Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 51-34 (2019) 176-183

Video-guided Camera Control for Target
Tracking and Following *

Jake Gemerek * Silvia Ferrari* Brian H. Wang *
Mark E. Campbell *

* Department of Mechanical and Aerospace Engineering, Cornell
University, Ithaca, NY, USA (e-mail: (jrg362, ferrari, bhwi5,
mec288)@cornell.edu)

Abstract: This paper considers the problem of controlling a nonholonomic mobile ground
robot equipped with an onboard camera characterized by a bounded field-of-view, tasked with
detecting and following a potentially moving human target using onboard computing and
video processing in real time. Computer vision algorithms have been recently shown highly
effective at object detection and classification in images obtained by vision sensors. Existing
methods typically assume a stationary camera and/or use pre-recorded image sequences that
do not provide a causal relationship with future images. The control method developed in this
paper seeks to improve the performance of the computer vision algorithms, by planning the
robot/camera trajectory relative to the moving target based on the desired size and position of
the target in the image plane, without the need to estimate the target’s range. The method is
tested and validated using a highly realistic and interactive game programming environment,
known as Unreal Engine™ | that allows for closed-loop simulations of the robot-camera system.
Results are further validated through physical experiments using a Clearpath™ Jackal robot
equipped with a camera which is capable of following a human target for long time periods. Both
simulation and experimental results show that the proposed vision-based controller is capable
of stabilizing the target object size and position in the image plane for extended periods of time.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Robot vision, Tracking applications, Robot navigation, Robot control

1. INTRODUCTION

Recent advancements in computer vision, particularly
video-based object detection and classification, pave the
way for future autonomous systems comprised of camera-
equipped mobile robots that can decide how to obtain and
process images or videos without human intervention (Wei
et al. (2014)). The development of autonomous mobile
cameras have recently been shown to impact a variety of
applications that include automated surveillance, (Esterle
et al. (2017)), intelligent cinematography (Nageli et al.
(2017)), and autonomous social navigation (Chen et al.
(2017)). The challenge of detecting, tracking, and following
a mobile human target of interest is critical to all of the
aforementioned applications. As a result, several human
tracking algorithms have been developed, some of which
make use of carefully designed hand-crafted features, such
as Histograms of Oriented Gradients (HoG) for detection
with simultaneous KLT (Kanade-Lucas-Tomasi) feature-
tracking (Benfold and Reid (2011)), and optical flow-based
human tracking methods using multiple cameras (Tsutsui
et al. (2001)). More recent human tracking algorithms take
advantage of the advancements of deep convolutional net-
works, and instead use convolutional features for tracking
human appearance in videos (McLaughlin et al. (2017)).
Human tracking in video has become one of the challenging
problems at the forefront of computer vision, leading to

* This research is funded by the Office of Naval Research Grant
N00014-17-1-2175.

the development of benchmark datasets (Leal-Taixé et al.
(2015)). The state-of-the-art methods according to such
benchmarks base their hypotheses on multiple cues, such
as appearance, kinematics, and interactions (Sadeghian
et al. (2017)).

Although the problem of human detection and tracking
has been studied extensively over recent years, almost all
of the tracking algorithms do not incorporate any type of
control over the camera field of view (FoV), and instead
assume the video sequence is recorded a priori. The few
works that do actively control the camera FoV simplify
the detection and tracking of the human target (Goldhoorn
et al. (2014), Nageli et al. (2017)). This paper considers the
problem of controlling a mobile camera with a bounded
FoV that is rigidly attached to a mobile robot capable
of onboard computing for real-time video processing. The
camera is controlled such that a target (human) of interest
is detected, tracked, and followed while moving through a
complex, unstructured environment. The novel approach
in this paper leverages a state-of-the-art deep learning
algorithm for detecting a human target in the video (Liu
et al. (2016)), whose output is processed to compute
a control input command for the mobile robot without
requiring a 3-dimensional position estimate or kinematic
model of the target. This is advantageous since human
motion is generally very difficult, if not impossible, to
accurately predict.

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2019.01.062

Jake Gemerek et al. / [FAC PapersOnLine 51-34 (2019) 176—183 177

Wi

-

S

e
2
A

Fig. 1. The inertial, body, and image reference frames are
illustrated, along with relative position vectors and
dimensions. The target is shown in the 3-dimensional
world being transformed, via perspective projection,
onto the image plane.

Fa

This paper also proposes the use of a game development
software, known as Unreal Engine™, for simulation of the
vision-based control algorithm in a photo-realistic virtual
space. Most robot simulation and visualization software
emphasize physical accuracy and lack visual realism. Fur-
thermore, simulation in a visually-realistic environment
provides the ability to quickly and efficiently recreate
and redefine an infinite set of testing conditions, while
providing a deterministically repeatable test environment.
This work further validates the proposed controller as
well as the reliability of the Unreal Engine™as a control
algorithm simulator through physical experiments which
demonstrate the proposed methods are capable of real-
world implementation.

2. PROBLEM FORMULATION

Consider a region of interest, W C R3, populated with
human target 7 C W, and a mobile robot A C W. The
robot is equipped with a camera which has a bounded FoV,
characterized by a focal length A € R, a half-angle o € S!,
and an aspect ratio Ag. The image plane, S = [0,w] x
[0, R], is the perspective projection of W as seen through
the camera FoV, where w and h are the width and height
of the image, respectively, which may be computed from
the camera parameters \, o, and Ap, that is w = 2\ tan «,
and h = w/Agr (Fig. 1).

A reference frame F 4 is embedded in A, such that the 1st
axis is aligned with the camera optical axis, the 3rd axis
points vertically, and the 2nd axis completes the right-
hand rule. The origin of F4 is known as the focal point of
the camera, whose position r(t) € R? is expressed relative
to an inertial reference frame Fyy, as illustrated in Fig.
1. The coordinates of the focal point position, expressed
in Fyy are given as r(t) = [z(¢),y(t), 2], where 2 is the
constant height of the focal point. Assuming the z-axes
of Fyy and F 4 remain parallel, the rotation matrix which
maps vectors expressed in Fyy to F4 is given as

cos@(t) sinf(t) 0
Ry = [—sin@(t) cos 6(t) 0] , (1)
0 0 1

where 6(t) is the yaw angle of the robot.

The perspective projection Pfx maps vectors in R? ex-
pressed with respect to F 4, whose origin is the focal point
of the camera, to vectors in R? expressed with respect to
Fs. Fig. 1 shows the vector ry/4 € W being mapped to
the vector p; € S via P5. p(t) = [mp(2), yp(t)]T is the
position vector to the center of the bounding box in the
image plane. The perspective projection can be written as
a scaled linear operation on r;/4 using homogeneous coor-
dinates (Sonka et al. (2014)). The perspective projection
mapping of an arbitrary vector r € W to the associated
image plane vector p € S is

1w A00
Pi(r)—[b]'y[O)\Olr—[?], (2)

210 001
where 7 € R is a scaling parameter used to enforce the
3rd element to equal unity. Therefore, all of the required
transformations have been defined which take the target
position r;, and the robot position r, expressed in inertial
frame, and define a position vector on the image plane p;.
This complete transformation is illustrated in Fig. 1 and
may be expressed as

m =P (Rih(r 1)))

Assuming A is rigid, and the camera is rigidly attached to
A, the robot configuration (state) vector can be described
as q(t) = [z(t) y(t) 0(t)]T, which is governed by the
nonholonomic unicycle kinematic model,
cosf(t) 0 o(t)

(o) = [o) g] 0| caono. @
where v(t) € R is the forward velocity, and w(t) € R
is the yaw rate. The control input vector is defined as
ut) = i) wt))’ € U, and U C R? is the set of
admissible control inputs.

A bounding box b(t) € R?* associated with the tar-
get T is extracted from the video and projected on S.
The elements composing b(t) = [z (t), ys(t), wp(t), h(t)]"
are the coordinates of the bounding box center p:(t) =
[75(t), ys(t)]T € S, expressed in the image frame Fs, and
the width wy(t) € [0, w] and height hy(t) € [0, h] of the
bounding box. Several computer vision algorithms exist
which extract such a bounding box containing an object
of interest from an image, some of which will be reviewed
in the following section.

2.1 Control Objective

In order to maintain the target within the camera FoV,
a reliable target bounding box must be consistently ex-
tracted from the video sequence. Therefore, it is desirable
to maintain the target not only within the FoV, but at a
reliable range for accurate image processing. The control
objective is to drive the bounding box b(t) to a desired set
point b by suitable choice of the control input vector u(t)
over some time interval of interest [tg,T') C R. That is,

]T

[, Yoy Woy ho] " = [Ebs Ty W, 1) (5)

178 Jake Gemerek et al. / [FAC PapersOnLine 51-34 (2019) 176183

where Zyp, gy are the desired (constant) coordinates of the

bounding box center, and @y, hy, are the desired (constant)
width and height of the bounding box, respectively. Typ-
ically, the set point b is chosen such that the bounding
box remains in the center of the image at a sufficient scale
for reliable image processing. However, since there is no
control over the pitch of the camera or the relative height
of the camera focal point and the target center, y,(t) is
not controllable. As long as the target and robot both
remain on a level surface with a reasonable relative height
between the camera focal point and the target center, this
uncontrollable variable will not affect the proposed algo-
rithm’s performance. A more complex model may assume
the camera is mounted on a gimbal, enabling the camera
to rotate with respect to the robot, which would provide a
means to control y;(t), but such a model is not considered
in this work.

Similarly, the width w(¢) and height hy(t) of the bounding
box provide some redundant information since the robot
cannot control the orientation of the target. Therefore, the
width and height are combined into a single size metric
Ay (t) of the bounding box, which is a measure of the length
of the bounding box diagonal, Ay(t) = ||[ws(t), hs(t)]T |2
Therefore, after post-processing the extracted bounding
box b(t) = [z(t), ys(t), ws(t), hp(t)]T into a useful output

vector y(t) = [Ap(t),7(t)]T, the control objective is
reduced to

y(t) =y, (6)
where 5/' = [Ab,i'b]T, and Ab = ||[’LT)5, }Nlb]THQ.

3. METHODOLOGY

This paper presents a novel unified video processing and
control approach for detecting and pursuing a human
target in a complex unstructured environment, which is
accomplished by stabilizing the control objective defined
in the previous section. Due to recent advancements of
object recognition tasks in computer vision, the presented
methodology employs a state-of-the-art deep convolutional
neural network (CNN) Liu et al. (2016) to detect and
classify objects within the image plane. The output of the
CNN is then processed to extract a bounding box b(t)
associated with the target. This bounding box is then used
to compute a control law designed to maintain the target
human in a desirable position within the image for reliable
future detections.

3.1 Target Detection and Identification

Over recent years algorithms for multi-class object detec-
tion in images have become extremely accurate, mostly
due to the use of deep CNNs Huang et al. (2017)). Three
recent well-known architectures are Faster R-CNN pro-
posed by Ren et al. (2016), the Single Shot Multibox
Detector (SSD) developed by Liu et al. (2016), and the
Region-based Fully Convolutional Network (R-FCN) by
Dai et al. (2016). It is difficult to disambiguate the best
architecture due the use of interchangable feature extrac-
tion and classification techniques. Furthermore, the work
by Huang et al. (2017) present a comprehensive study
of the speed-accuracy tradeoff between different CNN ar-
chitectures and feature extractors. The object detection

algorithm used in this work is chosen to be as accurate
as possible while simultaneously being capable of real-
time implementation on a physical robot with onboard
computing. This work uses a MobileNet (Howard et al.
(2017)) implementation of the SSD architecture (Liu et al.
(2016)) in order to satisfy real-time resource constraints.
The CNN is pre-trained on the Microsoft COCO data set
of Lin et al. (2014).

The CNN takes as input an image S(t) at time ¢
and outputs a set of detection-confidence pairs B(t) =

{(by(t),c; (t))}ﬁft(t), where b;(t) are bounding boxes con-
taining objects of the same class as the target (i.e., hu-
man), and ¢;(t) € [0,1) are the associated confidence
scores of the bounding box, and N (t) € N is the number
of detections. The target bounding box b(¢) is then com-
puted as the bounding box with the highest associated
confidence score, when multiple detections are extracted.
If no detections are extracted, i.e., B(t) = 0, the target
bounding box b(t) is set equal to the set point bounding

box b in order to stop the robot. This processing step is
expressed as

b(t) = { arg rrlliux{ci i (byye) € B} B(t) #0

b Bt)=0"

This formulation guarantees that b(t) exists and is unique
by construction. The bounding box b(t) is then trans-
formed into the output vector y(¢) which is used as the
control variable in the controller to be designed in the
following subsection.

3.2 Video-guided Camera Control Design

The control law for tracking and following the target based
on video frames obtained by the robot camera, and pro-
cessed according to the previous subsections, is developed
by considering properties of the perspective projection,
and noting how points in three dimensions move across
an image in two-dimensions while the camera is moving.
Due to the properties of the perspective projection, objects
which are closer to the focal point appear larger, and ob-
jects that are farther from the focal point appear smaller.
This provides a natural method for controlling the size of
the bounding box Ay (t) without requiring kinematic esti-
mations in the 3-dimensional world. Similarly, the position
of the bounding box x;(t) in the image provides a natural
error signal for the yaw rate w(t) of the robot. Because the
target human may be moving, the use of integral compen-
sation is proposed in order to reduce steady state errors
that would be present if the control input were simply
proportional to these error signals. Then, the proposed
video-guided control input is designed using the following
proportional-integral compensation

u(t) = —“K;Ay(t) — Kg/0 Ay(7)dr, (8)

where K1, Ko = 0 are diagonal gain matrices of reasonable
dimension, and Ay(t) = y(¢t) — ¥. The proposed control
law is validated using photo-realistic simulations in highly
complex environments, as well as through physical exper-
iments in a laboratory setting.

Jake Gemerek et al. / [FAC PapersOnLine 51-34 (2019) 176—183 179

4. SIMULATION ENVIRONMENT

The Unreal Engine™is a leading game development soft-
ware capable of advanced open-source environment devel-
opment and manipulation. These capabilities have recently
been exploited by several industries outside of the game
development community, including architectural visualiza-
tion, film-making, and virtual reality training simulations.
The use of Unreal Engine™/for simulation of computer
vision-based automatic control algorithms makes no sac-
rifice to physical accuracy, but has the advantage of a
vast user community composed of artists and developers
who create visually realistic environments, characters, be-
haviors, and objects, which may be used in simulations.
This ease of access to a diverse set of environments and
scenarios helps test the robustness of proposed methods in
ways not feasible in real-world experiments or conventional
robotics software.

Similar game development softwares have been used in
previous works for generating synthetic data to train deep
CNNs, such as Johnson-Roberson et al. (2017). Unreal
Engine™has also been used for similar computer vision
tasks by several authors, such as semantic segmentation
by Qui and Yuille (2016), and simulating stereo-vision
applications by Zhang et al. (2016). Furthermore, the work
by Shah et al. (2017) uses Unreal Engine™to develop
realistic quadrotor and vehicle simulations for autonomous
vehicle simulations. This work, proposes the use of Un-
real Engine™for the novel task of simulating a fully au-
tonomous robot using visual feedback for tracking a target
in the realistic virtual space. The setup and results of these
simulations are presented in the following section.

5. SIMULATION RESULTS

The control law developed in Section 3 is tested in the
visually realistic and complex subway environment using
Unreal Engine™, in which a mobile robot equipped with
a camera tracks and follows a potentially moving human
without knowledge of the target dynamics or environment
geometry. The subway environment consists of realistic
lighting, a moving subway, and other moving objects.

A number of simulations are conducted in order to analyze
the proposed control algorithm: (1) a step response of the
velocity input v(t), (2) a ramp response of the velocity
input v(¢), (3) a step response of the yaw rate input
w(t), (4) a ramp response of the yaw rate input w(¢).
The set point used for all simulations is chosen such that
the bounding box stabilizes to a desired size for reliable
image processing at the center of the camera FoV. The
single setting for the diagonal gain matrices Ky and Ky is
manually chosen and not changed between simulations.

The first simulation tests the controller response to a step
input in the size error of the target, i.e., Ap(t) — Ayp. This is
done by initially placing the target human in the center of
the camera FoV, such that x;(tg) = &p, and at a distance
away from the robot such that Ay(to) < Ay. The bottom
of Fig. 2 shows the initial configuration of the robot and
target in a geometrically simplified visualization of the
subway, along with the visual input to the robot at the
initial time to. The set point bounding box b is illustrated

0.5

~
E o

<

&Y

-

©.05

c

w

A | | | | |
0 2 4 6 8 10 12
Time t [s]

— 4 T

[%)

S~

£

=,

~

)

N~

Y

- 0

el

[

[

Q.

& . I . I .

0 2 4 6 8 10 12
Time t [s]

Set Point

D Detection

=

Robot

® Target

A FoV

Fig. 2. Simulated step response to an initial error in the
size of the target, e pejta = (Ap(t) — Ap)/Ap. The bot-
tom of the figure illustrates the initial configuration
of the target and robot in a geometrically simplified
visualization of the subway, along with the initial
visual input at the initial configuration.

as the orange bounding box and the estimated target
bounding box b(tp) output from the CNN is illustrated
as the green bounding box. The top of Fig. 2 shows
the resulting error signal ea(t) = (Ay(t) — Ay)/A, and
control input v(t). The step response slightly overshoots
the desired position and stabilizes in roughly five seconds.

The second simulated experiment tests the controller re-
sponse to a ramp input in the size error of the target,
Ap(t) — Ap. This is done by initially placing the target hu-
man in the center of the camera FoV, such that xy(t) = Ty,
and programming the human target to walk at a constant
velocity in the direction of the initial camera optical axis.
The human is programmed to walk at 1.3 m/s, which is
a typical walking speed of a human. Fig. 3 illustrates the
controller response as well as several snapshots throughout
the simulation showing the robot-target configuration and
the associated visual input. The response of the controller
to such an input again stabilizes without any steady state
error, due to the integral term of the control law in 8.

The next simulated experiment tests the controller re-
sponse to a step input in the lateral position of the target,
i.e., xp(t) — Tp. This is done by initially placing the target
human at a distance from the robot such that Ay(tg) = Ay,

180 Jake Gemerek et al. / [FAC PapersOnLine 51-34 (2019) 176183

Error, e,(t)

0 5 10 15 20 25
Time t [s]

IS

w
L

Speed, v(t) [m/s]

10 15 20 25
Time t [s]

Set Point

D Detection

® Robot

® Target

A FoV

Fig. 3. Simulated ramp response of the error in the size
of the target, ea = (Ap(t) — Ap)/Ap. The bottom of
the figure illustrates the configuration of the target
and robot in a geometrically simplified visualization
of the subway at a number of snapshots throughout
the simulation, along with the visual input at the time
of these snapshots.

but offset from the optical axis such that zp(tg) < .
The bottom of Fig. 4 shows the initial configuration of the
robot and target in a geometrically simplified visualization
of the subway, along with the visual input to the robot at
the initial time ¢y3. The top of Fig. 2 shows the resulting
error signal ey, (t) = (xp(t) —Zp)/Zp and control input w(t).
The step response slightly overshoots the desired position
but quickly stabilizes about the set point configuration.

The final simulated experiment tests the controller re-
sponse to a ramp input in the lateral position of the
target, xp(t) — Zp. This is done by programming the hu-
man target to walk in a circular motion centered at the
camera focal point at a constant speed. The radius of the
target’s circular path is chosen such that Ay(t) = A,.
Fig 5 illustrates the controller response as well as several
snapshots throughout the simulation showing the robot-
target configuration and the associated visual input. The
response of the controller to this ramp input very rapidly

1r T T T T T
~
E or 1
5
)
5 1
=
w
- ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12
Time t [s]
o 0.04
“@
=
IS
= 002t 4
~
&
3
g 0r 1
®
o
2 g2t | L | | !]
> 0 2 4 6 8 10 12
Time t [s]
& 7
o~ ¢
F, .4 e |
. Set Point
D Detection
® Robot
f ® Target
LY , ||
FoV

Fig. 4. Simulated step response to an initial error in the
position of the target, e,, = (23(t) — 2)/Zp. The bot-
tom of the figure illustrates the initial configuration
of the target and robot in a geometrically simplified
visualization of the subway, along with the initial
visual input at the initial configuration.

stabilizes without any steady state error. Some high fre-
quency oscillations in the error signal are visible, and are
caused by the periodic nature of the human walking as
viewed from the side. That is, the bounding box slightly
changes in shape and position due to swinging arms and
legs of a walking human. Two of the spikes in the signal
are caused by errors in the CNN detection algorithm, but
are only present at single frames, which does not affect
performance.

The four simulations performed in this study all show
the controller stabilizing about the desired set point. Fur-
thermore, the robot was programmed to follow the hu-
man through the subway environment using the proposed
controller, while the target moved arbitrarily through the
environment. Even in this case, where the robot was sub-
ject to small disturbances such as brief/partial occlusions,
lighting variations, and change in the target motion the
robot successfully stabilized about the set point. In this
case, the robot was able to follow the human through
the subway environment for several minutes, and possibly
longer. Therefore, these simulation results suggest that,
as long as the human target does not intentionally evade
the robot, then the proposed controller will be capable of
following the human indefinitely under reasonable condi-
tions.

Jake Gemerek et al. / [FAC PapersOnLine 51-34 (2019) 176—183 181

N
>
E 1
<
R
Qv
~ 0
<]
=
w -1
2 . , . . , . . ,
0 5 10 15 20 25 30 35 40 45
Time t [s]
= 0.1 T T r T ! r T ;
~
=
g
= 005
~
S
&
3
g 0
(T
o«
2 905 | | I | | I | |
> 0 5 10 15 20 25 30 35 40 45
Time t [s]

Set Point

D Detection

® Robot

® Target

A FoV

Fig. 5. Simulated ramp response of the error in the position
of the target, e,, = (xp(t) — ©p)/2p. The bottom of
the figure illustrates the configuration of the target
and robot in a geometrically simplified visualization
of the subway at a number of snapshots throughout
the simulation, along with the visual input at the time
of these snapshots.

6. EXPERIMENTAL RESULTS

—

The experimental validation of the proposed control algo-
rithm is done using a Clearpath™ Jackal robot equipped
with a camera and onboard computing capabilities. The
robot can be accurately modeled by the nonholonomic
unicycle model 4. A Vicon motion capture system is used
to provide ground truth measurements of the robot and
target states. It should be made clear that the Vicon data
is never made available to the robot, and is only used to
collect accurate pose data for results visualization. The
four physical experiments presented here are exactly the
same as the four simulated experiments in the previous
section. That is : (1) a step response of the velocity input
v(t), (2) a ramp response of the velocity input v(t), (3)
a step response of the yaw rate input w(t), (4) a ramp
response of the yaw rate input w(t)

The first physical experiments tests the controller response
to a step input in the size error of the target, i.e., Ay(t) —

0.4
—

~
'

< 0.2+

Y

o

e o

E

w

0.2 L ! ! !
0 1 2 L 4 6
R Time, t [s]

E x10 .

g

~

=

N~

haY

-

(]

(]

g o ! } ! l L

RAI] 1 2 3 4 5 6

Time, t [s]

Set Point

D Detection

Fig. 6. Simulated step response to an initial error in the

size of the target, epeita = (Ap(t) — ANb)/Ab. The
bottom of the figure illustrates the initial visual input.

Ayp. This is done by initially placing the target human in
the center of the camera FoV, such that x(tg) = Zp, and at
a distance away from the robot such that Ay (o) < A,. The
bottom of Fig. 6 shows the visual input to the robot at the
initial time ty. The set point bounding box b is illustrated
as the orange bounding box and the estimated target
bounding box b(tp) output from the CNN is illustrated
as the green bounding box. The top of Fig. 6 shows
the resulting error signal ea(t) = (Ay(t) — Ay)/A, and
control input v(t). The step response slightly overshoots
the desired position then quickly stabilizes.

The second physical experiment tests the controller re-
sponse to a ramp input in the size error of the target,
Ay(t) — Ay. This is done by initially placing the target hu-
man in the center of the camera FoV, such that z,(t) = %,
and programming the human target to walk at a constant
velocity in the direction of the initial camera optical axis.
Fig. 7 illustrates the controller response as well as several
snapshots throughout the simulation showing the robot-
target configuration and the associated visual input. The
response of the controller to such an input again stabilizes.
However, due to the physical limitations of the laboratory
setup (i.e., Size of the Vicon area) the human cannot walk
far enough to allow the robot to fully reach steady state,
but extrapolation of the available response is promising.
This further illustrates the power of visually-realistic sim-
ulation in Unreal Engine™,

The next physical experiment tests the controller response
to a step input in the lateral position of the target, i.e.,
xp(t) — Tp. This is done by initially placing the target
human at a distance from the robot such that Ay (tg) = Ay,
but offset from the optical axis such that z(to) < 3. The

182 Jake Gemerek et al. / IFAC PapersOnLine 51-34 (2019) 176—183

0.4 T T T T T

~

~
~ 02F

<

)

o

o 0r

=

=

wi

0.2
10 12 14 16 18 20 22 24
s Time, t [s]

—_ x10

©n 8 T T

~

E

)

E 4

D

o 2t

[

(9}

% 0 L L | I I I

10 12 14 16 18 20 22 24

Set Point
DDetection

Fig. 7. Simulated ramp response of the error in the size
of the target, ea = (Ap(t) — Ap)/Ap. The bottom of
the figure illustrates the configuration of the target
and robot at a number of snapshots throughout the
simulation, along with the visual input at the time of
these snapshots.

bottom of Fig. 8 shows the initial visual input to the robot
at tg. The top of Fig. 2 shows the resulting error signal
€z, (t) = (zp(t) — Zp)/Tp and control input w(t). The step
response slightly has no overshoot and quickly stabilizes
about the set point configuration.

The final physical experiment tests the controller response
to a ramp input in the lateral position of the target, x(t)—
Zp. This is done by the human target walking in a circular
motion centered at the camera focal point at a constant
speed. Fig 9 illustrates the controller response as well as
several snapshots throughout the simulation showing the
robot-target configuration and the associated visual input.
The response of the controller to this ramp input very
rapidly stabilizes without any steady state error. These re-
sults confirm that the proposed controller as well as future
computer vision-based controllers can be readily simulated
in Unreal Engine™ and then successfully implemented on
physical robotic platforms.

Error, ey, (t)

K I I I I I I

0 1 2 3 4 5 6 7

_ Time, t [s]

12}

3 0 ; ; ; ; : :

S

K

. 001F

&

3

g O

(T

o

; 001 1 1 1 1 1 1

s 0 1 2 3 4 5 6 7
Time, t [s]

Fig. 8. Simulated step response to an initial error in the
position of the target, e,, = (ap(t) — ©p)/2p. The
bottom of the figure illustrates the initial visual input.

Error, ey, (t)

0 5 10 15 20 25 30 35 40 45 50
Time, t [s]

0.005 -

o

Yaw Rate, w(t) [rad/s]

0 5 10 15 20 25 30 35 40 45 50
Time, t [s]

Set Point

D Detection

® Target

A FoV

Fig. 9. Simulated ramp response of the error in the position
of the target, ey, = (xp(t) — @) /@p. The bottom of
the figure illustrates the configuration of the target
and robot at a number of snapshots throughout the
simulation, along with the visual input at the time of
these snapshots.

Jake Gemerek et al. / [FAC PapersOnLine 51-34 (2019) 176—183 183

7. CONCLUSION

This paper presents a method for mobile camera control
using its video feedback in real time, in order to detect and
pursue a human target. Because video frames are depen-
dent on the camera position and orientation, the interac-
tive and highly realistic game programming environment
Unreal Engine™is used to perform virtual experiments
in real time. The proposed approach relies on consistent
bounding box extraction to control the camera’s forward
speed and yaw rate to maintain the target within its FoV
and at a specified distance for accurate image processing.
The simulation results show the camera tracking the hu-
man target, keeping the target within the FoV and at
a reasonable distance for reliable image processing. The
same control algorithm is successfully implemented on the
Clearpath™ Jackal robot, which also successfully follows
the target and maintains it in the camera FoV. Future
work includes tracking a particular human target using
multiple cameras with different viewpoints in a crowded
environment,.

REFERENCES

Benfold, B. and Reid, I. (2011). Stable multi-target

tracking in real-time surveillance video. Computer
Vision and Pattern Recognition.
Chen, Y.F., Everett, M., Liu, M., and How, J.P.

(2017). Socially aware motion planning with deep re-
inforcement learning. CoRR, abs/1703.08862. URL
http://arxiv.org/abs/1703.08862.

Dai, J., Li, Y., He, K., and Sun, J. (2016). R-
FCN: object detection via region-based fully convo-
lutional networks. CoRR, abs/1605.06409. URL
http://arxiv.org/abs/1605.06409.

Esterle, L., Lewis, P., Yao, X., and McBride, R. (2017).
The future of camera networks: staying smart in a
chaotic world. 1In International Conference on Dis-
tributed Smart Cameras.

Goldhoorn, A., Garrell, A., Alquzar, R., and Sanfeliu, A.
(2014). Continuous real time pomcp to find-and-follow
people by a humanoid service robot. In 201 IEEE-
RAS International Conference on Humanoid Robots,
741-747. do0i:10.1109/HUMANOIDS.2014.7041445.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko,
D., Wang, W. Weyand, T., Andreetto, M.,
and Adam, H. (2017). Mobilenets: Efficient
convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861. URL

http://arxiv.org/abs/1704.04861.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama,
S., et al. (2017). Speed/accuracy trade-offs for modern
convolutional object detectors. In IEEE CVPR.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar,
S.N., Rosaen, K., and Vasudevan, R. (2017). Driving in
the matrix: Can virtual worlds replace human-generated
annotations for real world tasks? In 2017 IEEFE Interna-
tional Conference on Robotics and Automation (ICRA),
746-753. doi:10.1109/ICRA.2017.7989092.

Leal-Taixé, L., Milan, A., Reid, ID., Roth,
S., and Schindler, K. (2015). Motchallenge
2015: Towards a benchmark for multi-target

tracking. CoRR, abs/1504.01942. URL
http://arxiv.org/abs/1504.01942.

Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Gir-
shick, R.B., Hays, J., Perona, P., Ramanan, D., Dollar,
P., and Zitnick, C.L. (2014). Microsoft COCO: com-
mon objects in context. CoRR, abs/1405.0312. URL
http://arxiv.org/abs/1405.0312.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed,
S., Fu, C.Y., and Berg, A.C. (2016). Ssd: Single shot
multibox detector. arXiv preprint.

McLaughlin, N., d. Rincon, J.M., and Miller, P. (2017).
Video person re-identification for wide area tracking
based on recurrent neural networks. IEEE Transactions
on Circuits and Systems for Video Technology, 1-1. doi:
10.1109/TCSVT.2017.2736599.

Nageli, T., Alonso-Mora, J., Domahidi, A., Rus, D., and
Hilliges, O. (2017). Real-time motion planning for aerial
videography with dynamic obstacle avoidance and view-
point optimization. IEEE Robotics and Automation Let-
ters, 2(3), 1696-1703. doi:10.1109/LRA.2017.2665693.

Qui, W. and Yuille, A. (2016). Unrealcv: Connecting
computer vision to unreal engine. Computing Research
Repository (CoRR).

Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster
r-cnn: Toward real-time object detection with region
proposal networks. arXiv preprint.

Sadeghian, A., Alahi, A., and Savarese, S. (2017). Tracking
the untrackable: Learning to track multiple cues with
long-term dependencies. CoRR, abs/1701.01909. URL
http://arxiv.org/abs/1701.01909.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2017).
Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. CoRR, abs/1705.05065. URL
http://arxiv.org/abs/1705.05065.

Sonka, M., Hlavac, V., and Boyle, R. (2014). Image pro-
cessing, analysis, and machine vision. Cengage Learn-
ing.

Tsutsui, H., Miura, J., and Shirai, Y. (2001). Optical
flow-based person tracking by multiple cameras. In
International Conference on Multisensor Fusion and
Integration for Intelligent Systems.

Wei, H., Lu, W., Zhu, P., Ferrari, S., Klein, R.H., Omid-
shafiei, S., and How, J.P. (2014). Camera control
for learning nonlinear target dynamics via bayesian
nonparametric dirichlet-process gaussian-process (dp-
gp) models. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Zhang, Y., Qiu, W., Chen, Q., Hu, X., and alan L. Yuille
(2016). Unreal stereo: A synthetic dataset for analyzing
stereo vision. Computing Research Repository (CoRR).

