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Abstract— A constrained-backpropagation training technique
is presented to suppress interference and preserve prior knowl-
edge in sigmoidal neural networks, while new information is
learned incrementally. The technique is based on constrained
optimization, and minimizes an error function subject to a
set of equality constraints derived via an algebraic training
approach. As a result, sigmoidal neural networks with long term
procedural memory (also known as implicit knowledge) can be
obtained and trained repeatedly on line, without experiencing
interference. The generality and effectiveness of this approach
is demonstrated through three applications, namely, function
approximation, solution of differential equations, and system
identification. The results show that the long term memory
is maintained virtually intact, and may lead to computational
savings because the implicit knowledge provides a lasting
performance baseline for the neural network.

I. INTRODUCTION

S IGMOIDAL neural networks (NNs) are used in a va-
riety of applications thanks to their ability to provide

excellent universal function approximation for multivariate
input/output spaces on a compact set. However, as was first
pointed out by Cohen [1], Todorov [2], and Ratcliff [3], they
also suffer from a serious limitation known as interference,
which impairs their ability to learn multivariate mapping
sequentially. Interference refers to the phenomenon by which
the process of learning new patterns may suddenly and
completely erase the previous knowledge of the network.
Thus, it may seriously jeopardize the use of artificial neural
networks in applications where new knowledge becomes
available on-line or cannot be assimilated at once due to com-
putational complexity issues. We define as long-term memory
(LTM) the prior knowledge that must be preserved by an
artificial neural network at all times. New information that is
assimilated incrementally but needs not be consolidated into
LTM is referred to as short-term memory (STM).

The ability to suppress interference and to accurately
preserve LTMs is crucial to many engineering applications,
including control, modeling of system dynamics, and system
identification (ID). Consequently, various solutions have been
proposed to address the problem. One approach presents
some of the LTM and STM data together to suppress interfer-
ence in supervised incremental training algorithms [4], [5].
While very effective for some applications, it is not suitable
for those that require highly accurate preservation of LTM
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knowledge, or that have stringent computational require-
ments due, for example, to large input-output spaces, or to
learning being performed online. Another approach consists
of using extra hidden units to augment the approximation
power of the neural network, and of partitioning the weights
into two subsets, referred to as LTM and STM weights. The
LTM weights are used to preserve LTM data by holding
their values constant, while the STM weights are updated
with the new STM data [6], [7]. The latter approach is more
consistent with the memory-formation mechanisms observed
in the nervous system [8]. However, due to nonlinearity and
global support properties, modifying the STM weights in a
sigmoidal neural network can unfortunately also significantly
change its input-output mapping everywhere in its domain.
Therefore, holding the LTM weights constant cannot always
guarantee accurate LTM preservation, and is particularly
ineffective when training sigmoidal neural networks.

Considerable success has also been met in the field of
self-organizing networks and associative memories (e.g., [9],
[10], [11], [12], [13]). In these networks, the neurons use
competitive learning to recognize groups of similar input vec-
tors and associate them with a particular output by allowing
neurons that are physically near each other to respond to
similar inputs. Although these networks are very important
to pattern recognition and classification applications, they
cannot substitute for nonlinear backpropagating NNs (e.g.,
multilayer sigmoidal perceptrons) in function approximation,
system identification, and control tasks. Nonlinear backprop-
agating NNs can also greatly benefit from the ability to
memorize patterns in the long term, and from the elimination
of catastrophic forgetting. Moreover, most of the aforemen-
tioned research consists of preserving declarative memories,
which refer to episodic and semantic forms of memories,
such as facts and categories.

Recently, the authors presented a novel constrained-
backpropagation (CPROP) approach to eliminate interference
and preserve LTM in fully-connected sigmoidal neural net-
works [14]. CPROP preserves LTMs by embedding them
into a set of equality constraints that are formulated in
terms of the neural weights by means of algebraic training
[15]. In [14], it the CPROP approach was illustrated by
preserving LTM of gain scheduled controllers in a neural
network controller that adapted to nonlinear plant dynamics
on line, via an adaptive-critic architecture. The previous re-
sults demonstrated the ability of CPROP to retain procedural
memories, also known as implicit knowledge, which refer to
memories of actions and motor sequences, such as as how
to ride a bicycle.

In this paper, the CPROP approach is extended to other
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engineering applications, namely, function approximation,
solution of ordinary differential equations (ODEs), and sys-
tem identification. In the function approximation application,
the LTM consists of prior knowledge of the function to be
approximated over a bounded domain (Section IV-A). In
the ODE solver, the LTM consists of boundary or initial
conditions to be satisfied by the solution in functional form
(Section IV-B). In the system identification application, the
LTM consists of system dynamics at chosen equilibria points
(Section IV-C). The results illustrate the CPROP approach is
widely applicable and very effective at preserving accurate
LTMs (Sections IV). Also, it is found that an added benefit of
preserving the LTM by means of CPROP is that it can lead to
significant computational savings in training the NN, because
the prior knowledge provides a performance baseline that
aids in the learning of new STMs, as is commonly observed
in biological neural systems.

II. BACKGROUND

A. Feedforward Neural Networks Algebraic Training

Suppose a feedforward neural network (NN) is used to
approximate a multi-dimensional function h : R

q → R
n on

a compact set. Let the adjustable parameters of the NN be
W, d, and V, and assume the output bias is set to zero, for
simplicity. Assume h is to be approximated using a training
set of input-output samples T = {pk,yk}, k = 1, 2, ..., r,
where p ∈ R

q and y ∈ R
n denote the function’s input and

output, respectively. The NN contains one hidden layer with
s nonlinear units, and sigmoidal transfer function

σ(r) =
er − 1

er + 1
(1)

Following the algebraic training approach presented in
[15], a so-called input-to-node matrix is defined from T
as N ≡ [WP + D]T , where P ≡ [p1p2 · · ·pr] and D ≡
[dd · · ·d︸ ︷︷ ︸

r

], such that P ∈ R
q×r, D ∈ R

s×r and W ∈ R
s×q .

Then, the NN output, ŷ, may be written as:

ŷ = VST
0 (2)

where V ∈ R
n×s contains the output weights and S0 ≡

{σ(nij)} is a matrix of sigmoidal functions, evaluated at
each element of the matrix N = {nij}. The function h may
be approximated from T using supervised training, in which
the error vectors are defined as

εk = ŷk − yk, k = 1, 2, ..., r (3)

Then, the error function to be minimized during training is:

V (N,V) =
1

r

r∑
k=1

εT
k εk (4)

In this paper, the Levenberg-Marquardt (LM) is implemented
for training due to its excellent convergence and stability
properties [16], [17]. The LM algorithm iteratively minimizes
V with respect to w, based on the NN Jacobian, J =

∂εk/∂w, which may be computed analytically via classical
backpropagation [18], [19].

III. METHODOLOGY

A. Problem Formulation for Supervised Training via Con-
strained Backpropagation (CPROP)

In this paper, training is formulated as a constrained opti-
mization problem that preserves prior knowledge through a
set of equality constraints, avoiding the need for representing
LTM training sets repeatedly to the NN. For simplicity,
consider a smooth single input scalar function h :R → R to
be approximated using a feed-forward NN. The extension to
multivariate functions is illustrated in section III-D. The long-
term memory (LTM) of a NN is defined as the knowledge of
the function h : p → y to be approximated by (2) that must
be preserved at all times, during one or more sequential-
training session. It is assumed that the LTM may comprise
sampled output and derivative information, or information
about the shape of h over a bounded subset S ⊂ R of its
domain. Let the short-term memory (STM) be defined as
the sequence of tasks or information that must be learned
through one or more training functions {el(w)}l=1,2,..., but
may not be consolidated into LTM.

Assuming that the long-term memory (LTM) can be
expressed by a training set of input/output samples and
derivatives information, an LTM training set is defined as
TLTM = {ξk, ζk, χk}k=1,...,rLTM

where χk = dh(ξk)/dξ.
Then, given a trained NN that has learned TLTM within a
desirable tolerance, the network connections may be parti-
tioned into LTM synaptic connections and STM connections,
with weights wL and wS respectively. The hidden nodes
are also partitioned into LTM and STM nodes that are
associated with LTM and STM input and output connections,
respectively. Typically, the STM nodes and weights, wS , are
added after the NN has been trained with TLTM in order to
augment its approximation power, and to allow it to acquire
new knowledge while preserving previous information, as
explained below.

In order to preserve prior knowledge, the LTM constraints
are always enforced during training, through a constrained
optimization technique. The conditions used to simplify the
constrained training problem are that the LTM input-to-node
values and the LTM input biases are held constant, and
that there are as many LTM connections as the number of
equations constituting the LTM constraints. However all of
the remaining LTM and STM weights are adjusted iteratively
during training. Then, the LTM output weights can be
expressed as a function of the STM weights (as shown in
[14]):

wL = g(wS) (5)

Based on supervised training, let (3) be the error function
used to acquire STM knowledge. Then, CPROP training may
be stated as,

minimize V (wL,wS)
subject to wL = g(wS)

(6)
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The main advantage of this approach is its ability to
formulate the LTM constraints using algebraic equations
that can be easily inverted to obtain g(·). Subsequently,
the constraints (5) are taken into account by the Jacobian
operator, and classical backpropagation techniques (such as
the LM algorithm) can be directly adopted to update the
STM weights. While this adaptation gives enough plasticity
to the network to acquire the STM data, the preservation of
the memory is guaranteed through the LTM output weights.

B. Explicit Computation of the Unconstrained Jacobian

For a scalar function, involving derivatives, the Jacobian
may be written as,

Jm = [Jm
w | Jm

d | Jm
v ]

where,

Jm
w = m SmWm−1

d Vd + PSm+1Wm
d Vd (7)

Jm
d = Sm+1Wm

d Vd (8)

and
Jm
v = SmWm

d (9)

Where, Sm ≡ {σm(nij)}, σm(·) denotes the mth derivative
of the sigmoidal function, and every derivative is evaluated
at each element of the matrix N. And, Jm is the Jacobian
corresponding to the mth derivative with respect to the
weights.

C. Jacobian computation, in the presence of constraints

The adjoined Jacobian is inspired by the adjoined gradi-
ent presented in [14] and is derived analytically from the
unconstrained Jacobian (Section III-B), using the tensorial
approach. Emphasizing the network partition into LTM and
STM nodes and connections, the NN output (2) is re-written
as:

ŷ = Sv + Σν (10)

Then, provided the assumptions in Section III-A are satisfied,
the explicit memory equation can always be written as:

ν = Φ−1 [λ − Ψv] (11)

Where, throughout the paper, Greek letters are used to denote
quantities associated with the LTM, and Latin letters are used
to denote quantities associated with the STM connections,
with the exception of wL and wS .

D. Extension to vectorial functions

Suppose the NN approximates a vector function f : R
q →

R
n and contains sLTM LTM nodes. Then, the NN output

equivalent to eq. (2) is Ŷ ∈ R
n×sLTM , and may be expressed

as:
Ŷ = [B − VΨT ]Φ−T (12)

Where B is a matrix containing LTM output information and,
possibly, derivative information obtained from TLTM :

B =
[

0n×rLTM

∂f

∂x1

∂f

∂x2

· · · ∂f

∂xq

]
(13)

xi denotes the ith input of the vector function for which
derivatives are known. The first block of the matrix is set to
zero, provided that the output of the NN has to be the the
zero vector, when fed with the TLTM , since we assume that
we equilibria points form LTM memory information.

The Jacobian is again decomposed into an unconstrained
and a constrained contribution. For convenience, the error
vector and Jacobian matrix are re-defined as,

J ≡

[
∂e1

1

∂w

∂e2
1

∂w
· · ·

∂erSTM

1

∂w

∂e1
2

∂w

∂e2
2

∂w
· · ·

∂erSTM

2

∂w

]T

(14)

where, rSTM is the number of STM training pairs, such that
the methodology in Section III still holds and for simplicity
and without the loss of generality (14) is specialized in case
of n = q = 2. In this case, the Jacobian matrices defined
with respect to the individual weights are:

Jw =

[
P1S

′(p)Vd1 P2S
′(p)Vd1

P1S
′(p)Vd2 P2S

′(p)Vd2

]

Jd =

[
S′(p)Vd1

P1S
′(p)Vd2

]

Jv =

[
S(p) 0
0 S(p)

] (15)

IV. CPROP APPLICATIONS AND RESULTS

A. Function approximation

The first application considers the approximation of a
smooth scalar function for which a closed-form analytic
representation is unavailable. Suppose the function has to
be learned sequentially by the NN using sampled infor-
mation. First, the NN must be trained using LTM train-
ing sets, T 1

LTM = {ξj, ζj}j=1,...,rLTM
and T 2

LTM =
{υl, χl}l=1,...,pLTM

, which contain input/output and deriva-
tive samples, respectively, and then it must be re-trained
using an STM training set, TSTM = {pk, yk}k=1,...,rSTM

.
This situation may come about if TSTM becomes available
at a later time, and the NN must be updated accordingly, or
if the sets are too large to be learned in batch mode. Then,
the neural network may forget the LTM while learning the
STM data due to interference.

The CPROP approach can be used to suppress interference
by writing eq. (2) as,

ŷ = S(p)v + Σ(p)ν (16)

where Σ(·) is the sigmoidal matrix of the LTM nodes, v
are the STM output weights, and ν are the LTM output
weights. The LTM constraints are derived from T 1

LTM and
T 2

LTM using the algebraic training approach (Section III-A),

S(ξ)v + Σ(ξ)ν = ζ

S′(ξ)Wdv + Σ′(ξ)Ωdν = χ

where,[
S(ξ)

S′(ξ)Wd

]
v +

[
Σ(ξ)

Σ′(ξ)Ωd

]
ν =

[
ζ

χ

]
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and ξ is a vector with elements {ξ1, . . . , ξrLT M }. Now, let,

Ψ ≡

[
S(ξ)

S′(ξ)Wd

]
and Φ ≡

[
Σ(ξ)

Σ′(ξ)Ωd

]
(17)

such that eq. (16) can be written as,

Ψ v + Φ ν = λ (18)

with λ ≡ [ζT χT ]T . In order to invert (18), Φ must be a
square non-singular matrix, which can be accomplished by
choosing the number of LTM connections to be,

sLTM = rLTM + pLTM

such that Φ ∈ R
sLT M×sLT M , and by verifying that its

determinant is non-zero (otherwise, Φ is re-designed).

Equation (11) constitutes the memory equation, which,
when substituted into (16) leads to:

y = S(p)v + Σ(p)Φ−1 [λ − Ψv] (19)

Letting e ≡ y − t denote the STM error, with constant
output target t formed from the set {y1, . . . , yrSTM }. From
eq. (19) and the STM training set TSTM it follows that
the Jacobian needed to acquire STM subject to the LTM
constraint eq. (11) is,

J =
∂e

∂w
=

∂y

∂w
=

∂

∂w

[
S(p)v + Σ(p)Φ−1(λ − Ψv)

]
(20)

by the chain rule. The first term is the unconstrained Jaco-
bian, Junc, derived in Section III-B. Thus, the final Jacobian
is given by the contribution of Junc and a memory term,
Jmem,

J = Junc + Jmem = Junc + Π
∂

∂w
(Ψv) (21)

where,
Π ≡ −Σ(p)Φ−1 (22)

since λ and Π do not depend on w, and,

∂

∂w
(Ψv) = [Ĵw | Ĵd | Ĵv] (23)

where:

Ĵw =

[
PLTMS′(ξ)Vd

S′(ξ)Vd + PLTMS′′(ξ)WdVd

]

Ĵd =

[
S′(ξ)Vd

S′′(ξ)WdVd

]

Ĵv =

[
S(ξ)

S′(ξ)Wd

] (24)

As an example, consider the nonlinear function plotted by
a dashed line in Fig. 1 over a domain D = [0, 3π] ⊂ R.
Suppose the shape of the function over a bounded subset
S = [0, π] ⊂ D is known a priori to be a sine function,
and TLTM is formed using the LTM samples shown in
Fig. 1. A sigmoidal NN with 15 hidden nodes is trained
to approximate TLTM using LM [20], and later, when 18
new STM samples become available (Fig. 1), the NN is re-
trained by the same LM algorithm using TSTM . If training is

conducted sequentially, without re-using the LTM data, the
NN starts out with proper LTM (dotted line in Fig. 1), but
then experiences catastrophic interference and, although it
learns STM well, it forgets the LTM entirely in the process
(dashed-dotted line in Fig. 1). Figure 1 also shows the
performance of a NN that is trained with the incremental
training method proposed by Mandziuk [6]. That is, LTM
weights (wL) are held constant while learning from TSTM .
As shown by the dashed line in Fig. 1, when the NN is trained
by this method, it still experiences interference and forgets
the LTM. Instead, when the LM algorithm is constrained by
implementing the above Jacobian and memory constraint, the
LTM is preserved at every epoch, and the NN learns the STM
without forgetting the LTM, as shown by Fig. 2.

Constant wL

NN w. LTM

NN w. 
LTM

and STM 

Function

y,  ŷ

z

Fig. 1. Existing algorithms, including [6] which holds wL constant to
preserve LTM, all experience interference when the neural network is trained
sequentially with LTM and, then, STM samples.

×  LTM samples 

     STM samples 

y, ŷ

z

Fig. 2. CPROP preserves LTM accurately at every epoch, until it properly
learns the STM at approximately 850 epochs.

B. Solution of Ordinary Differential Equations

An important application of artificial NNs is the solution
of differential equations. Although there exist many numer-
ical methods for solving differential equations (e.g., finite
elements, Runge-Kutta, and B-splines), NN solutions present
several advantages. For example, NNs provide closed-form,
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differentiable solutions that are amenable to analysis and
control, and can be combined with sampled data by se-
quential training. Thus, NN solutions are very promising for
solving data-assimilation problems in which prior knowledge
is available from physical models comprised of differential
equations, and additional sampled data becomes available
incrementally over time from actual measurements.

A promising approach to solving initial and boundary
value problems using NNs has been proposed by Lagaris
in [21]. Using the collocation method, Lagaris showed that
the differential equation problem can be written as a system
of algebraic equations that are subject to a set of con-
straints imposed by the boundary conditions (BCs). Then,
by defining a training error function e(w) as the squared
sum of the algebraic systems’ errors, w can be determined
by minimizing e(w) using classical backpropagation. In
order to address the presence of the BCs constraints, Lagaris
expressed the differential equation solution as the sum of
an analytical function (with no adjustable parameters) and
a NN, and used the analytical function to satisfy the BCs
constraints. The drawbacks of this approach are that the NN
only approximates an additive component of the solution, and
the analytical function must be custom-designed for every
given BC. Also, the resulting solutions could not be easily
adapted with new sampled data or new BCs due to the
interference phenomenon and to the presence of the fixed
analytic function, respectively.

These and other limitations of the method presented in [21]
can are overcome by the CPROP approach. Using CPROP,
the differential equation solution can be expressed solely
by a NN, without requiring the use of any fixed analytic
functions. The same training function e(w) proposed in [21]
is minimized subject to the BCs constraints, which in this
case constitute the memory equation in (5). This CPROP
methodology is illustrated here by solving an initial-value
problem (IVPs) involving a kth-order ODE,

K∑
k=1

αk

dky

dzk
= L(y) = g(z) (25)

where L is a linear operator, and the following initial
conditions are given:

djy

dzj

∣∣∣∣∣
z=zj

= hj , j = 1, 2, ..., K − 1 (26)

From Cauchy’s theorem on uniqueness of solution, there
exists only one function satisfying an IVP such as (25) and
(26). Thus, suppose the NN solution (output) is denoted by
ŷ, and the exact (unknown) analytic solution is denoted by
y. The initial conditions (26) constitute the NN LTM and
the STM is obtained by sampling eq. (25). The ODE is
sampled by specifying a grid on the domain z ∈ I ⊂ R,
containing rSTM values of the independent variable z. Then,
the following STM training set can be generated from eq.
(25), for every value of z,

TSTM = {zl, g(zl)}l=1,2,...,rSTM
(27)

where, zl denotes the lth value of z on the grid. For every
sample l, the training function can be evaluated as,

el(w) ≡ L(ŷl) − g(zl), l = 1, 2, ..., rSTM (28)

where ŷj is the NN solution (output) given input zl. The el-
ements {e1, . . . , erSTM } and {ŷ1, . . . , ŷrSTM } are organized
into vectors e and ŷ, respectively. Then, by applying the
linear differential operator to eq. (16) it follows that,

L(ŷ) = L[S(p)]v + L[Σ(p)]ν (29)

which can be used to derive the Jacobian, and operators Φ,Ψ
and Π for the IVP eqs. (25)-(26).

Consider the following illustrative IVP example,{
dy
dz

+ 1

5
y = e−

z
5 cos z

y(0) = 0
(30)

for which a NN approximation of the solution y(z) is sought
on the interval I = [0, 2]. The memory equation takes the
form,

S(0)v + Σ(0)ν = 0 (31)

and, thus, it follows that S(0) ≡ Φ,Σ(0) ≡ Ψ and λ ≡ 0.
The terms L[S(p)] and L[Σ(p)] must be derived in order to
compute the training function, eq. (28). For the differential
operator defined by eq. (30),

L[S(p)] = S′(p)Wd +
1

5
S(p) (32)

and,

L[Σ(p)] = Σ′(p)Ωd +
1

5
Σ(p) (33)

Thus, the operator Π is given be the expression,

Π = −[Σ′(p)Ωd +
1

5
Σ(p)]Φ−1 (34)

which is obtained from the Jacobian of eq. (28):

J =
∂e

∂w
=

∂L[ŷ]−g(z)

∂w
=

∂L[ŷ]

∂w
(35)

Making use of equations (32) and (33), the unconstrained
Jacobian contribution is,

Junc =
∂

∂w
[S′(p)Wd + 1

5
S(p)]

= [Jw | Jd | Jv] (36)

where:

Jw = [(I + 1

5
P)S′(p) + PS′′(p)Wd]Vd

Jd = [ 1
5
PS′(p) + S′′(p)Wd]Vd

Jv = 1

5
S(p) + S′(p)Wd

(37)

And, finally, the memory term is derived from eqs. (28)-(34),

Jmem = Π [PLTMS′(ξ)Vd | S′(ξ)Vd | S(ξ)] (38)

where, ξ is obtained from the initial conditions. As before,
J = Junc + Jmem can be used in the CPROP algorithm to
learn STM, while preserving the LTM.

By implementing the above Jacobian in the LM algorithm,
a 5-hidden-node NN trained via CPROP is found to perform
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as well as the 10-hidden-node NN (plus the analytical
function) trained in [21] to solve the same IVP (25)-(26).
As shown by the dashed line in Fig. 3, the NN matches
the analytical solution of (25)-(26) exactly, preserving the
LTM (cross) and extrapolating well outside the STM grid
(circles). Figure 3 also shows that an otherwise equivalent
but unconstrained NN performs poorly everywhere in I.

×  LTM sample  

STM samples

NN, Unconstrained LM  
y,

ŷ ,

h
NN, Constrained LM 
y(z), Exact Solution ×BC

g(z), Non-homogenous  
Term 

z

Fig. 3. The CPROP NN solution of the linear ODE IVP (25)-(26)
identically overlaps the analytical solution, y(z), given STM samples of
the non-homogenous term, and LTM of the BC.

C. System Identification (ID)

In many applications, a priori knowledge of local dynam-
ics may be available over one or more partitions of the phase
space. Often, this knowledge may be complemented and
improved by time series data that becomes available from the
operating system in real time. However, due to catastrophic
interference, a NN model that is trained sequentially with
new global models, may forget prior local models and
perform poorly in certain regions of its phase space. As an
illustrative example, consider the nonlinear dynamics of a
pendulum with friction,{

θ̇ = ω a, b > 0
ω̇ = −a sin θ − b ω

(39)

where θ is the angular displacement of the pendulum, and ω
is its angular velocity.

A 15-node sigmoidal NN is used to model (39) over the
phase space Ω : [−8, 8]× [−8, 8] by letting the NN output
approximate the state-rate vector ŷ = [θ̇ ω̇]T , given the input
p = [θ ω]T . As shown by its phase portrait (solid line in
Fig. 5), the pendulum has five equilibria in Ω: three stable
foci (Q1, Q3, Q5), and two saddles (Q2, Q4), representing
multiple sways. Near the equilibria, the local dynamics can
be approximated by five local models obtained by linearizing
eqs. (39). In order to simulate on-line system ID, a NN
is trained using an LTM training set TLTM (plotted by
crosses in Fig. 5) that is obtained from these local models.
Subsequently, the same NN is re-trained sequentially with
time-series STM data TSTM (plotted by circles in Fig. 5)
that is obtained away from the equilibria in Ω . This can be
viewed as a hybrid approach that integrates global models
(time-series learning) with the local models (linearizations)
developed by Principe et al. [22].

As shown in Fig. 4, when the NN is trained using
unconstrained LM, it experiences catastrophic interference

� (rad) � (rad) 

�
 (

ra
d

/s
) 

�
 (

ra
d

/s
) 

24

Same �0, �0 Same �0, �0

Fig. 4. The NN trained with an unconstrained LM algorithm (dashed
line) exhibits catastrophic interference and completely forgets the LTM local
models of the pendulum (solid line) that were initially used to train it near
its equilibria.

near the unstable equilibria Q2 and Q4 (Figs. 4), which
means prior knowledge is completely erased from the NN
due to further training with new data. In fact, as shown
by the dashed line in Fig. 4), the NN trajectory for the
initial condition (θ0, ω0) = (−π + 1/100 rad, 0 rad/s) is
completely different from that of the actual pendulum (solid
line), and is physically impossible. When the same NN is
trained using CPROP, it learns the STM very well, displaying
an STM mean-square-error (MSE) of O(10−3). At the same
time, CPROP preserves its LTM virtually intact, displaying
an LTM-MSE of O(10−11). As a result, the NN performs
excellent system ID everywhere in Ω, as demonstrated by
the overlapping phase portraits of the CPROP NN (dashed
line) and the actual pendulum (solid line) that are both plotted
in Figs. 5-6.

�
 (

ra
d

/s
) 

 NN  
   Pendulum

×  LTM samples  
STM samples

� (rad)

Fig. 5. The phase portraits of the pendulum and of the NN trained via
CPROP identically overlap everywhere in Ω.

Moreover, if we represented also the equilibria points,
during subsequent training, for the unconstrained case, we
had to use a fitter grid, in order to avoid catastrophic
interference. Besides, starting from the same initial values
of the weights, the unconstrained training converged, with
reasonable precision (O(10−3) after 802 iterations, in 188.81
secs, while CPROP converged after 300 iterations, in 40.27
secs. It is worth observing that, since CPROP is dealing with
a less dens grid, we need to invert smaller matrices, feature
which is crucial, for bigger multi-dimensional problems; in
fact the time-per-iteration required is .1342 secs, whereas a
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Fig. 6. The accuracy of the LTM preserved by CPROP is illustrated
by zooming in the phase portraits about Q3 illustrating that the NN and
pendulum phase portraits overlap with very high precision.

classical unconstrained approach requires .2354 secs.

V. CONCLUSIONS

A constrained-backpropagation training technique is pre-
sented to suppress interference and preserve prior knowledge
in sigmoidal neural networks, while new information is
learned incrementally. The technique is based on constrained
optimization, and minimizes an error function subject to a set
of equality constraints derived via an algebraic training ap-
proach. The numerical results show excellent generalization
and extrapolation properties, and demonstrate the wide range
of neural network problems that can be treated by this novel
technique. The generality of the problem formulation makes
the method flexible and promising both for prediction and
data assimilation. Since the memory equations are derived
analytically, it is possible to represent the long term memory
exactly, up to machine precision. This feature is crucial to
neural network control and system identification applications,
especially in the presence of highly nonlinear and possibly
unstable dynamics, as in the pendulum example where a
classic neural network is shown to experience catastrophic
interference. A possible future work is to use this approach to
solve PDE and non-linear PDE, and to challenge the method
through the assimilation of real data, possibly noisy.
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