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Abstract—Spike train decoding is considered one of the grand
challenges in reverse-engineering neural control systems as well
as in the development of neuromorphic controllers. This paper
presents a novel relative-time kernel design that accounts for
not only individual spike train patterns, but also the relative
spike timing between neuron pairs in the population. The new
relative-time-kernel-based spike train decoding method proposed
in this paper allows us to map the spike trains of a population of
neurons onto a lower-dimensional manifold, in which continuous-
time trajectories live. The effectiveness of our novel approach
is demonstrated by comparing it with existing kernel-based and
rate-based decoders, including the traditional reproducing kernel
Hilbert space framework. In this paper, we use the data collected
in hawk moth flower tracking experiments to test the importance
of relative spike timing information for neural control, and focus
on the problem of uncovering the mapping from the spike trains
of ten primary flight muscles to the resulting forces and torques
on the moth body. We show that our new relative-time-kernel-
based decoder improves the prediction of the resulting forces and
torques by up to 52.1%. Our proposed relative-time-kernel-based
decoder may be used to reverse-engineer neural control systems
more accurately by incorporating precise relative spike timing
information in spike trains.

Index Terms—neural decoding, regression, kernel, spike train

I. INTRODUCTION

Nervous systems of animals can integrate information from
multiple sensory modalities, and make rapid and coherent be-
havioral decisions in complex environments [1], [2]. However,
most existing artificial intelligence systems rely on rich but
separate modalities of sensory feedback. Typically, they are
poorly integrated and predetermined for particular tasks, such
as object recognition, action recognition and target tracking
[3]–[5]. Therefore, there is a massive untapped opportunity for

us to reverse-engineer the neural control system that bridges
sensory perception and motor control of complex animal
behaviors. However, neural decoding has been considered one
of the biggest challenges in reverse-engineering the neuromor-
phic perception and control systems in nature [6], [7], because
sensory signals are encoded in low-dimensional neural activi-
ties [8], and sparsity and compressive sensing are essential for
biological decision-making processes [9]. To extract nonlinear
dynamic control strategies from biological neural systems and
approximate them via spiking neural network (SNN), we need
to decode useful continuous-time signals from spike trains, and
use them for downstream control inputs [10], [11].

Spike train decoding is a mathematical problem of infer-
ring external stimuli or biological control signals encoded
in sequences of spike timings [12], [13]. It is fundamental
and essential for determining the complete biological neural
control system that bridges sparse sensory codes and motor
control [14], [15]. However, there is still a debate in the
neuroscience community on how sensorimotor information is
encoded in spike trains. The traditional rate coding scheme,
where information is encoded in average firing rate, is well-
accepted and has been shown in many different sensory and
motor circuits [16], [17]. However, it assumes that most
information is encoded in average firing rate, and does not
take into account any precise spike timing information [18].
As demonstrated in [19], [20], spike timing encodes more
information of a hawk moth’s turning behavior than spike
count in tethered flight, and is essential for the coordination
of muscle pairs. In addition to the rate coding, more recent
studies have identified and shown evidence for temporal
coding, which employs temporal features, such as temporal
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difference, time to the first spike and phase of firing, to uncover
the mapping from temporal patterns of spikes to continuous
representations [21]–[24]. There is growing evidence that
relative spike timing information is essential for uncovering
the whole biological motor program, including the correlation
between neuron pairs. These traditional approaches mentioned
above do not actually capture the extra information encoded
in the relative spike timings between correlated spike trains
[19], [25].

In recent years, kernel tricks have been borrowed from the
machine learning community and widely used by neurosci-
entists to represent spike trains as objects in Hilbert space,
and decode the neural signals using well-developed regression
methods [26]–[28]. In [26], the author proposed a reproducing
kernel Hilbert space (RKHS) framework that uses an instan-
taneous kernel to determine similarities between single spike
trains directly. This RKHS framework can be formulated by
many types of spike train kernel designs, including count
kernels [27], linear functional kernels [29], and nonlinear
functional kernels [30]. Gaussian process regression, which
assumes a prior Gaussian distribution with its covariance given
by the kernel, has also been widely used for spike train
decoding [31], [32]. One distinct disadvantage of these kernel-
based spike train decoding methods is that they only capture
the difference of either spike counts or exact spike timings
between spike trains from different motor units, and will not
perform well especially when the spike trains correlate with
each other.

A hawk moth is an ideal small insect to test the importance
of relative spike timing information for neural control, due
to unprecedented access through electromyography (EMG)
recordings to all the neural signals that control their flight
muscles. These insect fliers use only 10 muscles, 5 per wing,
to execute robust and agile flight in unsteady environments,
which likely put extreme demands on their neural control
systems. More importantly, relative spike timing is coordinated
across every muscle in the moth’s flight control [19]. Hawk
moths also integrate multiple sensory modalities to execute
this control [33]. In this paper, we aim to discover the neural
control policy for the flight of a tethered hawk moth visually
tracking a moving robotic flower as shown in Fig. 1, which
is an ecologically relevant behavior that moths can execute
innately without learning. Unlike the traditional kernel-based
approaches summarized above, the new RKHS framework pro-
posed in this paper is based on the kernel evaluation between
every pair of correlated spike trains across the population. The
novelty of this new relative-time kernel design is that it allows
to take into account both single spike train patterns and relative
spike timing information among multiple neurons for the first
time.

This paper is organized as follows. Section II first introduces
how we collect the spike train and control signal data in flower
tracking experiments. The spike train decoding problem is
then formulated in this section, along with its basic assump-
tions. The new relative-time kernel design that considers the
extra information encoded in relative spike timings among

Fig. 1. Picture of a hawk moth visually tracking a moving robotic flower
while tethered to a custom 6-axis F/T transducer.

multiple neurons is presented in Section III. In Section IV,
the performance of the relative-time-kernel-based spike train
decoder is demonstrated by comparing to that of benchmark
instantaneous-kernel-based and rate-based decoders. Finally,
conclusions and future work are discussed in Section V.

II. PROBLEM FORMULATION

In our experiments, hawk moths (N = 7) visually track
a robotic flower that oscillates horizontally with a 1-Hz
sinusoidal trajectory while tethered to a custom 6-axis F/T
transducer. The sampling rate for the experiments is 104 Hz,
and hawk moths in tethered flight have wing strokes of ap-
proximately 50 ms in length. This flower tracking experiment
creates a variety of turning forces and torques, because there
are about 20 wing strokes per flower oscillation. In this paper,
we aim to uncover the precise mapping from the recorded
spike trains of the 10 primary muscles actuating the moth
wings to the resulting forces and torques on the body. More
details on the experimental platform and data collection can be
found in [19]. The forces and torques, y ∈ R6, are collected
at times t1, t2, · · · , tn, and then arranged into a matrix,
Y ∈ Rn×6, such that

Y = [y(t1) y(t2) · · · y(tn)]T (1)

To map a spike train containing a sequence of spike times
to a continuous variable that can be used for regression,
we represent the sequence of spike times as a binned spike
train that is changing over time as an user-defined sliding
window moves [34]–[36]. The larger the bin size is, the
more information will be stored in the binned spike trains.
However, the regression algorithm will also become more
computationally expensive. For muscle i, the spike times tik
within a certain bin size T before time t are stored in a binned
spike train,

Xi(t) = {tik ∈ (t− T, t]}, i = 1, 2, · · · , 10 and k ∈ N∗ (2)

where k represents spike indices. Similar to the forces and
torques in (1), the binned spike trains of 10 primary flight
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muscles are then collected at times t1, t2, · · · , tn, and arranged
into a matrix, X ∈ Rn×10, such that

X =


xT (t1)
xT (t2)

...
xT (tn)

 =


X1(t1) X2(t1) · · · X10(t1)
X1(t2) X2(t2) · · · X10(t2)

...
...

. . .
...

X1(tn) X2(tn) · · · X10(tn)

 (3)

where x(t) = [X1(t) X2(t) · · ·X10(t)]T denotes the output
signal vector containing 10 binned spike trains at any given
time t. In this paper, we consider the problem of determining
the decoding function, f∗, that minimizes the difference be-
tween the predicted and true resulting forces and torques on
the moth body,

f∗ = argmin
f∈H

{
n∑

i=1

∥∥y(ti)− f [X1(ti), X
2(ti), · · · , X10(ti)]

∥∥2
2

+ λ∥f∥2H}
(4)

where H denotes the Hilbert space, and λ is a tuning parameter
for penalized regression.

III. KERNEL DESIGN

In general, a reproducing kernel Hilbert space (RKHS)
can be defined by a symmetric and positive definite Mercer
kernel. The input sample, X , is first mapped to the RKHS as
a function, K(X, ·), obtained by fixing the first coordinate.
Then, the inner product of two functions in the RKHS can be
computed by a kernel evaluation in the input space,

⟨X|X ′⟩H = K(X,X ′) (5)

which brings computational simplicity. In our spike train
decoding problem, given a set of binned spike trains, Xi =
{tik : k = 1, 2, · · · ,mi}, i = 1, 2, · · · , 10, from 10 different
primary muscles respectively, every pair of binned spike trains,
Xi and Xj , can be represented as a sum of two-dimensional
Dirac delta functions,

xij(σ, τ) =
∑
ki,kj

δ(σ − tiki
, τ − tjkj

) (6)

which can then be converted to a continuous multivariate
function by convolving with a filter h,

fij(σ, τ) = xij ∗ h =
∑
ki,kj

h(σ − tiki
, τ − tjkj

) (7)

where i and j denote two different muscles, and k represents
spike indices. In this paper, we choose a two-dimensional
Gaussian filter h for the convolution in (7),

h(v) = exp(−1

2
vTΣ−1v) (8)

where v denotes the mean vector, and Σ denotes the co-
variance matrix. For illustration purposes, Fig. 2 shows three
binned spike trains, Xi = {tik : k = 1, 2, · · · ,mi}, i = 1, 2, 3,
collected in our flower tracking experiment. If we take two
binned spike trains, X1 and X3, for example, the continuous

multivariate function containing the information of relative
spike times between these two spike trains can be represented
by a two-dimensional Gaussian distribution as shown in Fig. 3.

Fig. 2. An example of three binned spike trains containing the information
of exact spike times.

Fig. 3. An example of the multivariate Gaussian distribution containing the
information of relative spike times between spike trains, X1 and X3.

For RKHS regression, the kernel evaluation between two
pairs of spike trains can be defined as,

K(Xij , Xij′) = ⟨fij |f ′
ij⟩ =

∫ T

0

∫ T

0

fij(σ, τ)f
′
ij(σ, τ)dσdτ

(9)

where Xij denotes the two-dimensional Gaussian distribution
determined by the pair of spike trains, Xi and Xj , the
superscript (·)′ refers to another pair of spike trains, and T
represents the bin size. Then, the final kernel function across
the flight muscle population can be given by,

K(x,x′) =
∑
i,j

K(Xij , Xij′) (10)
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Based on the representer theorem in [37], the evaluation of
the decoding function, f̂ , at binned spike trains, Z ∈ Rl×10,
from 10 muscles in the test data set can be obtained by taking
linear combinations of the kernel evaluations,

f̂(Z) = K(Z,X)α (11)

where X ∈ Rn×10 denotes binned spike trains used for
training, Krs = K [z(tr),x(ts)] ∈ Rl×n is the Gram matrix,
and the coefficients, α ∈ Rn×6, are given by,

α = [K(X,X) + σ2
nI]

−1Y (12)

where Kpq = K [x(tp),x(tq)] ∈ Rn×n is the Gram matrix,
σ2
n denotes the variance of observation noise, and Y ∈ Rn×6

represents the corresponding forces and torques used for
training. Then, we can use this relative-time-kernel-based
decoding function to predict the output forces and torques
by evaluating the function at arbitrary binned spike trains
from 10 flight muscles. This method can be easily applied
to much larger neural systems with more than 10 neurons by
combining kernel evaluations between more pairs of correlated
spike trains in (10) accordingly. However, it will become more
computationally expensive as the number of neurons increases.

To benchmark our new kernel design, we will compare
the performance of our relative-timing-kernel-based regres-
sion with that of the traditional rate coding [16], [17] and
instantaneous-kernel-based regression [31]. The rate coding
method is based on the assumption that average firing rate
encodes most information. The instantaneous kernel directly
determines similarities between single spike trains, and does
not capture relative timing information [26], [27]. For the
instantaneous kernel, the binned spike train from muscle i is
represented as a combination of Dirac delta functions,

xi(t) =
∑
ki

δ(t− tiki
) (13)

which can then be converted to a continuous function by
convolving with a one-dimensional Gaussian filter g,

fi(t) = xi ∗ g =
∑
ki

g(t− tiki
) (14)

The kernel evaluation between two binned spike trains can be
defined as,

K(Xi, Xi′) = ⟨fi|f ′
i⟩ =

∫ T

0

fi(t)f
′
i(t)dt (15)

Then, the instantaneous kernel function across the flight mus-
cle population can be given by,

K(x,x′) =
∑
i

K(Xi, Xi′) (16)

In the following section, we will show the prediction results
of relative-time-kernel-based, instantaneous-kernel-based and
rate-based regressions.

IV. REGRESSION RESULTS

For the hawk moth motor program, we choose the size of
the sliding window for spike train binning to be 50 ms, which
is about the length of each wing stroke. To capture the stroke-
to-stroke modulation in one complete flower oscillation cycle,
the training data used for RKHS regression should cover at
least one second. Therefore, given that the sampling rate of
moth experiments is 104 Hz, we need to use 105 binned spike
trains from 10 primary muscles and 6×104 output forces and
torques collected during the hawk moth’s flapping flight for
training. Given that the resulting forces and torques do not
change dramatically in training and test data sets, we decrease
the resolution of training data to reduce the computational
complexity by collecting the training data every 20 time steps.
Then, we obtain a sequence of binned spike trains from 10
primary muscles at times t1, t2, · · · , t500, arrange them into a
matrix, X ∈ R500×10, and correspondingly collect the output
forces and torques, Y ∈ R500×6, within one second as the
training data for RKHS regression. Finally, we test our new
regression-based decoder on a test data set, Z ∈ R500×10.

Fig. 4 shows the resulting forces and torques predicted
by relative-time-kernel-based, instantaneous-kernel-based and
rate-based regressions along with the true values measured in
the moth experiment. The resulting forces and torques have
been predicted accurately within a permissible range of error
by the relative-time-kernel based method. The instantaneous
kernel directly determines similarities between single spike
trains, and does not capture relative timing information [26],
[27]. The rate coding method is based on the assumption that
average firing rate encodes most information. Unlike these
two traditional methods, our relative-time kernel compares
every pair of correlated spike trains across the population, and
considers the extra information encoded in relative spike times
among different spike trains. As shown in Fig. 4, both the
relative-time-kernel-based and instantaneous-kernel-based de-
coders outperform the rate-based decoder significantly. More
importantly, the relative-time-kernel-based decoder can cap-
ture small changes in forces and moments better than the other
two traditional methods, particularly for torque components,
Tx and Ty .

In Fig. 5, we compare the absolute prediction errors
of relative-time-kernel-based, instantaneous-kernel-based and
rate-based regressions. The absolute prediction error, e, is
defined as,

e = |y − ŷ| (17)

where y denotes the true value, and ŷ denotes the predicted
value. It can be observed that the relative-time-kernel-based
decoder can predict the resulting forces and torques more
accurately than the other two traditional decoders, especially
for the torque prediction. Predicting torques is much harder
and more critical than forces as the rotational modes are less
stable in moth flapping flight. To determine how well the
decoder captures the variance in data, we use the standard
deviation of the absolute prediction error, σe, and R-squared
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Fig. 4. Comparison of relative-time-kernel-based, instantaneous-kernel-based
and rate-based predictions of resulting forces and torques.

score, R2. The standard deviation of the absolute error, σe, is
given by,

σe =

√√√√ n∑
i=1

(ei − ē)2 (18)

where ē = 1
n

n∑
i=1

ei. The lower the standard deviation of

the absolute error is, the better the model captures the data
variance. The R-squared score, R2, is given by,

R2(y, ŷ) = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
(19)

where ȳ = 1
n

n∑
i=1

yi. The higher the R-squared score is, the bet-

ter the model captures the data variance. In Table I, these two
performance metrics are used to quantitatively determine the
accuracy of relative-time-kernel-based, instantaneous-kernel-
based and rate-based regressions. The percentage improvement
of relative-time kernel over instantaneous kernel is highlighted
in yellow, and the average magnitudes of percentage im-
provement for performance metrics, σe and R2, are 14.3%

and 16.0%, respectively. It can be observed that the standard
deviation of the absolute error of relative-time-kernel-based
regression is smaller than that of instantaneous-kernel-based
regression except for the force component, Fz . Furthermore,
the R-squared scores of relative-time-kernel-based regression
for the predictions of Fx, Fy , Tx, Ty and Tz are all higher than
those of instantaneous-kernel-based regression. The slightly
worse performance of the relative-time kernel for the pre-
diction of Fz is possibly due to measurement noise and
inaccuracy caused by unstable vertical motions of the flapping
insect in the experiment.

Compared to force prediction, our proposed relative-time
kernel has a much higher percentage improvement of up to
52.1% over the instantaneous kernel in torque prediction. This
significant difference between force and torque predictions is
due to the fact that the performance of traditional kernel-
based decoders in force prediction is already good enough, but
predicting within-wingstroke torque is much more challenging
and needs to be improved especially for individual wingstrokes
[38]. In our experiments, to visually track a horizontally
moving robotic flower, the moth is responding to a rotating
stimulus. The moth behavior we elicit generates large variation
in torques, but was not designed to produce large systematic
variations in forces. Consequently, the torques especially yaw
torque Tz is the most relevant and challenging to predict.
Having taken the extra information of relative spike times into
account, the relative-time-kernel-based decoder significantly
improves the torque prediction compared to the traditional
instantaneous-kernel-based and rate-based decoders.

TABLE I
REGRESSION PERFORMANCE COMPARISON.

Fx Fy Fz

Relative-time 0.0054 0.0071 0.0042
Instantaneous 0.0056 0.0076 0.0040
Rate coding 0.0065 0.0181 0.0087σe ↓

% Improvement 3.6% 6.6% -5.0%
Tx Ty Tz

Relative-time 0.4350 0.3542 0.0397
Instantaneous 0.6193 0.4535 0.0558
Rate coding 0.9270 0.5506 0.0742σe ↓

% Improvement 29.8% 21.9% 28.9%
Fx Fy Fz

Relative-time 0.6477 0.9203 0.9133
Instantaneous 0.6369 0.9037 0.9477
Rate coding 0.4690 0.5924 0.7230R2 ↑

% Improvement 1.7% 1.8% -3.6%
Tx Ty Tz

Relative-time 0.8869 0.6609 0.8555
Instantaneous 0.7151 0.4345 0.7133
Rate coding 0.5481 0.1839 0.4760R2 ↑

% Improvement 24.0% 52.1% 19.9%

V. CONCLUSION

This paper presents a novel regression-based spike train
decoding method that uncovers the precise mapping from the
spike trains of ten primary flight muscles to the resulting forces
and torques on the moth body for the flight of a hawk moth
visually tracking a robotic flower. The new relative-time kernel
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Fig. 5. Comparison of the absolute prediction errors of the relative-time-
kernel-based, instantaneous-kernel-based and rate-based regressions.

design proposed in this paper considers the extra relative spike
timing information among multiple spike trains by comparing
every pair of correlated spike trains across the flight muscle
population. The relative-time-kernel-based decoder captures
the data variance better and predicts the resulting forces and
torques more accurately than benchmark instantaneous-kernel-
based and rate-based decoders. Furthermore, compared to
force prediction, the proposed relative-time kernel has a much
higher percentage improvement over the instantaneous kernel
in torque prediction. Regarding the future work beyond the
relative-time kernel design approach described in this paper,
we will use this new regression-based spike train decoder to
train a spiking neural network (SNN) model of hawk moth
sensorimotor control.
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