k+1 = λ̃

l
[x(k + 1), ξ(k + 1), k + 1] (24)

Substituting (24) into (18) it can be easily shown that the RHS of (18)

is equal to ∂xV
l|k, while its Left-Hand Side (LHS) is equal to λ̃

l
(k).

It follows that:

∂xV
l|k = λ̃

l
[x(k), ξ(k), k] (25)

and (22) holds for k < N .
Conclusion: By the principle of induction, (22) is true for

any k ≤ N . �
Lemma 3: When holding the critic λ̃

l
fixed, the control law

c̃l+1
ξ obtained from the learning rule (15) and learning rate
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ε = 1/(L1L2 + L3)L4, has a value function

V l [x(k + 1), ξ(k + 1), k + 1] |ξ(k+1)=ν(k) + Lξ

[
x(k), c̃l+1

ξ (k)
]

≤ V l [x(k + 1), ξ(k + 1), k + 1] |ξ(k+1)=ν(k) + Lξ

[
x(k), c̃lξ(k)

]
(26)

for all ν(k) ∈ E .
Proof of Lemma 3: When x and ν are given, the control input

uξ is a function of the actor weights obtained at the end of the
lth cycle, denoted by wl

ξ. Thus, the next state x(k + 1) and value

function V l[x(k + 1), ξ(k), k + 1] are also functions of wl
ξ. Let G

Δ
=

V l[x(k + 1), ξ(k), k + 1] + Lξ[x(k), c̃
l
ξ(k)] =G(wl

ξ). Then, from
Assumption (3), G has a Lipschitz continuous gradient with modulus
(L1L2 + L3)L4, because∥∥∥G (

wl
ξ

)
−G

(
w

(l+1)
ξ

)∥∥∥
=

∥∥∥V l [x(k + 1), ξ(k), k] + Lξ

[
x(k), c̃lξ(k)

]
− V (l+1) [x(k + 1), ξ(k), k]− Lξ

[
x(k), c̃

(l+1)
ξ (k)

]∥∥∥
≤

∥∥V l [x(k + 1), ξ(k), k]− V (l+1) [x(k + 1), ξ(k), k]
∥∥

+
∥∥∥Lξ

[
x(k), c̃lξ(k)

]
− Lξ

[
x(k), c̃

(l+1)
ξ (k)

]∥∥∥
≤ (L1L2 + L3)L4

∥∥∥(
w

(l+1)
ξ −wl

ξ

)∥∥∥ (27)

From the actor learning rule (15) and the properties of functions with
Lipschitz continuous gradient [26], it also follows that:

G
(
w

(l+1)
ξ

)
≤ G

(
wl

ξ

)
+

〈
∂wξ

G|wξ=wl
ξ
,
(
w

(l+1)
ξ −wl

ξ

)〉
+

(L1L2 + L3)L4

2

∥∥∥(
w

(l+1)
ξ −wl

ξ

)∥∥∥2

= G
(
wl

ξ

)
+

[
(L1L2+L3)L4ε

2/2−ε
] ∥∥∇G

(
wl

ξ

)∥∥2

where 〈·, ·〉 denotes the inner product. When ε ≤ 2/(L1L2 + L3)L4,
G(w

(l+1)
ξ ) ≤ G(wl

ξ), and, thus, (26) holds. �
Remark 2: The equality in (26) holds iff ‖∂wξ

G|wξ=wl
ξ
‖ = 0,

i.e., iff the optimality condition (6) is satisfied, and the maximum
convergence rate is achieved by setting ε = 1/(L1L2 + L3)L4.

Lemma 4: Let π̃l+1 denote the policy obtained in the (l + 1)th cycle

of the hubrid-ADP algorithm, while holding λ̃
l

fixed. From (13) and
(15) it follows that the value function obeys the inequality:

V (l+1) [x(k + 1), ξ(k + 1), k + 1] + Lξ

[
x(k), c̃

(l+1)
ξ (k)

]
≤ V l [x(k + 1), ξ(k + 1), k + 1] + Lξ

[
x(k), c̃lξ(k)

]
Proof of Lemma 4: From the minimum principle in discrete-time

[13], it can be shown that

V l [x(k), ξ(k), k] = x(k)λ(k) + φ [x(N)]− x(N)λ(N)

+

N−1∑
j=k

{
Hν

[
x, c̃

(l+1)
ξ ,λ, ν, j

]
− x(j)λ(j)

}

where only the Hamiltonian Hν [·] is a function of ν. Therefore, ν(k)
obtained from (13) minimizes V l[x(k), ξ(k), k]. Furthermore, from
Lemma 2, for any ν ∈ E the control approximation c̃

(l+1)
ξ has a value

function

V (l+1) [x(k + 1), ξ(k + 1), k + 1] + Lξ

[
x(k), c̃

(l+1)
ξ

]
≤ V l [x(k + 1), ξ(k + 1), k + 1] + Lξ

[
x(k), c̃lξ

]
(28)

and, thus, π̃(l+1) results in a lower cost. �

Theorem 1 (Convergence): At every cycle l of the hybrid-
ADP algorithm, the critic and actor networks obtained from
(13)–(17) are characterized by an improved value function, such
that V (l+1)[x(k), ξ(k), k] ≤ V l[x(k), ξ(k), k], for any (TN) � 1,
x ∈ X , ξ ∈ E , and k = 1, . . . , N . Furthermore, as l → ∞, the actor
networks converge to an extremal policy π∞ = {a∞, c∞ξ : ξ ∈ E},
and the critic converges to a value function V ∞ that is stationary with
respect to the policy. Then, when the Hamiltonian (12) is a convex
function of x and uξ, π∞ is an optimal policy of the switched optimal
control problem (1)-(2).

Proof of Convergence: From Lemma 2, the value function at the
lth cycle can be written as

V l[x(k), ξ(k), k] = Lξ

[
x(k), c̃lξ(k)

]
+V l[x(k+1), ξ(k+1), k+1]

(29)

and the value function at the (l+ 1)th cycle can be written as

V (l+1) [x(k), ξ(k), k] = Lξ

[
x(k), c̃

(l+1)
ξ (k)

]
+ V (l+1) [x(k + 1), ξ(k + 1), k + 1] (30)

Then, subtracting (29) from (30), the change in value function during
one cycle is

V (l+1) [x(k), ξ(k), k]− V l [x(k), ξ(k), k]

= Lξ

[
x(k), c̃

(l+1)
ξ (k)

]
− V l [x(k + 1), ξ(k + 1), k + 1]

+ V (l+1) [x(k + 1), ξ(k + 1), k + 1]− Lξ

[
x(k), c̃lξ(k)

]
.

From Lemma 4, the change in value function during one cycle obeys
the following inequality

V (l+1) [x(k), ξ(k), k]− V l [x(k), ξ(k), k]

≤ Lξ

[
x(k), c̃

(l+1)
ξ (k)

]
− V l [x(k + 1), ξ(k + 1), k + 1]

+ V (l+1) [x(k + 1), ξ(k + 1), k + 1] −Lξ

[
x(k), c̃

(l+1)
ξ (k)

]
= V (l+1)[x(k+1), ξ(k+1), k+1]−V l[x(k+1), ξ(k+1), k+1]

(31)

From the boundary condition (8) it follows that

V l [x(N), ξ(N), N ] = V l+1 [x(N), ξ(N), N ]

and, thus,

V (l+1) [x(k), ξ(k), k]− V l [x(k), ξ(k), k]

≤ V (l+1) [x(N), ξ(N), N ]− V l [x(N), ξ(N), N ] = 0 (32)

for any x ∈ X , ξ ∈ E , and k = 1, . . . , N .
Let inf{V l} denote the lower bound of V l. Since V l[x(k), ξ(k), k]

is non-negative, for any σ > 0, there exists a positive integer
s such that V s < inf{V l}+ σ. From Lemma 4, it follows that
‖ inf{V l} − V l‖ ≤ ‖ inf{V l} − V s‖ < σ for all l > s, and, by de-
finition liml→∞{V l} = inf{V l}, such that as l → ∞ an extremal
policy π∞ is obtained. If H [·] is convex in uξ and x, for every discrete
action c∞ξ minimizes H [·]. Then, from Remark 2, when πl ≈ πl+1,
πl+1 → π∞ and π∞ satisfies the optimality condition (6). Thus, π∞

is a globally optimal solution according to the discrete-time minimum
principle [13]. If H [·] is not convex, but the Hessian is positive definite
in a neighborhood of the extremal c∞ξ , π∞ is a locally optimal solution
[27]. Thus, convergence to an optimal policy is guaranteed for ε ≤
2/(L1L2 + L3)L4 and, from Remark 2, maximum convergence rate is
achieved for ε = 1/(L1L2 + L3)L4. �
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As example of the above argument, if the Lagrangian is a quadratic
function of x and u for every mode of the switched system, and the
vector function fξ in (1) is an affine function of x and u, then the
Hamiltonian for every mode is convex in x and u. In this case, π∞ is
a globally optimal solution. In general, π∞ can only be guaranteed to
be a locally optimal solution, and multiple proper initializations may
be used to search for a better local optimum.

V. NUMERICAL SIMULATIONS AND RESULTS

The hybrid-ADP algorithm presented in Section III is demon-
strated on a switched linear-quadratic (LQ) optimal control problem
that can be solved numerically using the switched differential
Riccati equation (SDRE) derived in [5]. The switched LQ system
consists of a power system with a gasoline-driven mode and
an electric-driven mode that can each be represented by linear
time-invariant (LTI) dynamics with a continuous state vector x =
[x ẋ]T , where x ∈ R, and x is fully observable and error free. The
mode of the power system is represented by a discrete binary state
variable ξ ∈ E , where E = {1, 2}, ξ = 1 denotes the gasoline-driven
model, and ξ = 2 denotes the electric-driven mode. The system can
switch to any of the two modes at any time, and the two power
systems are independent and supplied with sufficient fuel. The system
dynamics under each mode are modeled by an LTI system

x(k + 1) =

{
A1x(k) +B1u(k), for ν(k) = 1

A2x(k) +B2u(k), for ν(k) = 2
(33)

where u ∈ R is the continuous control input, and the initial continuous
state, x(0) = x0, is given. In gasoline-driven mode the state-space
matrices are

A1 =

(
1 0.05

−0.05 0.95

)
and B1 =

(
0

0.05

)
(34)

and in electric-driven mode they are

A2 =

(
1 0.05

−0.05 0.975

)
and B2 =

(
0

0.04

)
. (35)

At any time k ∈ {0, . . . , (N − 1)}, the system mode ξ can be
fully controlled at no cost by a switching signal ν ∈ E provided
by the discrete controller. Unlike gain-scheduled designs, the system
performance depends on both the discrete and continuous state and
control histories, and is defined differently between modes. Thus, the
cost function to be minimized is represented by

J = xT (N)Pfx(N) +

N−1∑
j=0

xT (j)Qξx(j) + uT
ξ (j)Rξuξ(j)

where N = 100, and the weighting matrices of the gasoline-driven
mode are

Q1 =

(
100 0
0 200

)
and R1 = 400 (36)

while those of the electric-driven mode are

Q2 =

(
250 0
0 200

)
and R2 = 50. (37)

The terminal cost is defined by the matrix

Pf =

(
1500 −1500
−1500 3000

)
(38)

Fig. 2. Optimal state trajectory obtained from SDRE solution.

and the initial conditions are x(0)=[0.5596 −0.6387]T and ξ(0)=1.
From [5], the switched differential Riccati Equation is given by

P(k − 1)−Qξ

= AT
ξ

(
P(k)−P(k)Bξ

(
Rξ +BT

ξ P(k)Bξ

)−1
BT

ξ P(k)
)
Aξ

where the discrete controller is obtained by minimizing the
Hamiltonian function [13], such that

ν(k) = argmin
ν

{H [P(k),x(k), ξ(k), u(k)]} . (39)

The solution obtained by solving the SDRE numerically, using the
approach in [5], is plotted in Fig. 2 where the gasoline-driven mode is
shown by red dashed lines with square markers, and the electric-driven
mode is shown by blue dashed lines with dot markers. The switching
mode and time instants can be identified by the change in color and
curve style, as well as by the cross marker on the trajectory.

In the proposed hybrid-ADP solution, the critic network is initial-
ized to satisfy the terminal condition on the costate vector

λ(N) = Pfx(N) = [0 0]T (40)

while the actor network is initialized to satisfy

uξ(k) = −
(
Rξ +BT

ξ Bξ

)−1 [
BT

ξ (I + Aξ)x(k)
]

(41)

such that (6) holds, given (40). Subsequently, the hybrid-ADP recur-
rence relationships presented in Section III are used to adapt the critic
and the actor networks online, while the actor networks are used to
control the power system. Unlike the SDRE approach, hybrid-ADP
only uses online observations of the state and immediate cost, as could
be obtained from a simulation or the real system. Thus, as shown in
Figs. 3 and 4, the hybrid-ADP algorithm learns the optimal policy
and critic networks autonomously over time, and terminates when the
recurrence relationships are satisfied within a desired tolerance.

In this example, the learning rates η and ε are both chosen equal to
5× 10−2, T = 400, and M = 100. The critic (actor) neural networks
have two hidden layer with 30 (10) hyperbolic tangent (sigmoidal)
functions. The value of the cost function is evaluated at every cycle
and plotted in Fig. 3, where it is shown to converge to the optimal
cost known from the SDRE solution (dashed line). In this simulation,
the learning rates η and ε are deliberatively chosen greater than
1/(L1L2 + L3)L4 in order to accelerate convergence, therefore the
cost function does not decrease at every cycle of the algorithm.
However, the simulations also show that when this limit is satis-
fied, the cost function is improved at every cycle of the hybrid-
ADP algorithm. Thus, the approach could be applied using state
observations obtained from the real system (e.g., during operation),
only with a lower convergence rate. The state trajectories obtained
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Fig. 3. Hybrid-ADP cost function convergence to the optimal solution obtained
by SDRE.

Fig. 4. State trajectory optimization for five cycles of the hybrid-ADP algo-
rithm, and convergence to optimal solution.

by the hybrid-ADP algorithm are shown in a solid line in Fig. 4
for five cycles. When l = 5, the state trajectories converge to the
optimal state trajectory, which in this example is known from the
SDRE solution (Fig. 2). At convergence, the hybrid-ADP policy can
optimally switch between gasoline-driven and electric-driven modes,
and optimally regulate the system under each mode.

VI. SUMMARY AND CONCLUSION

New recurrence relationships, proof of convergence, and com-
putational complexity analysis are presented for an ADP approach
applicable to switched hybrid systems that are possibly nonlinear. The
results show that the hybrid-ADP algorithm is capable of learning
the optimal controller and value function for a switched LQ problem
online, using state observations obtained over time from a simulation
of the system. The approach is demonstrated on a switched LQ optimal
control problem that can be solved numerically using an SDRE off
line. Because the hybrid-ADP algorithm does not rely on the LQ
structure of the system dynamics and cost function, it can be similarly
applied to nonlinear (and/or time varying) switched systems, for which
SDER solutions are not typically available.
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