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Abstract-This paper presents a multi-layer reproducing ker­
nel Hilbert space (RKHS) approach for probability distribution 
to real and probability distribution to function regressions. The 
approach maps the distributions into RKHS by distribution 
embed dings and, then, constructs a multi-layer RKHS within 
which the multi-kernel distribution regression can be imple­
mented using an existing kernel regression algorithm, such as 
kernel recursive least squares (KRLS). The numerical simulations 
on synthetic data obtained via Gaussian mixtures show that the 
proposed approach outperforms existing probability distribution 
(DR) regression algorithms by achieving smaller mean squared 
errors (MSEs) and requiring less training samples. 

I. INTRODUCTION 

Classical regression analysis is concerned with learning a 
vector function or mapping from a real-valued input vector 
to a real-valued output vector from data. Examples of linear 
and nonlinear regression algorithms that have been proposed 
over the past decades include recursive least square (RLS) 
[1], least mean square (LMS) [1], artificial neural networks 
(ANNs) [2], Gaussian process regression (GPR) [3] and kernel 
adaptive filtering (KAF) [4]. Classical regression algorithms 
are often restricted by the dimensionality of the input and 
output domains and, thus, a great deal of attention has been 
recently devoted to functional regression in which a mapping 
from finite dimensional spaces to an infinite dimensional 
domain is to be learned from data [5]. In particular, distribution 
regression (DR) algorithms have been proposed for learning 
probability density functions from data, such as distribution 
to real regression (DRR) [6] and distribution to distribution 
regression (DDR) [7], in which input covariates are arbitrary 
distributions and output responses are real values and distribu­
tions, respectively. 

The DRR algorithm proposed in [6] utilizes two kernels 
and, thus, is referred to as Kernel-Kernel DRR (KKDRR). 
One kernel is utilized in the kernel density estimator (KDE) 
[8] in order to estimate the probability density function (PDF) 
of the input distribution from samples, and the second kernel 
is used to measure the divergence between the testing and 
training PDFs. A Kernel-Kernel estimator is then applied to 
approximate the real-valued output based on these divergences. 
The KKDRR algorithm can be implemented easily, however, 
it suffers from two limitations. Firstly, KKDRR computes 
only the divergences between testing distributions and training 
distributions, but does not consider mutual similarities between 
all testing distributions. Secondly, because the calculations 
of the divergences involve numerical integrals, the accuracy 
depends on the number of grid sample points. 
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This paper presents a new multi-kernel approach for DRR 
that utilizes multi-layer RKHS mappings to solve two classes 
of functional regression problems. The first problem is to 
learn a mapping from probability distributions to real num­
bers, and the second problem is to learn a mapping from 
probability distributions to functions. RKHS methods, such as 
kernel recursive least square (KRLS) [9], kernel least mean 
square (KLMS) [10], quantized kernel recursive least square 
(QKRLS) [11] and quantized kernel least square (QKLMS) 
[12], have proven very effective at solving nonlinear regression 
problems because they are nonparametric and, thus, can adjust 
the model dimensionality to the data and greatly improve learn­
ing capabilities. In the new functional regression approach pre­
sented in this paper, probability distributions are first mapped 
into an RKHS, using the concept of distribution embeddings 
[l3]-[15]. Then, the distribution embeddings in RKHS are 
used as inputs for an extended kernelized regression algorithm 
(KRLS) to implement the multi-kernel DRR (MKDRR). 

The extended kernel used in this paper was first introduced 
by Christmann and Stein wart in [16] and was later used in [17] 
to develop support vector machines (SVMs) for distributional 
inputs. In this paper, the extended kernel is used to develop and 
implement the MKDRR and to develop a new framework for 
distribution regression and distribution to function regression 
(DFR), referred to as multi-kernel DFR (MKDFR). To our 
best knowledge, the MKDFR is the first algorithm developed 
for DFR and, unlike KKDRR, the multi-kernel distribution 
regression approach presented in this paper is not limited 
by the number of grid points, because the divergences are 
calculated directly from the samples, and the mutual diver­
gences between all training distributions are considered to 
approximate the outputs. The DDR and DFR problems are 
formulated in Section II, and the multi-kernel distribution 
regressions approach is presented in Section III. The KRLS­
based DRR and DFR algorithms described in Section IV are 
implemented and evaluated using the numerical simulations in 
Section V, which show that the proposed MKDRR algorithm 
outperforms existing KKDRR algorithms by achieving lower 
MSEs and requiring smaller numbers of training samples. 

II. FORMUL ATION OF PROBABILITY DISTRIBUTION 

REGRESSION PROBLEMS 

Let I be a family of distributions that are compact with 
respect to the Lebesgue measure. We consider the DRR 
problem of inferring a mapping F: I f--t IRnz from training 
sets (H,zd,,,,,(PT,ZT)' such that, 

(1) 



where, Pk E I is a probability distribution, Zk E ]Rnz is the 
corresponding output response, and Ek is a zero mean Gaussian 
noise variable. However, in real-world applications, the proba­
bility distribution of interest, Pb cannot be always represented 
in closed analytic form. Thus, it is assumed that Pk is to be ap­
proximated from a data set Xk = {Xk,l, ... , Xk,s, ... , Xk,Nk}, 
where Xk,s E ]Rnx are independent and identically distributed 

(i.i.d.) samples drawn from Pb and Nk is the number of 
samples in the data set Xk. Then, the DRR problem is 
to learn the mapping F from the data set of observations 
DF = {(Xl, zI), 0 0  ., (XT, ZT)}, and to predict any output 
Z E ]Rnz, from a corresponding data set X drawn from a 
distribution P, where (X, z) are not necessarily in DF. 

Also, consider the DFR problem of learning a mapping 
g: I f--t IF from the training pairs (P1,h),oo.,(PT,h), 
such that, 

(2) 

and where the functions ik ElF, k = 1, ... , T, are defined in 
a function space IF, and Ck is a zero mean Gaussian process. 
One can find that the mapping 9 is an operator and, as in the 
DRR problem, a sample set Xk can be observed for each Pk. 
Then, the DFR problem is to learn this mapping 9 and predict 
a new function f from a new data set X drawn from a new 
distribution P. 

For each output function fb the pairs in the set 
Yk = {(Yk,l, zk,d, ... , (Yk,M, Zk,M)} can be observed, 
where Yk,m E ]Rny and Zk,m E ]Rnz are the input and the 
corresponding output for function fb respectively, such that 

(3) 

It follows that the observed data for DFR are Dg 
{(X1,Yl),oo.,(XT,YT)}, and substituting (2) into (3), the 
(3) can be written as 

Zk,m = g(Pk)(Yk,m) + ck(Yk,m) 
If a new mapping, g', is defined such that, 

g'(Pk,Yk,m) = g(Pk)(Yk,m), 
then (4) can be written as, 

Zk,m = g'(Pk,Yk,m) + E� 

(4) 

(5) 

(6) 

where the evaluation of c(Yk,m) is denoted by E� , which is 
a zero mean Gaussian noise. Comparing (6) to (1), it can be 
seen that for both mappings F and g' the outputs are real 
values. From (6), if a probability distribution Pk is given, the 
approximation of Zk,m can be obtained from any input Yk,m, 
specifying a mapping from Y to z. Therefore, the mapping g' 
can be learned in lieu of 9 and, thus, in the remainder of the 
paper, the notations 9 and g' are interchangeable. 

III. MULTI-KERNEL DISTRIBUTION REGRESSIONS 

METHODOLOGY 

The approach for mapping probability distributions into an 
RKHS and for constructing a multi-layer RKHS (ML-RKHS) 
is described in the following subsections and schematized in 
Fig. 1. The implementation of multi-kernel DRR (MKDRR) 
and multi-kernel DRF (MKDRF) through the ML-RKHS ap­
proach are presented in Section IV. 

A. Distribution Embeddings 

Given a random variable (R.Y.) X E ]Rnx associated with 
a distribution Px and a corresponding Probability Density 
Function (PDF) p x, an embedding J.L x in RKHS can be 
defined as, 

J.Lx := Ex [kx(X, .)] = J Px (x)kx (x, ·)d(x) (7) 

where Ex['] indicates the expectation operator, kx(- ' ·) is a 
kernel defined on ]Rnx x ]Rnx associated with RKHS Jix [13]­
[15]. It can be shown that the distribution embedding J.Lx is 
also in the RKHS Jix, provided Ex[kx(X,X)] < 00. Its 
empirical estimate is, 

1 
N 

flx = N L kx(xn, ·) 
n=l 

(8) 

where Dx = {Xl, ... , xn} is a training set that is assumed to 
have been drawn i.i.d from Px. According to [14], [15], it is 
guaranteed that by a characteristic kernel, the mapping from 
distribution Px to the distribution embedding J.Lx E Jix is 
injective. A famous characteristic kernel is the Gaussian kernel, 
which is used in this paper to specify the kernel function 
kx(-, .). 
B. Kernel Design and Multi-Layer RKHS 

The distribution embedding J.L x E Jix can represent the 
corresponding distribution distinguishably [l3]-[15] There­
fore, the regression based on the distributions can be derived 
using the distribution embeddings. Similarly to the existing 
kernel regression algorithms [3], [9]-[12], we can define new 
kernels on Jix, map the distribution embeddings to the new 
RKHS associated with the defined kernels, and develop the 
multi-kernel regression algorithms in these new RKHS. 

In order to implement the DRR, we first map the dis­
tribution data sets Xi and Xj, i, j = 1, ... , T, into Jix as 
distribution embeddings J.Li and J.Lj by the Gaussian kernel 
k x (-, .) with the kernel size CJ x' Then, we can have the 
extended kernel JCF(-, .) on Jix x Jix, which was introduced 
in [16], 

(9) 

where CJJ.1, is the kernel size and D(J.Li,J.Lj) is the squared 
distance between J.Li and J.Lj in Jix, which can be expressed 
by 

D(J.Li,J.Lj) = IIJ.Li -J.Ljll�x 
= IIJ.Lill�x + IIJ.Ljll�x -2(J.Li,J.Lj)1{x (lO) 

where (., ')1{x denotes the inner product in RKHS Jix. The 
distribution embeddings J.Li and J.Lj can be approximated from 
samples Xi = {Xi,I, ... ,Xi,NJ and Xj = {Xj,I, ... ,Xj,NJ. 
According to (8), the inner product of the two distribution 
embeddings can be approximated by 
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Fig. 1. The frameworks of the multi-layer RKHS to implement MKDRR (red arrows) and MKDFR (blue arrows), where red points denote the distribution 
representations, blue point denotes the input point and the green points denote the combination points, and the black points denote the desired points 

Similarly, IIJLill�x and IIJLjll�x can also be approximated 
using the data sets Xi and Xj, respectively. 

From (9), it can be seen that K1 is a Gaussian-like kernel. 
The RKHS associated with the kernel KF is denoted by 
1iF, as shown in Fig. 1. It can be easily shown that the 
proposed functional KF is symmetrical and positive definite, 
which means KF is a positive definite kernel. In order to 
implement the MKDFR by (6), a new kernel is designed. First, 
Xi is mapped to tlx as the distribution embedding JLi by 
the Gaussian kernel kx (-, .), which is specified by the kernel 
size CJx. Then, the distribution embeddings JL,; and Yi,m are 
combined into a new term Vi,m = [JLL YT,mJ E tlx EB JRny, 
where EB denotes the direct product operator. In short, we 
denote 1ix EBJRny by 1iXY. Note that the space 1iXY is not an 
RKHS. Finally, by treating this new combination term Vi,m as 
an input, a new kernel Kg (-, .) can be defined on 1i XY x 1i XY 
and associated with the RKHS 1ig, such that, 

V' ( ) _ [ (Vi,m -Vj,n)T�x\r(Vi,m -Vj,n) ] I'-'g vi,m, Vj,n - exp - 2 
(12) 

with covariance, 

�XY = [ CJ�Io1{x � ] (13) CJ yIq , 
and where CJ j.t' CJy E JR, I1{x E 1ix x 1ix, and Iny E 
JRny x JRny are an identity operator and an identity matrix, 
respectively. The kernel Kg (-, .) is a multivariate-normal-like 
kernel, which is also a positive definite kernel and can be 
extended as follows, 

V' ( . . ) _ [_IIJLi -JLjll�x _ IIYi,m - Yj,nI12 ] I'-'g v.,m, v),n - exp 
2 2 2 2 CJj.t CJy 

where, 
= KF(JLi' JLj)kY(Yi,m, Y},n) (14) 

k (. . ) _ [_IIYi,m - Yj,nI12 ] Y Y.,m, Y),n - exp 
2 2 CJy (15) 

is a kernel defined on JRny associated with RKHS 1i y. 

With the proposed new kernels KF(-,·) and Kg(-, .), the 
distribution Pi and Vi,m can be mapped into RKHS 1iF and 

1ig, respectively. By this approach, existing kernel regression 
algorithms, such as KAF and GPR, can then be implemented 
to solve the DRR and DFR problems formulated in Section II. 

IV. IMPLEMENTATION OF MULTI-KERNEL DISTRIBUTION 

REGRESSIONS BASED ON KRLS 

As an example, the KRLS algorithm is utilized to imple­
ment the MKDRR (Section IV-A) and the MKDFR (Section 
IV-B) methods, based on the ML-RKHS approach presented 
in Section III. 

A. Multi-Kernel Distribution to Real Regression 

Because of the injective mapping of distribution embed­
dings and the kernel trick of the kernel KF, we have 

(16) 

where the feature weight W F E 1iF represents the mapping F. 
Like the standard KRLS algorithm, we minimize the following 
cost function to learn the DRR defined in (1) from data sets 
VF, 

JDRR =min [� Ilzk - (WF, KF(JLk, '))1{ 112 
WF � F k=l 
+A IlwFII�y] (17) 

where A is a regularization factor. To this end, we obtain the 
same form of cost function with the standard KRLS. By intro­
ducing the feature matrices (f)k = [KF�l,·), ... ,KF(JLk'·)] 
and desired matrices Zk = [Zl, ... , Zk] , we can approximate 
the feature weight W F at the kth iteration by 

WF = (f)k [(f)r(f)k + AIkr1 Zk = (f)kQj.t(k)Zk (18) 

where Ik is a k x k identity matrix. Here, the inverse matrix 
Qj.t(k) = I (f)r (f)k + AIk] -1 can be calculated recursively 
like the KRLS algorithm with a computational complexity of 
O(k2) at the kth iteration. 

Once the feature weight W F is approximated, we can calcu­
late the predicted output Z from the new input distribution P by 



(16). The flowchart of the multi-kernel DRR based on KRLS 
(MKDRR-KRLS) algorithm presented in this subsection is 
shown by the red arrows of Fig. 1. 

B. Multi-Kernel Distribution to Function Regression 

Because of the injective mapping of distribution embed­
dings and the kernel trick of the kernel KF, we also have that 
Fg(Pk, Yk,m) can be expressed in RKHS Hg as follows, 

F9(Pk, Yk,m) = (wg, K9(Vk,m, '))Hg , (19) 

where the feature weight Wg E Hg represents the mapping g. 
Similarly to the MKDRR-KRLS method presented in Section 
IV-A, the following cost function is minimized to learn the 
DFR defined in (6) from the data set Dg 

JDFR =��n [t, f
l
11zk,m - Fg(Pk, Yk,m)112 

+Allwgll�g] . (20) 

By introducing input feature matrices, 

and 

and the desired matrices, 

and 
[ T T]T Vk = Uk ... Uk 

at the kth iteration, the feature weight can be approximated 
by, 

Wg ;::::; Yk [Kk + AI(kM)r1 V k = YkQ(k)V k (21) 

where I(kM) is a kM x kM identity matrix, and Kk = yI Y k 
is the Gram matrix containing all data available at the kth step. 

From (21), the given distribution, and the input y, the 
corresponding embedding can be obtained and the correspond­
ing output, z, calculated from (19), which implements the 
DFR. The flowchart of the multi-kernel DFR based on KRLS 
(MKDFR-KRLS) algorithm is shown by the blue arrow in Fig. 
1. Similarly, the inverse matrix Q(k) = [K(k) + ,\I(kM)]-l 
can also be calculated recursively, with computational com­
plexity O(k2 M3) at every kth iteration of the algorithm. 

Considering that the inputs {Vk,m} �=l are obtained si­
multaneously at the kth step, we can develop a new KRLS 
algorithm based on matrix-block calculation in order to ap­
proximate the DFR online. Because the Gram matrix can be 
expressed by, 

K(k) = [wfWj] . . . 2,]=1:k 
(22) 

if we assume that Yi,m = Yj,m for all i and j, and introduce 
the Gram matrices, 

[kY(Yi,m,Yj,n)]m n=lM , . 

[KF(JLi' JLj) L,j=1:k 

then K(k) = KJ.,,(k) ® Ky, where ® denotes the Kronecker 
product. Because of this assumption, the matrix Ky is the 
same at all iterations and since K-1(k) = K;;:l(k) ® Ky\ 
the following approximation holds, 

Q(k) = [K(k) + AI(kM)]-l ;::::; QJ.1(k) ® Qy (23) 

and matrices QJ.1(k) (KJ.1(k) + AIk)-l and Qy 
(Ky + AIM) -\ can both be calculated recursively, with 
computational complexity O(k2) and O(M2), respectively at 
every kth iteration of the algorithm. Furthermore, under the 
assumption Yi,m = Yj,m, Vi,j, the inverse matrix Q(k) can 
be decomposed to reduce the computational complexity from 
O(k2 M3) to O(k2) at every kth step. 

V. NUMERICAL EXPERIMENTS 

The MKDRR-KRLS and MKDFR-KRLS algorithms pre­
sented in this paper are demonstrated here by learning the 
control law and probability distribution for a network of au­
tonomous agents, based on their observed positions. As shown 
in [18]-[20], the control law for a network of distributed agents 
can be obtained as a function of the agent distribution using 
an approach known as distributed optimal control. Consider a 
network of N agents are distributed randomly according to 
an initial distribution with support W C JR2, and let their 
position in W be described by a point in the inertial �1]-frame. 
The agents are controlled such that they must reach a known 
target distribution denoted by Po. The multi-kernel functional 
regression approach presented in this paper is utilized to learn 
the control mapping from the agent distribution to the diver­
gence between the agent distribution and the goal distribution 
Po. Subsequently, the approach is to learn the mapping from 
the agent distribution to the its cumulated density function 
(CDF) and partial derivatives with respect to � and 1]. Thus, the 
first problem is that of learning a mapping from a probability 
distributions to real, and the second problem is that of learning 
a mapping from a probability distribution to a function. The 
proposed MKDRR-KRLS and MKDFR-KRLS algorithms will 
be applied to learn these mappings. 

Agent distributions are generated by means of 2D Mixture 
Gaussian distributions with two equivalently weighted compo­
nents, denoted by Pko k = 1,2, .... The means [Mt;,i, M7),ij, 
i = 1,2, and covariance matrices �i = diag([O't;,i'O'7),i]), 
i = 1,2 are selected randomly, where diagC) denotes an 
operator that places a vector on the diagonal of a zero matrix 
of proper dimensions. The parameters Mt;,i and M7),i, i = 1,2, 
are generated from a uniform distribution on [-1, 1] (km), 
and the parameters O't;,i and O'7),i , i = 1,2, are all generated 
from a uniform distribution on [1,1.2] (km). The goal agent 
location distribution is specified by setting these parameters by 
their expectations. For each mapping regression problems, we 
generate Ntrain = {lOO, 300, 500, 1000, 2000} training data 
sets, Nvalid = 25 validation data sets, and Ntest = 50 test data 
sets. The goal distribution Po and some testing distributions 
Pko 1 ::; k ::; 50, generated by this setting are plotted in Fig. 
2. 

A. Experiment of Multi-Kernel Distribution to Real Regression 
based on KRLS 

In this experiment, the Cauchy-Schwarz divergence is se­
lected as the measure of divergence between the agent distribu-



Fig. 2. Examples of goal distribution and testing distributions generated by Gaussian mixture in DR problem. 

tion and the goal distribution because, for Gaussian mixtures, 
it can be represented in closed form [21]. The Cauchy-Schwarz 
divergence between two probability distributions Pk and Po is 
defined as, 

Des(PkllPo) = - log II Pk(�' T))Po(�, T))d�dT) , J II p�(�, T))d�dT) II P6(�, T))d�dT) 
(24) 

where Pk(�' T)) and Po(�, T)) are PDFs associated with distribu­
tions Pk and Po. Given a new agent distribution P ,  the approx­
imate Cauchy-Schwarz divergence, denoted by Des (P llPo), 
can be calculated from the agent positions. Then, the MSE be­
tween the actual Cauchy-Schwarz divergence and the approx­
imate divergence can be calculated to evaluate the regression 
performance. 

In this experiment, for each agent distribution, a sample set 
Xk composed of Nsample = 100 samples of agent positions 
is generated. The regression performance of the MKDRR­
KRLS algorithm is compared to that of the KKDRR algorithm 
proposed in [6]. For the KKDRR algorithm, 50 x 50 sample 
points on a uniformly distributed grid are used to estimate the 
divergence between two PDFs. The performance comparison 
results are plotted in Fig. 3. It can be seen that the MKDRR­
KRLS algorithm outperforms the KKDRR algorithm because 
it requires a smaller number of training sets to learn the 
DR mapping with similar accuracy. Alternatively, when the 
same number of training sets, Ntrain, is used, MKDRR-KRLS 
displays a smaller MSE than the KKDRR algorithm. 

B. Experiment of Multi-Kernel Distribution to Function Re­
gression based on KRLS 

The MKDFR-KRLS algorithm is evaluated by inferring 
the mapping from distributions to functions, using a 2D 
distribution Pk(�' T)) with PDF Pk(�' T)), and three different 
output functions, including the cumulative distribution function 
(CDF) Fk(�,T)) = I�oo I�ooPk(t,ij)dtdij, and the gradient 
functions g�(C T)) = t�Pk(C T)) and g'7(�' T)) = t'7Pk(�' T)). In 
this experiment, Ntrain = 500 training sets are used. For each 
distribution, a sample set Xk with Nsample = 500 samples is 
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Fig. 3. Performance comparison between MKDRR-KRLS and KKDRR 
algorithms 

generated. For each corresponding PDF Pb M = 50 x 50 input 
samples Yk,m = [�k,m, T)k,m]T, m = 1, ... , M, are generated 
on a uniformly distributed grid between the minimum and 
maximum values in the sample sets Xk in the 2D space, and the 
corresponding outputs Zk,m for three different output functions 
are calculated. 

The DFR estimator is learned by applying the MKDFR­
KRLS algorithm to the training data sets. The normalized mean 
square error (NMSE) between the actual function output Zk,m 
in the validation/testing data sets and the corresponding ap­
proximate output Zk,m for each validation/testing distribution, 
defined as, 

NMSE = 
L�=l Ilzk,m - zk,ml12 

L�=l Ilzk,ml12 
(25) 

is used to find the best parameter values. As an example, for the 
representative (testing) distribution P46(�, T)) presented in Fig. 
2 the regression performance of the DFR-KRLS algorithm is 
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Fig. 4. Regression performance of MKDFR-KRLS, where figures in the �rst column present the output true functions, including Fb gf, and g'7: the figures in 
the second column present the approximated output functions, including Fb 9f, and 9'7: the figures in the last column present the differences between output 
functions and approximated output functions. 

plotted in Fig. 4. A summary of results for all Ntrain training 
data sets are shown in Table I, in the form of (NMSE) "mean 
± standard deviation". 

TABLE I. REGRESSION PERFORMANCE RESULTS 
Output functions NMSE 

CDF F(�, 1]) 0.0030 ± 0.0024 
Gradient gf;(�, 1]) 0.0990 ± 0.0616 
Gradient g'1(�' 1]) 0.0974 ± 0.0623 

VI. CONCLUSION 

This paper presents a new methodology for probability 
distribution regression using a multi-layer RKHS approach. 
The approach is demonstrated for the problem of distribution 
to real regression and distribution to function regression. To 
our knowledge, the proposed MKDFR is the first approach to 
deal with distribution to function regression. The distribution 
regressions can be implemented based on existing kernel 
regression algorithms in the multi-layer RKHS. KRLS is 
used as an example to demonstrate the MKDRR-KRLS and 
MKDFR-KRLS algorithms. These two proposed algorithms 
are demonstrated on synthetic data obtained by simulating a 
network of agents controlled by a distributed optimal control 
approach to reach a target distribution in a two-dimensional 
space. The MKDRR-KRLS and MKDFR-KRLS algorithms 
are successfully implemented to learn the agents control law 
from observations of their positions, as well as to learn 
functions of the agents distribution, such as the cumulative 
distribution function and the distribution gradients. These 

results show that the MKDRR-KRLS algorithm outperforms 
the recently proposed KKDRR algorithm and successfully 
performs all functional regression tasks. 
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