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Abstract— This paper presents a camera control approach for
learning unknown nonlinear target dynamics by approximating
information value functions using particles that represent tar-
gets’ position distributions. The target dynamics are described
by a non-parametric mixture model that can learn a potentially
infinite number of motion patterns. Assuming that each motion
pattern can be represented as a velocity field, the target
behaviors can be described by a non-parametric Dirichlet
process-Gaussian process (DP-GP) mixture model. The DP-
GP model has been successfully applied for clustering time-
invariant spatial phenomena due to its flexibility to adapt to
data complexity without overfitting. A new DP-GP information
value function is presented that can be used by the sensor to
explore and improve the DP-GP mixture model. The optimal
camera control is computed to maximize this information
value function online via a computationally efficient particle-
based search method. The proposed approach is demonstrated
through numerical simulations and hardware experiments in
the RAVEN testbed at MIT.

I. INTRODUCTION

The problem of using position-fixed sensors to actively
monitor and learn the behavior of targets with little or no
prior information is relevant to a variety of fields, including
monitoring urban environments [1] and detecting anomalies
in manufacturing plants [2]. Many methods have been pro-
posed to describe targets’ behaviors in a workspace, such as
Gauss-Markov chains [3], [4], linear stochastic models [5]–
[7], and nonholonomic dynamics models [8]–[10]. Position-
fixed sensors, such as cameras, are often deployed to coop-
eratively track and surveil moving targets based on limited
information that only becomes available when the target
enters a sensor’s field-of-view (FoV). In many cases, the
target environment is too large for complete sensor coverage,
and thus a controller that accounts for the FoV geometry is
necessary to determine sensor configurations that minimize
uncertainty [11]–[13].

However, little work has been done for the case when
sensors have limited FoVs and minimal information about
the target model structure is known a priori. In this paper, the
target behavior is described as a mixture of unknown velocity
fields, the number of which is also unknown. The Dirichlet
process-Gaussian process (DP-GP) mixture model provides
the necessary flexibility to capture such behavior without
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overfitting and has been successfully applied in clustering
time invariant spatial phenomena [14]. Therefore, the DP-
GP mixture model is adopted to model the target movement
behavior given noisy measurements.

The active sensing problem considered in this paper is
coupled with the problem of tracking moving targets with
unknown dynamics, where it is necessary to estimate the
classification, dynamics, and position of each target. The
objective is to maximize the accuracy of the learned target
behavior (i.e., accuracy of the model associated with each
target behavior type). Thus, an information value function
is introduced for DP-GP model updates. The information
functions quantify the amount of information associated with
random variables such as velocity fields, and by optimiz-
ing the function, the uncertainty of the velocity field can
be minimized to control the sensor [15]–[20]. Computing
information value functions for one or more random vari-
ables or stochastic processes requires knowledge of their
joint probability mass (or density) functions. To this end, a
general approach was recently presented by the authors for
estimating the expected information value of future sensor
measurements in target classification problems [21].

In this paper, a particle filter using the Gaussian mixture
model constructed from the DP-GP model as the proposal
distribution, is adopted to estimate targets’ positions by a
set of weighted particles [22]. The weight associated with
each particle is obtained through Bayes’ rule from the
prior distribution of the target position, the prior distribution
of the target behavior classification, the target position-
measurement and the measurement model. A computational
efficient particle-based optimal control searching approach is
proposed to optimize the DP-GP information value function
by approximating it as a function of weighted particles.
The proposed approach is demonstrated through numerical
simulations and hardware experiments.

The paper is organized as follows. The problem for-
mulation is presented in Section II. Section III provides
background knowledge of the DP-GP model. The proposed
approach is presented in Section IV by introducing (a) the
DP-GP information value function, (b) particle filter, and
(c) approximation of the DP-GP information value function,
as well as the search strategy for optimal camera control.
Simulation and hardware results are presented in Sections
V and VI, respectively. Finally, conclusions are drawn in
Section VII.
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Fig. 1. Illustration of the active sensing problem with S = 2, where one
sensor is zoomed in and the other is zoomed out.

II. PROBLEM FORMULATION

The active sensing problem consists of determining the
control input, denoted by u, for a sensor with a limited field-
of-view (FoV), denoted by S, to surveil a two-dimensional
convex workspace, W ⊂ R2. S is assumed to be a subset of
the workspace, and is determined by the control vector, such
that S[u(t)] ⊂ W , at time t. The sensor has two possible
FoV zoom levels, L = {1, 2}, where the first zoom level
enables the sensor to make measurements of a small area
with high accuracy, and the second zoom level enables the
sensor to observe a larger area with less accuracy. Let Fw

denote a fixed inertial frame of reference embedded in W ,
and Fs represent a moving frame of reference embedded in
S, with origin Os as illustrated in Fig. 1. If the position
of Os with respect to Fw is denoted by q(t) ∈ W , and
the FoV is assumed to translate in W without rotation as a
free-flying object, the control vector that fully determines the
configuration of the sensor FoV is u(t) = [qT (t) l(t)]T ,
where l(t) ∈ L denotes the choice of zoom level. Then, at
any time t, a noisy vector measurement of the jth target
position, xj(t) ∈ W , and velocity, ẋj(t),

mj(t),

[
yj(t)
zj(t)

]
=

[
xj(t) + nx

ẋj(t) + nv

]
,
nx ∼ N{0,Σx[l(t)]}
nv ∼ N{0,Σv[l(t)]}

, (1)

for j = 1, . . . , N(t), is obtained iff xj(t) ∈ S[u(t)], where
N(t) is the number of targets that have entered the workspace
up to time t, and “∼” denotes “is distributed as”. When
xj(t) 6∈ S[u(t)], the measurement of target j at t is an empty
set, i.e., mj(t) = ∅. Velocity measurements are obtained
though target position difference in two consecutive video
frames. It is assumed that data-target association is perfect
and the noise vectors nx and nv are normal distributed
with zero mean and covariances Σx, Σv ∈ R2×2 with zero
off-diagonal entries, respectively. For the two zoom levels,
Σx(1) ≺ Σx(2) and Σv(1) ≺ Σv(2), where ≺ denotes
comparing matrices by elements.

An unknown number of targets are allowed to travel
through W . Although the true target states are unknown,
it can be assumed that all target behaviors can be modeled
by a possibly nonlinear time-invariant system,

ẋj(t) = fi[xj(t)], j = 1, . . . , N(t). (2)

The vector function fi : R2 → R2, referred to as a

velocity field, is also unknown, and is drawn from a set
F = {f1, . . . , fM} of unknown velocity fields to be learned
from data, where M is unknown. For simplicity, it is assumed
that N(t) can be determined without error. Although the set
of velocity fields is assumed to capture all possible target
behaviors, there does not exist a one-to-one correspondence
between F and the set of targets. This is because one or
more targets in W may be described by the same velocity
field in F , while some velocity fields in F may not describe
any of the targets in W .

Then, the problem considered in this paper is to determine
F , as well as the association between the velocity fields
in F and the targets in W , based on sensor measurements
obtained up to the present time according to the model in (1).
It is assumed that every velocity field in F is of class C1,
or continuously differentiable [23]. Let a discrete random
variable gj , with range I = {1, · · · ,M}, denote the index
of the velocity field that describes the behavior of the jth
target. Then, the event {gj = i} represents the association
of target j with the velocity field fi ∈ F , as shown in
(2). It is assumed that gj obeys an unknown M -dimensional
categorical distribution [24], denoted by Cat(π), where π =
[π1 . . . πM ]T describes the prior probabilities of every
possible outcome of gj , for any j = 1, . . . , N(t). Moreover,
targets do not collaborate with each other, so the random
variables g1, . . . , gN(t) can be assumed to be independent
and identically distributed (i.i.d.), such that,

Pr{gj = i} = πi, ∀i, j (3)

where Pr{gj = i} is the probability of event {gj = i}. Then,
the elements of vector π satisfy the properties,

M∑
i=1

πi = 1, and πi ∈ [0, 1], ∀i = 1, . . . ,M. (4)

and π can be used to represent the probability mass function
(PMF) of the M -dimensional categorical distribution. Based
on the above assumptions and problem formulation, the pair
{F ,π} is the sufficient statistic of the target dynamics.
This paper presents an approach to determining the optimal
control, u∗(t), that enables the sensors to collect the most
valuable measurements for learning {F ,π}.

III. DIRICHLET PROCESS-GAUSSIAN PROCESS MIXTURE
MODEL

This section presents a Dirichlet process-Gaussian process
mixture model for describing target behaviors [14]. Based on
the model of targets’ behaviors (2), every velocity field, fi,
projects the jth target position, xj(k), to the target velocity,
ẋj(k). Thus, they can be viewed as two-dimensional spatial
phenomena that can be modeled by multi-output Gaussian
processes (GPs) [25]. Let a Gaussian process GPi represent
the distribution of velocities over the workspace specified by
the ith velocity field, fi, such that

fi(x) ∼ GPi, ∀x ∈ W, (5)
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for i = 1, . . . ,M . Then, GPi is completely specified by the
mean function and the kernel function [26]:

θi(x) = E[fi(x)], ∀x ∈ W, (6)

c(xı,x) = E
{

[fi(xı)− θi(xı)][fi(x)− θi(x)]
T
}

(7)

for all xı,x ∈ W , where E[·] denotes the expectation
operator. In this paper, it is assumed that all of the M
GPs share the same kernel function, which is known to
the sensor. Therefore, the ith Gaussian process GPi can be
parameterized by GPi = GP(θi, c). For a rigorous definition
and a comprehensive review of Gaussian processes the reader
is referred to [26].

From Section II, the PMF π, which describes the probabil-
ity of an association between a target and a velocity field, is
unknown and must be learned from data using classification
approaches [27]. Furthermore, because different targets may
be described by the same velocity field in F , a prior distri-
bution on π is required to augment the ability of learning
the clustering effect of target behaviors learned from the
sensor measurements. Dirichlet processes (DPs) have been
successfully applied in clustering data without specifying
the number of clusters a priori, because they allow the
creation and deletion of clusters when necessary as new data
is obtained over time. Let µ denote a random probability
measure over a support set, A. A DP is a distribution for µ
such that marginals on any finite partitions of A are Dirichlet-
distributed [28]. A DP can be described by two parameters,
the base distribution denoted by H(A), and the strength
parameter α [29]. The base distribution is analogous to the
mean function and the strength parameter can be viewed as
the inverse of the DP variance. Then µ is a Dirichlet process,

µ ∼ DP[α,H(A)], (8)

if any partition {A1, . . . , An} of A obeys,

[µ(A1), . . . , µ(An)]T ∼ Dir[αH(A1), . . . , αH(An)], (9)

where “Dir” denotes the Dirichlet distribution. For a rigorous
definition and a comprehensive review of DPs, the reader is
referred to [30]. In this paper, the base distribution, H , is
chosen to be a Gaussian process, GP0 = GP(0, c), and the
support set, A, is chosen to be the set consisting of all the
admissible velocity fields. The resulting model is a Dirichlet
process-Gaussian process (DP-GP) mixture model [14],

{θi,π} ∼ DP(α,GP0), i = 1, . . . ,∞
gj ∼ Cat(π), j = 1, . . . , N

fgj (x) ∼ GP(θgj , c), ∀x ∈ W, j = 1, . . . , N,

(10)

that can be utilized to learn the behaviors of the targets in
(2) from data.

In many applications [31]–[33], it can be assumed that the
sensor obtains measurements at a constant known interval,
δt. Thus, the target model (2) can be discretized accordingly.
Letting k denote the discrete time index, the DP-GP model
in (10) can be updated when enough observations of a new
target trajectory are available, using algorithms such as the
Markov chain sampling methods [34], or the variational

inference approach [35]. In this work, the Gibbs sampling
technique is applied to obtain the posterior parameters of
the DP-GP model following the work in [14], [36], [37].
First, the indicator of the target-velocity association, gj , for
every target is sampled from the Chinese restaurant process
[38]. Then the GP parameters, θi, for every velocity field are
sampled given the target-velocity field association from the
previous step. The two steps are repeated a large amount of
times before the posterior distribution is acquired.

Let E(k) represent the measurement histories of all the
targets already used in updating the DP-GP model, and
Ei(k) denote the measurement histories assigned to the ith
velocity field. In other words, if k′ denotes the last time
when the DP-GP model is updated, and vector m(k) =
[mT

1 (k) . . . mT
N (k)]T denotes measurements of all tar-

gets at the kth time step, the following measure histories,

E(k) = {m(`) | m(`) 6= ∅, 0 ≤ ` ≤ k′}, (11)
and

Ei(k) = {mj(`) | mj(`) 6= ∅, 0 ≤ ` ≤ k′, gj = i}. (12)

can be used to determine the expected information value
of the latest DP-GP model. The matrices of position and
velocity measurements in Ei(k), defined as

Pi(k) = [y1(1) . . .yj(`). . .yN (k)], ∀mj(`) ∈ Ei(k) (13)

Vi(k) = [z1(1) . . . zj(`). . . zN (k)], ∀ mj(`) ∈ Ei(k) (14)

are employed in the expressions the mean and variance the
jth target velocity at position xj(k), such that

µj(k) = θi[xj(k)] + C[xj(k),Pi(k)] (15)

× {C[Pi(k),Pi(k)]+Σv}−1{Vi(k)−θi[Pi(k)]},
Σj(k) = c[xj(k),xj(k)]−C[xj(k),Pi(k)] (16)

× {C[Pi(k),Pi(k)] + Σv}−1C[Pi(k),xj(k)],

where

C(A,B) ,

 c(a1,b1) · · · c(a1,bn)
...

. . .
...

c(am,b1) · · · c(am,bn)

 (17)

is the cross-variance matrix of matrices A = [a1 . . . am]
and B = [b1 . . . bn].

IV. METHODOLOGY

This section first introduces the DP-GP information value
function based on Kullback-Leibler (KL)-divergence be-
tween the prior and posterior of the DP-GP given an ad-
ditional future measurement. Then, it describes a particle
filter that includes a set of particles sampled from the prior
(predicted) target position distribution at k + 1; this filter is
used to obtain posterior distribution of the targets’ positions.
In the remainder of this section, these sampled particles are
further used to approximate information values, and thus to
facilitate searching for optimal camera control.

97



A. DP-GP Information Value

Information theoretic functions, particularly the KL-
divergence have been shown to be effective at representing
information value for probabilistic models [39]. Expected
information value functions have been proposed in [15] to
represent the benefit of future sensor measurements. This
paper develops one expected information value function that
is applicable to DP-GP mixture models, which is referred to
as the DP-GP information value function.

Since the DP-GP mixture model can be viewed as a
distribution over probability distributions [14], [36], [40],
[41], a KL-divergence function is employed here to represent
the distance between the prior (current) DP-GP mixture
model and the posterior DP-GP mixture model updated with
an additional sensor measurement. Let ξi, i = 1, . . . , G,
denote the G points of interest selected to represent the
velocity field over the workspace. For example, they can
be G uniformly distributed grid points in workspace. Let
X = [ξ1 . . . ξG] be a shorthand notation of the points
of interest, such that

fi(X) = [fi(ξ1)T . . . fi(ξG)T ]T (18)

Let F denote the vector function by stacking fi, i =
1, . . . ,M , column-wise, such that

F(X) , [f1(X)T . . . fM (X)T ]T (19)

where F(X) denotes the function values evaluated at X. No-
tice that F(X) is the vector of random variables investigated
in this paper.

Similar to E(k),M(k) denotes the measurement histories
of all the targets that have not been used in updating the
DP-GP model as follows,

M(k) = {m(`) | m(`) 6= ∅, k′ < ` ≤ k}. (20)

Mj(k) denotes the set of unlabeled measurement history of
the jth target. Since the sensor obtains measurements from
multiple targets simultaneously, the total information value
is the sum of the information value of each target in the
workspace, as follows

ϕ[F(X); m(k + 1) | M(k), E(k),u(k)] (21)

=
∑

{j|xj(k)∈S}

ϕj [F(X); mj(k + 1) | Mj(k), E(k),u(k)],

In addition, the velocity field-target association is unknown.
Therefore, the information value for the jth target is ob-
tained through a weighted summation of information value
conditioned on all possible associations,

ϕj [F(X); mj(k + 1) | Mj(k), E(k),u(k)]

=

M∑
i=1

ϕj [fi(X); mj(k + 1) | Mj(k), Ei(k),u(k), gj = i]

× p[gj = i | Mj(k), E(k),u(k)], (22)

where p[·] denotes probability. Notice that the condition
{gj = i} is implied by Ei, therefore it will be dropped

when there is no confusion. Because at k the value of
mj(k + 1) is unknown, the information value is estimated
by marginalizing over mj(k + 1) to obtain the expected
conditional sub-information value as follows, [11]

ϕj [fi(X); mj(k + 1) | Mj(k), Ei(k),u(k)]

'
∫
xj∈S

{∫
mj

D
(
p[fi(X) | Mj(k + 1), Ei(k),u(k)]

‖ p[fi(X) | Mj(k), Ei(k),u(k)]
)

× p[mj(k+1) | xj(k + 1),Mj(k), Ei(k),u(k)]dmj

}
× p[xj(k + 1) | Mj(k), Ei(k),u(k)]dxj (23)

where D(·‖·) denotes the KL-divergence between the poste-
rior and prior distributions of fi(X) given the measurement
mj(k + 1) [42], and can be computed as follows:

D
(
p[fi(X) | Mj(k + 1), Ei(k),u(k)]

‖ p[fi(X) | Mj(k), Ei(k),u(k)]
)

=

∫ ∞
−∞

(
ln{p[fi(X) | Mj(k + 1), Ei(k),u(k)]}−

ln{p[fi(X) | Mj(k), Ei(k),u(k)]}
)

× p[fi(X) | Mj(k + 1), Ei(k),u(k)]dfi(X). (24)

If it can be assumed that the position measurement noise
is negligible compared to the velocity measurement noise,
the inner integral of (23), denoted by hi, can be evaluated
analytically [16], as

h[xj(k + 1)] = tr[(Q−1)TRTRQ−1Σv] (25)

R = −C[X,P(k)]{C[P(k),P(k)] + Σv}−1

×C[P(k),x(k + 1)] + C[X,x(k + 1)] (26)
Q = Σj(k) + Σv (27)

tr[·] denotes the trace of a matrix. Q is the covariance matrix
of the target velocity regulated by the measurement noise,
and P can be seen as the covariance between the points of
interest and the target position at the next time step.

In (23), p[xj(k+1)|Mj(k), Ei(k),u(k)] is the probability
density function of the target position at the next time step,
and can be obtained as follows,

p[xj(k + 1) | Mj(k), Ei(k),u(k)]

=

∫
V
p[vj(k) | Mj(k), Ei(k),u(k)]

× p[xj(k) | Mj(k), Ei(k),u(k)]dvj(k),

(28)

where

xj(k) = xj(k + 1)− vj(k)δt, (29)
p[vj(k) | Mj(k), Ei(k),u(k)] = N [µj(k),Σj(k)], (30)

δt is the time step size, and V is the set of possible target
velocities.

Note that given Mj(k) the probability of the jth target
dynamics following the ith velocity field in F is determined
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by

wji , p[gj = i | Mj(k), E(k),u(k)]

=
πi
∏k

`=k′ N [zj(`); µ̂j(`), Σ̂j(`)]∑
i πi
∏k

`=k′ N [zj(`); µ̂j(`), Σ̂j(`)]
,

(31)

where the estimated mean, µ̂j(`), and variance, Σ̂j(`), of the
target velocity are calculated by replacing xj(k) with yj(`)
in (15-16). The approximation of DP-GP information value
via particles is introduced in Section IV-C, where these par-
ticles are used to present the target position distribution. This
approximation further reduces computational complexity of
determining the optimal camera control policy.

B. Particle Filter

The position of the FoV centroid and zoom levels of all
cameras need to be planned ahead of time in order to obtain
measurement of moving targets. Thus, the estimation of
every target’s position propagation at one time step ahead (at
k+1), denoted as xj(k+1−), must be obtained for the purpose
of planning, where k+1− denotes the moment right before
k+1 when mj(k+ 1) is not available. Measurements can be
empty sets when the camera loses sight of targets, resulting in
a nonlinear observation model. Therefore, a classical particle
filter algorithm, sequential importance resampling (SIR) [43],
is adopted to estimate prior and posterior target position
distribution using a Gaussian mixture model as a proposal
distribution. This Gaussian mixture model is the transition
prior probability distribution of targets’ positions at k+ 1−,
which is built upon the learned DP-GP model and particles
representing posterior distributions of targets’ positions at k.

The position propagation of target j under the estimated
behavior {F ,π} from k to k + 1 is

xj(k + 1) = xj(k) + fgj [xj(k)]δt (32)

where wji is given by (31). In the first step, the samples
from the posterior distribution of the jth target position at
time step k given Mj(k) and Ei(k) are represented by a set
of particle and weight pairs,

Pji(k) ,
{(
ωjis(k),χjis(k)

)
: 1 ≤ s ≤ S

}
(33)

where S is the number of particles for each velocity field,
χjis(k) represents sth particle for velocity filed j and target
i, and ωjis(k) represents the associated weight, such that

S∑
s=1

ωjis(k) = wji. (34)

In the second step, according to the target position pro-
rogation (32) and the DP-GP model, xj(k + 1−) can be
obtained and represented by a Gaussian mixture,

xj(k+1−) ∼ (35)
M∑
i=1

S∑
s=1

ωjis(k)N [ηjis(k+1−),Λjis(k+1−)]

where

ηjis(k+1−) = χjis(k)+µjis(k) δt (36)

Λjis(k+1−) = Σjis(k) δt2 (37)

and where µjis and Σjis are the mean and variance of
sth Gaussian component of target j for velocity field i at
χjis(k), which can be calculated from (15-16) by replacing
xj(k) with χjis(k). This Gaussian mixture is used as the
optimal proposal distribution to sample transient particles
representing the probability distribution of xj(k + 1−), as
follows,

χjis(k+1−) ∼ (38)
S∑

s=1

{
ωjis(k)

wji
N [ηjis(k+1−),Λjis(k+1−)]

}
ωjis(k + 1−) = wji/S (39)

Finally, when a non-empty measurement mj(k + 1) is
obtained, the weights associated with particles are updated
as follows,

ωjis(k + 1) = (40)
wji ωjis(k+1−)N [zj(k+1);χjis(k+1−),Σj(k+1)]∑S
s=1 ωjis(k+1−)N [zj(k+1);χjis(k+1−),Σj(k+1)]

via measurement model (1). When an empty measurement
of target j is obtained, i.e., mj(k+ 1) = ∅, ωjis(k+1) is
set to zero if χjis(k+1−) ∈ S[u(k+1)]. Then, weights of
all particles for target j are normalized. The particles stay
the same as the transient particles, such that χjis(k + 1) =
χjis(k + 1−). Therefore, similar to (33), the samples from
posterior probability distribution of target j at time k+1 can
also be represented by the weighted particles

Pji(k + 1) = (41){(
ωjis(k + 1),χjis(k + 1)

)
: 1 ≤ s ≤ S

}
In the following sections, all transient particle sets ob-

tained by (38-39), denoted by Pji(k + 1−), are utilized to
facilitate the calculation of DP-GP information values for the
search of optimal camera control.

C. Approximation of DP-GP Information Value

The resultant weighted particles from the particle filter,
Pji(k + 1−), representing samples from the prior position
distribution of target j at k + 1 are utilized to reduce the
computational complexity for determining the DP-GP infor-
mation value. Let h[xj(k+1−)] denote the integrand in (23)
in the curly bracket, the evaluation of DP-GP information
value becomes,

ϕj [F(X); m(k + 1) | Mj(k), E(k),u(k)]

≈
M∑
i=1

∫
xj

h[xj(k + 1−)] p[xj(k + 1−)|Mj(k), Ei(k),u(k)]

× dxj(k+1−) × wji (42)
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By using the weighted particles, Pji(k + 1−), (42) can be
approximated by a finite sum, such that

ϕ̂j [F(X); m(k + 1) | Mj(k), E(k),u(k)] (43)

≈
M∑
i=1

∑
χjis(k+1−)∈S(k+1)

h[χjis(k + 1−)] ωjis(k + 1−)

where S[u(k+1)] is abbreviated as S(k+1) hereinafter.

D. Searching for Optimal Camera Control

Adopting all the weighted particles, the DP-GP informa-
tion value function to be maximized at each step can be
written as

J =

N∑
j=1

M∑
i=1

∑
χjis(k+1−)6∈S(k+1)

h[χjis(k+1−)]wjis(k+1−) (44)

where h[χjis(k+ 1−)] is precalculated for every particle.
Given a zoom level, the optimal control u∗(k + 1) is ob-
tained by the reduction to the following geometric covering
problem: Given a set of points

∪Nj=1 ∪Mi=1 ∪Ss=1{χjis(k + 1−)}

in a two dimensional plane, each associated with a weight
ωjis(k+1−)×h[χjis(k+1−)]; find the position of an axis-
parallel rectangle of given size Lx (horizontal size) and Ly

(vertical size), such that J in (44) is maximized [44].
Analogous to the method in [44], the approach optimizing

u∗(k+1) consists of five steps: (i) sort x coordinates of entire
particles; (ii) build a segment tree in O(MNS logMNS)
time for all vertical segments of length Ly with their bottom
end at particles’ y coordinates, respectively; (iii) associate a
value to each vertical segment and initialize it as zero; (iv)
sweep along sorted x coordinates with a horizontal segment
of length Lx and infinite height, record added (deleted)
particles whose x coordinates are newly covered (newly
uncovered) by this horizontal segment. Values associated
with retrieved vertical segments that contain y coordinates
of added (deleted) particles are added (subtracted) with
the weights associated with these particles; (v) obtain the
maximum value among all updated segments; (vi) repeat (i)-
(v) for all zoom-levels, and obtain the maximum value.

The search for the optimal u∗(k+ 1) for each zoom level
can be done in O(MNS logMNS +K) time, where K is
the total number of retrieved segments. It is worth pointing
out that because the measurement noise and the size of FoV
is determined by the zoom level, for different zoom levels,
the pre-calculated quantities stay the same, except h[χjis(k+
1−)]. A geometric covering problem is formulated and solved
for each zoom level. Finally, optimal control under all zoom
levels are compared in time O(|L|) to obtain the optimal
control that maximizes (44), where |L| denotes the number
of zoom levels.

V. NUMERICAL SIMULATIONS

The first numerical simulation involves multiple targets
behaving according to three unknown velocity fields. Targets
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Fig. 2. Relative RMS of the DP-GP model in imitating the motion patterns
by four algorithms.

are surveilled by a single camera with square FoV of area
0.04 and 0.36 for each zoom level respectively. The working
space is a square with area 4.0. Four sensor allocation
approaches for DP-GP model update are compared. The first
is a heuristic algorithm where the FoV centroid follows the
nearest target that was not observed in last time step. The
second is a random search algorithm that randomly generates
a position for the FoV centroid. The third assigns camera
FoVs based solely on maximizing the mutual information
between target position and a future measurement; The fourth
optimizes the DP-GP information value function shown in
(44).

Algorithm performance is evaluated by relative error com-
paring the estimated target model to the real underlying
velocity fields. The relative error, ξ, is the root mean square
error (RMS) of the DP-GP model in imitating the motion
patterns, normalized by the velocity ẋj(k) at each point. To
obtain ξ, NA = 1000 new test trajectories (distinct from
those observed by the camera), {Tj : 1 ≤ j ≤ NA}, are
generated according to the motion patterns, where Tj =
{xi(k), ẋj(k)}, k = 1, . . . , NTj , represents the jth new
trajectory and NTj is the length of the jth trajectory. These
trajectories are compared to the evolving DP-GP model. If
µji[xj(k)] is utilized to denote the mean speed at xj(k) by
the ith Gaussian process component in the DP-GP model, ξ
can be expressed as follows,

ξ= 1
NA

NA∑
j=1

M∑
i=1

wji

√
1

NTj

NTj∑
k=1

‖1− µji[xj(k)]
ẋj(k)

‖22 (45)

Figure 2 shows the decreasing trend of the relative error
of the evolving DP-GP model over time using the four ap-
proaches. It demonstrates the advantages of an information-
theoretic approach for control actions to update a DP-GP
model. Additionally, model error decreases faster when the
DP-GP model uncertainty is considered via the proposed DP-
GP information value function.

Figure 3-(a) shows the trajectories utilized in training the
prior DP-GP model at t = 0, and Figure 3-(b) shows the
set of new trajectories Ti. Figure 3-(c) shows the observed
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Fig. 3. (a) Trajectories utilized in training the prior DP-GP model at
t = 0; (b) the set of new trajectories Ti; (c) the observed trajectories
by maximizing the DP-GP information value function; (d) the observed
trajectories by maximizing mutual information.

trajectories by maximizing the DP-GP information value
function. The red arrows indicate measurements made by
the camera at the zoomed-in level, while the blue arrows
represent observations at the zoomed-out level. Figure 3-
(d) shows the observed trajectories by maximizing mutual
information only. It is included for comparison. Comparing
with Figure 3-(c), it can be seen that the camera tends to
observe the trajectories of which the prior DP-GP model has
little knowledge.

VI. HARDWARE EXPERIMENTS

The proposed approach was also implemented in hardware
using the Real-time indoor Autonomous Vehicle test Envi-
ronment (RAVEN) at MIT. The domain was constrained to
a 16m2 square region, with two AXIS P5512 PTZ cameras
performing target-tracking. Camera intrinsics were utilized to
obtain desired square FoVs with correct zoom levels (0.16m2

and 0.36m2, respectively) across the domain.
Three iRobot Create ground robots were used as targets,

each assigned to one of three underlying velocity fields.
A given velocity field may be assigned to multiple targets,
and re-assignment was performed upon completion of each
vehicle’s trajectory (marked by the vehicle departing the
domain). Figure 4 shows a superimposed view of camera
FoVs and position estimates for the above hardware setup.

Figure 5 illustrates relative RMS error, ξ, of the DP-GP
models in predicting vehicle trajectories using each of the
four algorithms described in Section V. As in results from
the simulated experiments, this plot illustrates the increasing
predictive accuracy of the DP-GP using the information-
theoretic control strategy developed in this paper. Specif-
ically, optimizing the DP-GP information value function
results in fast and significant reduction in model error, owing

Fig. 4. A snapshot of the moving targets (ground robots) and the optimal
camera FoVs (blue squares).
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Fig. 5. Relative RMS error, ξ, of DP-GP models in hardware experiments

to more sufficient surveillance of targets exhibiting behaviors
with little prior information.

VII. CONCLUSION

An optimal camera control policy is presented for
an active sensing problem where a number of moving
targets follow an unknown number of underlying velocity
fields. The target behaviors are described by a DP-GP
mixture model, and a particle filter is utilized to estimate
the target positions. The policy derived maximizes the
DP-GP information value function. Numerical simulations
demonstrated a decreasing trend in DP-GP model error using
the derived policy, and an advantage over heuristic policies.
Hardware experiments using three targets demonstrated
effective use of the algorithm in real-time active sensing
and planning.
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