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Abstract— The detective board game of CLUE� can be
viewed as a benchmark example of the treasure hunt problem,
in which a sensor path is planned based on the expected
value of information gathered from targets along the path. The
sensor is viewed as an information gathering agent that makes
imperfect measurements or observations from the targets, and
uses them to infer one or more hidden variables (such as,
target features or classification). The treasure hunt problem
arises in many modern surveillance systems, such as demining
and reconnaissance robotic sensors. Also, it arises in the
board game of CLUE�, where pawns must visit the rooms
of a mansion to gather information from which the hidden
cards can be inferred. In this paper, Q-Learning is used to
develop an automated neural computer player that plans the
path of its pawn, makes suggestions about the hidden cards,
and infers the answer, often winning the game. A neural
network is trained to approximate the decision-value function
representing the value of information, for which there exists
no general closed-form representation. Bayesian inference, test
(suggestions), and action (motion) decision making are unified
using an MDP framework. The resulting computer player is
shown to outperform other computer players implementing
Bayesian networks, or constraint satisfaction.

I. INTRODUCTION

THE game of CLUE� is a benchmark example for the
treasure hunt, which is a fundamental problem that

arises in many modern sensor and surveillance systems
comprised of sensors installed on mobile platforms. The
treasure hunt problem is a coupled problem of robot path
planning and inference that can be approached using pre-
posterior decision analysis. Since the sensors are installed
on mobile platforms, their path must be planned for the
purpose of gathering sensor measurements and infer one or
more hidden variables about the targets. Since the targets are
distributed throughout the workspace, the path determines
what measurements can be obtained by the sensor. Exam-
ples of relevant applications include landmine detection and
classification by sensors installed on ground robots [1], [2],
[3]. These applications constitute a shift with respect to the
traditional paradigm of a sensor that is employed in order
to enable robot motion planning [4]. Thus, new decision
and control techniques need to be developed to optimize
the overall system performance by planning sensing or
information-gathering strategies that maximize the expected
benefit of information of the measurement sequence, while
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minimizing the cost associated with the use of sensor and
platform resources, such as, energy and distance.

The board game of CLUE� is a detective game with the
objective of inferring three hidden cards, representing the
guilty suspect, the weapon, and the room of an imaginary
murder. The pawns navigate the game board in order to visit
the rooms of the CLUE� mansion, where they can make
suggestions and gather information about the hidden cards,
which are viewed as the treasure. Similarly to sensor systems,
the information gathered by each player depends on the
location of his/her pawn, because a suggestion must always
include the room that is presently occupied by the pawn.
Also, the distance traveled by the pawn must be minimized
in order to minimize the number of turns needed to infer
the hidden cards and beat the adversaries. Recently, several
authors have demonstrated that computer games are useful
for developing and demonstrating computational intelligence
methods and algorithms [5], [6], [7], [8], [9], [10]. This paper
uses the game of CLUE� to illustrate the key challenges and
characteristics of the treasure hunt problem, and develops a
methodology that can be extended to sensor path planning
research. A graphical-user-interface and an interactive simu-
lation of the game were developed by the authors in [11] to
enable a Bayesian network (BN) intelligent computer player
to compete against human players, and to test decision-
making strategies that have been developed for robotic sensor
systems [3], [12], [13].

The approach presented in this paper is based on a Markov
decision process (MDP) [14] representation of the game,
which can be utilized to obtain a policy that optimizes the
expected sum of a discounted reward, representing the value
of information minus its cost. The main difficulties associated
with MDPs are that the transition and reward functions may
be unknown, and that large state and/or decision spaces
may be intractable due to the curse of dimensionality [14].
Reinforcement learning is able to obtain a decision-value
function by using observed rewards to learn an optimal or
nearly optimal policy from data. Function approximation by
neural networks (NNs) and sampling techniques may be
combined to deal with continuous state spaces [15]. Since
the game of CLUE� presents both of these difficulties, in
this paper Q-Learning [16] [15] is used to learn the reward
function, and a neural network is used to represent the Q

function. The approach presented in this paper is related
to [17], where a NN is trained by supervised learning to
evaluate board positions with hand-labeled data in the game
of Backgammon. Also, in [18], an approach is presented for
training a NN in Backgammon using time consuming self-
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play with temporal difference.
The Q-Learning approach presented in this paper employs

next state estimation to avoid learning from a large number
of real game trials, and save computation time. The current
state estimation is based on probabilistic inference by BNs.
The CLUE BN developed by authors in [11] is implemented
not only to infer the hidden cards, but also to estimate the
MDP state at the current time step, based on the latest
available evidence obtained from the game. In fact, the
posterior probability mass function (PMF) of the hidden
room cards obtained by BN inference is viewed as the
MDP state to satisfy the Markov property, and, together
with the action (motion) decision, is used as the input to
the NN approximation of the Q function. The paper is
organized as follows. Section II reviews the background and
the CLUE� game rules. Section III presents the methodology
used to develop the neural computer player and, in Section
IV, the player is tested against other computer players of
CLUE� developed by the authors, which, to the best of our
knowledge, are the only automated computer games that have
been developed for this game.

II. BACKGROUND

A. The Game of CLUE�

The CLUE� mansion includes nine rooms, the dining
room, library, billiard room, hall, kitchen, lounge, ballroom,
study and conservatory, and connecting hallways, as illus-
trated on the game board in Fig. 1. The six suspects, Col.
Mustard, Miss Scarlet, Prof. Plum, Mr. Green, Mrs. White
and Mrs. Peacock are represented by pawns and can use any
of the six weapons, a knife, rope, candlestick, lead pipe,
revolver, and wrench, to commit the murder. Since each
suspect, weapon, and room is represented by an illustrated
card, there are a total of twenty-one cards in the deck. Three
hidden cards representing the murder weapon, room, and
guilty suspect are selected randomly and removed from the
deck at the beginning of the game. The remaining cards are
then dealt to the players. During the game, players move their
pawns from room to room and, upon entering a room, make
a “suggestion” about the hidden cards, which must include
the room they presently occupy. There are three ways for a
pawn to enter a room: (i) through one of the doors, (ii) via a
secret passage (Fig. 1), or (iii) by another player’s suggestion.
Both (i) and (ii) are decided by the player, whereas (iii) is
beyond the player’s control. For instance, the player enters
the ballroom and makes a “suggestion” represented by a set
of {Miss Scarlet, knife, ballroom}, which shows that at that
time, he/she believes Miss Scarlet commits the imaginary
murder with knife in the ballroom.

Players gather information about the adversaries’ cards by
making suggestions from which the three hidden cards are
inferred. Every suggestion by player i must be disproved by
player (i+1) by showing player i one of the suggested cards.
If player (i+1) has none of the suggested cards, it is the turn
of player (i + 2) to disprove the suggestion by player i, and
so on, until someone can disprove it using a card from their

own deck. Clearly, if nobody can disprove the suggestion,
then the suggested cards are the hidden ones. When a player
is confident in inferring the hidden cards, he/she can make
an accusation. If the accusation is correct, the player wins
the game, otherwise he/she loses and exits the game.

Fig. 1. CLUE� game board. CLUE� & c©2006 Hasbro, Inc. Used with
permission.

B. Review of Markov Decision Processes (MDPs)

An MDP is a tuple M = {S,A, T, R} representing a
sequential decision model. S = {x1, . . . , xn} is a finite
set of possible state values, called the state space. A =
{a1, . . . , am} is the set of feasible action decisions. T is the
transition probability function T : S × A → P(S), which
describes the MDP state transitions, such that whenever the
state at time k has value Xk = xi and the decision is Uk =
aj , there is a probability P(Xk+1 = xl | Xk = xi, Uk = aj)
that the next state value is Xk+1 = xl. The reward function,
R : S × A → R, specifies the value of the immediate
reward, rk = R( Xk, Uk), received after executing the action
decision Uk in state Xk. A policy is a mapping of state values
to actions, π : S → A. Let the value function V π(Xk) denote
the expected discounted return of policy π

V π(Xk) = E

{
∞∑

i=0

γirk+i | π, Xk

}
(1)

Where, rk+i is the reward received at i steps into future, and
the discount factor 0 ≤ γ < 1 modulates the effect of future
rewards on present decisions, with small values emphasizing
near-term gain and larger values emphasizing later rewards.
Then, an optimal policy π∗ is one that maximizes V π(Xk)
for all possible states Xk ∈ S. The Markov property
guarantees that an optimal policy exists, though it may not
be unique, and, thus, it is associated with an optimal value
function V ∗(Xk) = maxπ V π(Xk). The optimal policy of an
MDP, M, is a fixed point of the Bellman’s equation, which
can be determined iteratively using policy iteration or value
iteration algorithms [19].

In value iteration, the value of a state V (Xk) is the total
expected discounted reward accrued by a policy starting at
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Xk ∈ S. The Q function of a state-action pair, Q(Xk, Uk),
is the total expected discounted reward accrued by a policy
that produces Uk = π(Xk) [19]. The Bellman equation can
be formulated in terms of the aforementioned functions, such
that the state-action value function is

Q(Xk, Uk) = E {R(Xk, Uk) + γV (Xk+1)} (2)

V (Xk+1) = max
Uk+1∈A

Q(Xk+1, Uk+1). (3)

If two functions Q(·) and V (·) satisfy the above Bellman
equation, then they specify an optimal greedy policy

π∗(Xk) = arg max
Uk∈A

Q(Xk, Uk) (4)

Value-iteration algorithms use eq. (2) to iteratively determine
Q(·) and V (·) and, subsequently, determine π∗(·).

Value iteration can be used to determine the optimal policy
of an MDP, M, provided the transition probability function
T is known. If T is unavailable, Q-Learning can be utilized to
learn an approximate state-action value function Q(Xk, Uk)
that is iteratively updated by the rule,

Q(Xk, Uk) ← (1− α)Q(Xk, Uk)

+ α[rk + γ max
Uk∈A

Q(Xk+1, Uk)] (5)

where, α is the learning rate, and 0 < α ≤ 1.

C. Review of Bayesian Network Inference in CLUE�

A Bayesian network is comprised of a directed acyclic
graph (DAG) and a parameter structure that can be obtained
from expert knowledge or learned from data [20], [21]. The
BN nodes XC = {X1, . . . , XN} represent discrete and ran-
dom variables that each have a finite range {xi,1, . . . , xi,ni

},
where xi,j denotes the jth state value or instantiation of
variable Xi. The union of the ranges of all nodes in XC

is the state space of the BN. The BN parameters are called
conditional probability tables (CPTs). Each CPT is attached
to a node, Xi ∈ XC , and lists in tabular form the conditional
probability mass function (PMF), P(Xi | pa(Xi)], where
pa(Xi) denotes the set of parents of Xi. If in the BN DAG
there is an arc from Xj to Xi, node Xj is said to be a parent
of Xi, and Xi is said to be a child of Xj [20]. After a BN
model is determined, it specifies the joint PMF of XC in
terms of the recursive factorization,

P(XC) ≡ P(X1, . . . , XN) =
∏

Xi∈XC

P(Xi | pa(Xi)) (6)

which is represented by the BN architecture. The above BN
factorization is convenient for inferring any node(s) in XC

from information or evidence about the other nodes in XC .
In particular, a junction-tree BN inference algorithm [22] can
be used to efficiently compute the posterior PMF of one or
more hidden nodes from the BN CPTs in (6).

In [11], the authors presented a BN approach to automating
suggestions in CLUE�. A BN model of the relationships
between the cards is obtained by representing every card
in the network by a BN node, and by using the outcomes
of the suggestions obtained during the game as evidence

Fig. 2. Architecture of CLUE� BN model, taken from [11]

from which to infer the hidden cards. The architecture of
the CLUE� BN is shown in Fig. 2. For simplicity, it is
assumed that there are three players in the game, but the same
approach can easily be extended to any number of players.
The hidden cards are represented by the guilty suspect node
S, the murder weapon node W , and the murder room node
R. The remaining eighteen cards are randomly dealt to the
players, such that every time a card is dealt, it influences
the cards that are dealt later. Node C�

j,i denotes the jth card
in the deck, dealt to player ith, and belonging to category
� = s, w, r, where, s denotes the suspect category, w the
weapon category, and r the room category. Thus, the possible
values of the suspect cards are {s1 (Col. Mustard), s2 (Ms.
Scarlet), s3 (Prof. Plum), s4 (Mr. Green), s5 (Mrs. White), s6

(Mrs. Peacock) }, those of the weapon cards are {w1 (knife),
w2 (rope), w3 (candlestick), w4 (lead pipe), w5 (revolver),
w6 (wrench)}, and those of the room cards are {r1 (dining
room), r2 (library), r3 (billiard room), r4 (hall), r5 (kitchen),
r6 (lounge), r7 (ballroom), r8 (study), r9 (conservatory)}.
Thus, the CPTs of the BN model in Fig. 2 can be obtained
using basic probability theory, as explained in [11].

At every player turn, indexed by a subscript k, new
evidence may become available about the adversaries’ cards.
Information about BN nodes is referred to as hard evidence
when it refers to exact knowledge of a variable’s instanti-
ation. It is referred to as soft evidence, when it refers to
an observed probability distribution based, for example, on
the negation of one or more values in a variable’s range.
Both types of evidence are obtained during the game of
CLUE�, and are organized into an evidence table, Ek, that is
updated at every turn. Ek contains the observed probability
before turn k for every possible value of every node card
C�

j,i in the CLUE� BN (see [11] for more details). For
example, if player 2 shows Mrs. Peacock’s card to the
neural computer player, then the entry corresponding to the
first (uninstantiated) suspect card Cs

3,2 and s6 is assigned
probability one, and all the other values of Cs

3,2, s1 through
s5, are assigned probability zero. The neural computer player
developed in this paper utilizes the CLUE� BN to infer the
hidden cards and develop suggestions at every one of its
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turns, based on the latest evidence table.
The next section presents the design of a neural computer

player that uses an MDP representation of the game and Q-
Learning to determine an optimal policy for deciding pawn
movements and suggestions.

III. DEVELOPMENT OF MDP-BASED NEURAL

COMPUTER PLAYER

A. Design Overview

The problem of deciding pawn’s movement and sugges-
tions in the game of CLUE� is formulated as an MDP in
which the reward to be maximized is the value of information
obtained by visiting the mansion’s rooms, minus the distance
traveled by the pawn. Since the room occupied by the pawn
must be included in the suggestion, the pawn’s path deter-
mines the information that will be gathered over one or more
turns by the computer player. To satisfy the Markov property,
the MDP state is formulated using posterior probabilities of
the hidden room card. The architecture of the MDP-based
neural computer player is shown in Fig. 3, where the design
blocks are named based on their functionalities.

�

�

�

Fig. 3. Architecture of MDP-based Neural Computer Player

Let each player be denoted by Pi, where i represents
the turn sequence, and assume the neural computer player
is P1. The set of feasible action decisions for P1 is A =
{a1, . . . , a9}, where ai ∈ A denotes the decision of entering
room ri. Let the MDP state Xk be defined as the posterior
PMF P(R | Ek), such that Xk = [xk,1 · · · xk,9]

T ,
where xk,i ≡ P(R = ri | Ek). Then, the Markov
property P(Xk+1 | Xk, Uk, Xk−1, Uk−1, . . . , X0, U0) =
P(Xk+1 | Xk, Uk) holds, and

∑9
i=1 xk,i =

∑
i P(R =

ri | Ek) = 1 for ∀k. Although time is discrete, the MDP
state is continuous, with S ⊂ [0, 1]9. Therefore, as illustrated
in Fig. 3, a finite subspace of n possible states, Sn, is first
sampled from the continuous state space, i.e., Sn ⊂ S. Then,
a next-state estimator is developed to estimate the next state
Xk+1 from the executed action Uk and current state Xk, as
required by Q-Learning. Equation (5) is utilized to obtain
the Q function over the domain Sn ×A, which can be used
to train the corresponding neural network, as explained in
Section III-B.

In the neural game player architecture (Fig. 3), the con-
tinuous state Xk is inferred from the CLUE� BN using a
junction-tree inference algorithm (Section II-C). Xk is fed to
the NN approximator to estimate the Q function and output
Q̂(Xk, Uk). The MDP state is augmented by the pawn’s
position qk ∈ R

2 in the game board. The distance between
qk and any room ri is defined as the minimum Manhattan
distance [23]. Since the distance traveled to ri is the cost of
the decision ai, the distance is denoted by D(qk, Uk = ai)
and is subtracted from the value of information Q̂(Xk, Uk)
(Fig. 3). An additional cost, N(Uk = ai) is used to
measure the number of times the player enters room ri in
order to limit visits to the same room. The total reward
function R(Xk, Uk, qk) is defined as a weighted function
of Q̂(Xk, Uk), D(qk, Uk) and N(Uk). Then, the optimal
policy Uk = π∗(Xk, qk) determines which room the pawn
must move to next, given its position qk and the posterior
PMF of the hidden room card Xk. A simple path planner
implements the decision and moves the neural player’s pawn
to the chosen room. Subsequently, the neural player makes
a suggestion that includes the room occupied, and a weapon
and suspect chosen by means of the CLUE� BN. The
objective is to obtain the best possible evidence about the
hidden cards, by moving to rooms that offer the optimal
tradeoff between distance traveled and value of information.

B. Value of Information Function Approximation

The value of information is the expected utility of perform-
ing a test or observation that may be used to infer hidden
variables in a stochastic process. This terminology was first
introduced by Howard in [24], who used utilities to guide
the test selection in partially-observable MDPs. Although
several functions have been proposed for assessing the value
of information in dual control [25], and sensor planning [13],
the best functional representation often cannot be determined
a priori. Therefore, in this section, a NN is trained to
approximate the Q function associated with the value of
information from the data obtained via Q-Learning. The
objective is to estimate the reward associated with making
a suggestion that includes room ri prior to visiting ri. The
utility of the suggestion is that its outcome may be used for
inference, while its cost is the distance traveled to the room.

The main drawback of Q-Learning is that its convergence
speed may be too low due to the large size of the state space
created by complex or multiple goal tasks. For instance,
learning the Q function for CLUE� may require thousands
of learning trials (where, every trial is a game) before conver-
gence to an optimal state-action value function is achieved.
Every simulated CLUE� game takes approximately 10 to
20 minutes. Thus, a next-state estimator is presented that
estimates Xk by mimicking the outcome of a decision Uk,
leading to significant savings in learning times. Suppose P1

is in state Xk ∈ Sn and makes a decision Uk = ai to enter
room ri and make a suggestion Gk = {SG , WG , RG = ri},
where the subscript G denotes the suggested card. Then, there
are four possible outcomes: (i) Gk cannot be disproved and
the value of Xk indicates that P(R = ri | Ek) = 0, thus
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P1 has ri and Xk+1 = Xk; (ii) Gk cannot be disproved
and the value of Xk indicates that P(R = ri | Ek) > 0,
thus P1 does not have ri, and the new state Xk+1 is P(R =
ri | Ek+1) = 1 and P(R = rj , j 	= i | Ek+1) = 0; (iii)
one of the adversaries shows a suspect or weapon card to
disprove G, thus Xk+1 = Xk; (iv) one of the adversaries
shows the room card ri to disprove G, thus Xk+1 changes
to include P(R = ri | Ek+1) = 0. In this case, the system
state is updated by eq. (7). The fact that R 	= ri is the new
evidence obtained at turn k, and then Ek+1 = {Ek, R 	= ri}.
Also, P(R 	= ri | R = rj , Ek) = 1, j 	= i. Eq. (7) can be
derived as follows:

xk+1,j = P(R = rj | Ek+1) = P(R = rj | Ek, R 	= ri)

=
P(R 	= ri| R = rj , Ek)P(R = rj | Ek)

P(R 	= ri| Ek)

=
P(R 	= ri| R = rj , Ek)P(R = rj | Ek)∑
j P(R 	= ri| R = rj , Ek)P(R = rj | Ek)

=

{
0 if j = i

P(R=rj | Ek)∑
l,l �=i P(R=rl| Ek] else

=

{
0 if j = i

xk,j∑
l,l �=i xk,l

else.

(7)

As is seen in eq. (7), if xk,i = 0, Xk+1 = Xk. The above
four cases of state transitions will be equivalently encoded
in the function of “next−state−estimator” in Table I.

Although Xk+1 can be updated using eq. 7, it is possible
that Xk+1 	∈ Sn. In this case, Xk+1 is approximated by,

X̂k+1 = arg min
Xk∈Sn

||Xk+1 −Xk|| (8)

where, || · || is the Eucledian norm. The reward matrix is set
by heuristics as follows:

R(Xk, Uk) = xk,i, i = arg Uk, ∀Xk ∈ S, Uk ∈ A, (9)

where the notation arg(Uk) returns the index i when Uk = ai

meaning the decision of entering room ri. The Q-Learning-
based algorithm in Table I is used to compute the Q function.
For a sample number n = 1300, used to sample Sn from
S, a discount factor γ = 0.8, and a learning rate α =
1, the implementation of this Q-Learning algorithm takes
1.26 ·103 seconds on a Pentium 4 CPU 3.06 GHz computer,
and converges to the optimal Q function in approximately
5 · 105 iterations. Subsequently, the optimal Q function is
used to train a two-layer feed-forward sigmoidal NN via
backpropagation. The NN has 18 inputs, defined as I =
{Xk, sgn(Uk)} where sgn(·) denotes the signum function.
The NN has 100 hidden nodes and one output Q̂(Xk, Uk).
The MATLAB� gradient descent adaptive learning algorithm
traingda is applied to train the NN to approximate the
decision-value function over S.

C. Application of MDP-based Neural Computer Player

The MDP-based neural computer player of CLUE� im-
plements the NN described in Section III-B to approximate

TABLE I

Q-LEARNING ALGORITHM

Inputs: Sn,A, R(·), 0 ≤ γ < 1, 0 < α ≤ 1
Outputs: Q(·)
initialize Q(·) to be a zero matrix
initialize Q1(·) to be a matrix with elements →∞
initialize learning convergence counter count← 0
for each epoch

randomly select current state Xk from Sn

randomly select Uk from {Uk | R(Xk , Uk) ≥ 0}

X̂k+1 ← next−state−estimator(Xk , Uk,Sn)
update Q(Xk, Uk) using eq. (5)
/* Check convergence /*
if |Q−Q1| < tol and ||Q(Xk, Uk)|| > 0

if counter > threshold
break for loop; /* convergence */

else count← count + 1
end; /* if loop */

else Q1 ← Q; count← 0
end; /* if loop */

end; /* for loop */
normalize Q

Function X̂k+1 = next−state−estimator(Xk , Uk,Sn)
i← arg(Uk)
if xk,i = 0 /* R �= ri */

Xk+1 ← Xk

elseif xk,i = 1 /* R = ri */
Xk+1 ← Xk

else /* R = ri, or ri dealt to P2 or P3 */
randomly select one of the following cases:
(i) G cannot be disproved by P2 and P3 and R = ri

j = i, xk+1,j ← 1
j �= i, xk+1,j ← 0

(ii) a suspect or weapon card is used to disprove G
Xk+1 ← Xk

(iii) a room card is used to disprove G
j = i, xk+1,j ← 0

j �= i, xk+1,j ←
xk,j∑

l,l �=i xk,l

end; /* if loop*/
X̂k+1 ← arg minXk∈Sn

||Xk+1 −Xk||

Q̂(Xk, Uk), and the BN model described in Section II-C to
incorporate the evidence gathered by its pawn, and infer the
MDP state Xk. Thus, Q̂(Xk, Uk) can be obtained by the
NN approximator for every decision ai ∈ A. The polygonal
decomposition of the pawn’s workspace shown in Fig. 4 can
be used to evaluate the distance function D(qk, ai). When
the optimal decision Uk = π∗(Xk, qk) is implemented and
the player enters a room ri to make suggestion, the cost
N(Uk = ai), which is initially set to zero, is increased by
one. Then, the total reward function is given by,

R(Xk, Uk, qk) = Q̂(Xk, Uk)−Wd ·D(qk, Uk)−Wn ·N(Uk)
(10)

where Wd and Wn are constant positive weights that are
assigned the values Wd = 0.5 and Wn = 1.5 in this paper.

The optimal decision π∗(Xk, qk) is greedily determined
from eq. (11), given current state Xk and player position qk.

π∗(Xk, qk) = arg max
Uk

R(Xk, Uk, qk). (11)

Then, at the neural computer player’s turn k, a simple
path planner [4] decomposes the pawn’s workspace into a
convex polygonal decomposition (Fig. 4), and generates a
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Fig. 4. Convex polygonal decomposition (CPD) of the CLUE� workspace,
where cells of a door to room are shown in grey, other cells in white, and
obstacles in black.

connectivity graph in which each node represents a polygon
that is obstacle free and decomposable into the square bins
illustrated on the board. The connectivity graph is searched
by the A∗ algorithm to determine the shortest path from qk

to ri, i = argπ∗(Xk, qk). After rolling the dice, the neural
computer player moves its pawn along the shortest path, from
bin to bin in the two-dimensional grid illustrated on the game
board (Fig. 1), until the dice value is met.

Once the neural computer player, P1, enters room ri, say
at turn (k + t), the BN model described in Section II-C
is used to compute the posterior PMFs P(S | Ek+t) and
P(W | Ek+t) or, in other words, to infer the hidden cards
S and W based on the latest available evidence. Then, a
suggestion G = {SG , WG , RG = ri} is produced according
to the following heuristic rule: if there is a suspect card sj

with 0 < P(S = sj | Ek+t) < 0.9, then SG = sj , otherwise
SG is set equal to a suspect card owned by P1; if there is a
weapon card wl with 0 < P(W = wl | Ek+t) < 0.9, then
WG = wl, otherwise WG is set equal to a weapon card owned
by P1. At the end of its turn, when G has been disproved
by an adversary, P1 makes an accusation {s∗i , w

∗
j , r∗l } only

if P(S = s∗i | Ek+t+1), P(W = w∗
j | Ek+t+1), and

P(R = r∗l | Ek+t+1) are all greater than or equal to 0.9,
otherwise the game continues.

IV. GAME SIMULATION AND PERFORMANCE

COMPARISON RESULTS

An interactive computer simulation of CLUE� has been
developed by the authors in [11] using the MATLAB�

Graphical User Interface (GUI) toolbox. The simulated game
consists of three phases: the players choose pawns, the
computer deals the cards, and the players start the game. For
simplicity, in this paper, the neural computer player plays
against two adversaries who may be computer or human
players. Every player’s turn consists of three steps: roll the
die, move the pawn a distance no greater than the die number,
and transfer the turn to next player. If a player’s pawn enters

a room during his/her turn, the player makes a suggestion
and waits for other players’ responses. If the player’s pawn
is taken into a room by another player, he/she must wait for
his/her turn to make a suggestion.

An accusation can be made at the beginning or at the
end of a player’s turn. Each player can see his/her cards,
and his/her decisions are observed and recorded by the other
players during the game via the interfaces developed in
MATLAB�. He/she can also keep a record of all suggestions
that take place during the game, and of how they are
disproved, gathering evidence even during the adversaries’
turns. The neural computer player is tested by letting it
compete against a human player, a BN computer player
developed by the authors in [11], a constraint satisfaction
player (CSP), and a random computer player.

A. Competing BN and CSP Computer Players

The BN player computer player presented in [11] imple-
ments the same BN model used in this paper to infer the
posterior PMFs P(S | Ek), P(W | Ek), and P(R | Ek)
at every turn k. If any of these posterior probabilities are
greater than or equal to 0.9 the BN computer player makes
an accusation, otherwise, it rolls the die and moves its pawn.
The pawn’s path planning is performed based on a heuristic
rule, such that if P(R = rj | Ek) ≥ 0.9 for some room value
rj , then the pawn enters room rj as often as possible, and
makes a suggestion by the same rule used by the MDP-based
neural player (Section III-C).

The constraint satisfaction problem (CSP) player imple-
ments the approach reviewed in [19, Chapter 5], with two
types of constraints: (C1) S 	= Cs

ji, W 	= Cw
ji and R 	= Cr

ji,
for ∀ i, j, and (C2) C�

ji 	= C�
nm, for � = s, w, r, i, m = 1, 2,

j, n = 1, 2, 3, and i 	= m or j 	= n. When the CSP
player makes a suggestion and the ith player disproves it, an
instantiation C�

ji = c�
ji,l is obtained for some j and included

in constraint (C2). Then, in order to make a suggestion, the
CSP searches an assignment for S, W , and R that satisfies
(C1)-(C2). Based on a heuristic strategy recommended by
the CLUE� game rules, the CSP pawn moves to the nearest
room to begin making suggestions. Then, it moves back and
forth between two adjacent rooms to determine S, W , and
subsequently navigates the board to determine R.

The random computer player performs random moves and
suggestions and, thus, is used as a place holder that hardly
ever wins the game. Since the NN and BN models are trained
before the game playing, decision making at every turn by
any of NN, BN, CSP and random computer players is very
fast with the time less than several seconds on a Pentium 4
CPU 3.06 GHz computer.

B. Simulated Games Results

The efficiency of the BN and CSP players were tested
by making both of them compete against an impartial
human player who is not familiar with the simulation or
the computer players designs. As shown in Table II, the
results obtained from 25 games demonstrate that the BN
player performs almost as well as the human player, and the
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former outperform the CSP player, which wins only 20%
of the times. As shown in Table III, when the MDP-based
neural computer player competes against the CSP and the
random computer players it wins 75% of the times. Instead,
when the neural player competes against the BN and the
random computer player, it wins 65% of the times (Table
IV). Thus, it can be concluded that the neural player is the
most effective of the computer players. The reason is that
the other computer players do not account for the value of
information and the game evidence in deciding the pawn’s
motion. Since the BN player performs almost as well as the
human player (Table II) the neural player is likely to perform
as well or, perhaps, better than human players. This test will
be the subject of future research.

TABLE II

GAME RESULTS OF BN, HUMAN AND CSP PLAYERS PLAYING TOGETHER

Winning Player: BN Player Human Player CSP

Winning Times /
Total Playing Times 9 / 25 11 / 25 5 / 25

Winning Rate 36.0% 44.0% 20.0%

TABLE III

GAME RESULTS OF NEURAL PLAYER PLAYING AGAINST CSP PLAYER

Winning Player: Neural Player CSP

Winning Times /
Total Playing Times 15 / 20 5 / 20

Winning Rate 75.0% 25.0%

TABLE IV

GAME RESULTS OF NEURAL PLAYER PLAYING AGAINST CSP PLAYER

Winning Player: Neural Player BN Player

Winning Times /
Total Playing Times 12 / 20 8 / 20

Winning Rate 60.0% 40.0%

V. CONCLUSIONS

An MDP-based neural computer player is developed for
the board game of CLUE� using a combination of Q-
Learning and BN inference to estimate the value of infor-
mation. The objective of the neural player is to solve a
benchmark example of the treasure hunt problem, which
arises in several robotic sensor applications, such as demining
and reconnaissance. Sampling techniques and NN function
approximation are used to address the continuous state space,
defined as the posterior PMF of the hidden variables to
maintain the Markov property. Thus, Bayesian inference
and action (motion) decision making can be unified by the
MDP framework. The simulated game statistics show that
the neural computer player outperforms existing computer

players of CLUE� obtained by Bayesian networks and
constraint satisfaction approaches, which do not account for
the value of information in deciding the pawn’s motion.
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