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Abstract— This paper presents a visibility-based method for
planning the motion of a mobile robotic sensor with bounded
field-of-view to optimally track a moving target while localizing
itself. The target and robot states are estimated from online
sensor measurements and a set of a priori known landmarks,
using an extended Kalman filter (EKF), and thus the proposed
method is applicable to robots without a global positioning
system. It is shown that the problem of optimizing the target
tracking and robot localization performance is equivalent to
optimizing the visibility or probability of detection in the
EKF framework under mild assumptions. The control law that
maximizes the probability of detection for a robotic sensor with
a sector-shaped field-of-view (FoV) is derived as a function
of the robot heading and aperture. Simulations have been
conducted on synthetic experiments and the results show that
the optimized-visibility approach is effective at avoiding target
loss, and outperforms a state-of-the-art potential method based
on robot trailer models [1].

I. INTRODUCTION

The problem of tracking moving targets using mobile
robotic sensors arises in a number of monitoring and surveil-
lance applications [2]–[6]. In many cases, the ability to
track and localize the target is limited by the absence of a
global positioning system (GPS), and by a bounded field-
of-view (FoV) or visibility region, which may cause the
sensor to lose the target completely. These difficulties are
exacerbated by the need for tracking moving targets in
complex unstructured environments, in which target loss may
cause unbounded tracking errors if the lost target can not
be retrieved. Furthermore, since the position and orientation
of the sensor FoV is determined by the control inputs, the
motion of the robotic sensor must be planned in concert with
its measurement sequence for both sensing and navigation
objectives to be optimized [7], [8].

An optimized robot motion planning algorithm has been
recently proposed in [9] for leader-follower formation prob-
lems in which the follower seeks to minimize the uncertainty
in its relative position and heading with respect to the leader.
A gradient-based active target-tracking method for robots
equipped with 3D range finder sensors was proposed in [10]
for minimizing the uncertainty in robot and target position
estimates. These methods, however, do not account for
bounded FoVs, but assume the target is always within range
of the sensor. Cell decomposition [11], [12], probabilistic
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roadmap methods [13], [14], and potential field methods [15]
have been proposed for planning the motion of a robotic
sensor with a bounded FoV in order to optimize its ability to
classify stationary targets, in an obstacle-populated environ-
ment. Geometric transversal methods have been developed
for planning the motion of omnidirectional sensors such that
their probability of detecting a moving target is optimized
[8], [16], [17]. Other visibility-based methods that account
for both the sensor kinodynamic constraints and bounded
FoV have been proposed in [18]–[22]. However, all of these
methods assume that the sensor state with respect to an
inertial frame of reference is perfectly known at all times.

To address the aforementioned issues, an optimized-
visibility motion planning approach is proposed using an
extended Kalman filter (EKF) to simultaneously track the
target and localize the robotic sensor [23]–[25]. Within this
estimation framework, a control law is derived analytically
by assuming the FoV of the exteroceptive sensor can be
approximated by a sector with a fixed orientation with respect
to the robot and a fixed aperture. Note that the proposed
optimized-visibility approach is applicable to any robot that
is equipped with exteroceptive sensors, such as laser scanner
or camera, for tracking and localizing moving targets, and
proprioceptive sensors, such as odometer, for providing ego-
motion information. The results show that the proposed
method is effective at tracking and localizing a moving target
with low target loss rates, and outperforms a state-of-the-art
potential method based on robot trailer models [1].

II. PROBLEM FORMULATION

Consider a mobile robotic sensor, hereon referred to as
robot, deployed to track a moving target in a 2D workspace,
W ⊂ R2, that is convex [26]. The robot kinematics in W
can be described by the unicycle motion model [27],

q̇r =

cos θr 0
sin θr 0
0 1

ur (1)

where qr = [xr yr θr]
T is the robot configuration or state

with respect to an inertial (or global) frame of reference FW ,
ur = [vr ωr]

T is the robot control vector, vr denotes the
translational speed, ωr is the angular velocity, and ur ∈ U ,
where U = [vmin, vmax] × [ωmin, ωmax] is the space of
admissible control inputs.

Assume the robot velocity and heading remain constant
during every time interval δt, and let k denote the discrete
time index. Then, the robot state propagation equations can
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be obtained as follows [28],

qr(k+1) , fr[qr(k),ur(k), k]=qr(k)+Br(k)ur(k), (2)

where

Br(k) =

cos θr(k)δt 0
sin θr(k)δt 0

0 δt

 . (3)

The proprioceptive sensor (e.g. odometer) obtains noisy
measurements of the control vector,

zr(k) , hr[ur(k)] = ur(k) + vr(k), (4)

where vr(k) is white Gaussian noise with a time-invariant
and known covariance matrix Qr, i.e., vr(k) ∼ N (0,Qr).

The robot is also equipped with an exteroceptive sensor
characterized by a sector-shaped FoV, denoted by S ⊂ W ,
that is rigidly connected to the robot, and has an aperture or
central angle α, and a range or radius γ, as shown in Fig.1.
Then, the motion of any point in S can be described by
the robot configuration vector qr, which includes the robot
inertial position xr = [xr yr]

T , and heading θr. Let the
target state be denoted by qt = [xt yt ẋt ẏt]

T , where
xt = [xt yt]

T is the target position, and ẋt = [ẋt ẏt]
T

is the target velocity. When the target is inside the FoV, the
exteroceptive sensor can measure its relative distance and
bearing according to the model,

zt , ht(qr,qt)=

{
[ρt θt]

T + vt, xt ∈ S(qr)
∅, xt 6∈ S(qr)

(5)

where ρt = ‖xr − xt‖ denotes the Euclidean distance
between xr and xt, θt is the angle between the robot
heading and the direction from robot to target. vt is zero-
mean Gaussian noise with covariance Rt. The workspace
W is populated with L stationary landmarks with positions
xl = [x1 y1 . . . xL yL]

T that can be used to aid
localization. The measurement of the landmarks also consists
of the relative distance and bearing,

zli , hl(qr,xli)=

{
[ρli θli ]

T + vl, xli ∈ S(qr)
∅, xli 6∈ S(qr)

(6)

for i = 1, . . . , L, where ρli = ‖xr − xli‖ and θli is
the relative angle between the robot heading and the ith
landmark location. vl is zero-mean Gaussian noise with
covariance Rl.

The target motion in W is assumed governed by a linear
stochastic motion model that, in discrete time, can be written
as a difference equation,

qt(k + 1) , ft[qt(k)] + Gw = Φtqt(k) + Gw, (7)

where w is zero-mean white Gaussian noise with covariance
matrix Qt, Φt is the state transition matrix, and G is the
noise Jacobian matrix, both of which are assumed to be time
invariant and known a priori.

Based on the above robot and target motion model, and the
latest proprioceptive and exteroceptive measurements, zr(k),
zt(k) and zl(k), the goal is to obtain a control law for the
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Fig. 1. FoV of exteroceptive sensor.

unicycle robot (1) such that its ability to track and localize the
target (7) is optimized without losing the target. The sensor
tracking and localization accuracy, presented in Section IV-
A, are obtained from the EKF presented in the next section.

III. EKF-BASED ROBOT LOCALIZATION AND TARGET
TRACKING

In the absence of GPS or other information on the robot
position in inertial frame, an EKF can be used to estimate
both the robot and the target state from the proprioceptive
and exteroceptive measurements described in the previous
section. Consider an augmented state vector containing both
the robot and the target state,

q(k) = [qTr (k) qTt (k)]
T , (8)

and the augmented control vector

u(k) = [uTr (k) 0]T . (9)

Based on the robot state propagation equation (2) and the tar-
get state propagation equation (7), the joint state propagation
of the robot and the target is

q(k + 1) = f [q(k),u(k), k] =

[
fr[qr(k),ur(k), k]

ft[qt(k)]

]
(10)

and the Jacobian matrix of the state transition function for
the joint state is

Φ =

[
Φr(k) 0

0 Φt

]
, (11)

where

Φr(k) ,
∂

∂qr(k)
{fr[qr(k),ur(k), k]}

=

1 0 − sin θr(k)vr(k)δt
0 1 cos θr(k)vr(k)δt
0 0 1

 . (12)

In the EKF, the prediction of the joint state and its
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(b) rotation

Fig. 2. Illustration of the changes of the robot FoV due to the translation and rotation of the robot.

covariance before the measurements is given by,

q̂(k+1|k)= f [q̂(k|k),u(k), k] (13)

P(k+1|k)=ΦP(k|k)ΦT+

[
Br(k)QrB

T
r (k) 0

0 GQtG
T

]
(14)

The Jacobian matrix of the measurement function h ,
[hTt hTl ]

T is [23]

H(k)=



2(xr−xt)
‖xr−xt‖

2(yr−yt)
‖xr−xt‖ 0 2(xt−xr)

‖xr−xt‖
2(yt−yr)
‖xr−xt‖ 0

0 0 1 0 0 1
2(xr−x1)
‖xr−xl1

‖
2(yr−y1)
‖xr−xl1

‖ 0 0 0 0

0 0 1 0 0 0
...

2(xr−xL)
‖xr−xlL

‖
2(yr−yL)
‖xr−xlL

‖ 0 0 0 0

0 0 1 0 0 0


(15)

The EKF posterior estimates are computed as follows [29]:

ỹ(k + 1) =

[
zTr (k + 1)
zTl (k + 1)

]
−h[q̂(k+1|k)] (16)

S(k + 1) = H(k + 1)P(k + 1|k)H(k + 1)T (17)

+

[
Rr 0
0 diag([Rt . . . Rt])

]
K(k + 1) = P(k + 1|k)H(k + 1)TS−1(k + 1) (18)

q̂(k+1|k+1) = q̂(k + 1|k) + K(k + 1)ỹ(k + 1) (19)
P(k+1|k+1) = [I−K(k + 1)H(k + 1)]P(k + 1|k) (20)

where diag(·) denotes the square diagonal matrix with the
blocks of matrices on the main diagonal.

IV. VISIBILITY-BASED ROBOT MOTION PLANNING

This section presents a motion planning method for op-
timizing the tracking and localization performance of the
exteroceptive robotic sensor described in Section II, based
on the output of the EKF algorithm presented in Section
III. In what follows, an objective function, representing the

sensor performance, is first presented. Then, a control law
that optimizes the sensor performance by guiding the robot
to obtain the best next measurements is derived.

A. Tracking and Localization Performance

In GPS-denied environments, the quality of target state
estimates depends on the estimates of the robot state, ob-
tained by the EKF algorithm. Therefore, the overall target
tracking and localization performance can be represented
by the expected power of the error between the true and
estimated robot-target joint states. For sensors with limited
FoV, it is possible to obtain an empty target measurement.
Therefore, two situations are considered for calculating the
joint state error: when the target measurement is available,
the posterior estimate of the joint state, q̂(k + 1|k + 1), is
used; otherwise, the prior estimate, q̂(k+1|k), is employed.
Let Pd denote the probability that the target measurement is
available, the error power can be obtained as follows,

J [ur(k)] = E
[
e(k + 1|k)Te(k + 1|k)

]
× (1− Pd)

+ E
[
e(k + 1|k + 1)Te(k + 1|k + 1)

]
× Pd (21)

where,

e(k + 1|k) = q(k)− q̂(k + 1|k), (22)
e(k + 1|k + 1) = q(k)− q̂(k + 1|k + 1), (23)

and E(·) denotes the expectation.
To derive Pd, we integrate the target state distribution over

the robotic sensor’s FoV,

Pd[qr(k)] =

∫
S[qr(k)]

ft[xt(k)]dxt(k) (24)

ft[xt(k)] is the probability density function (PDF) of target
state distribution, which can be approximated by a Gaussian
distribution, as follows,

ft[xt(k)] = N [xt(k); x̂t(k|k − 1),Pt(k|k − 1)]

, N [xt(k);µt(k),Σt(k)],
(25)
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where, µt(k) and Σt(k) are introduced to simplify our
ensuing derivations. Then (21) can be rewritten as

J [ur(k)] = tr[P(k + 1|k)] (26)
− Pd × {tr[P(k + 1|k)]− tr[P(k + 1|k + 1)]}

where tr(·) denotes the trace of a matrix. Since the propa-
gation step of EKF produces prior estimate of the joint state
only, in this paper we focus on controlling robot to get the
most informative measurements to reduce the uncertainty
of the joint state. Therefore, it is assumed that the prior
estimates are optimal with respect to the robot control. In
addition, for the priori and posteriori state estimates in the
EKF, it is true that

tr[P(k + 1|k)]− tr[P(k + 1|k + 1)] ≥ 0. (27)

As a result, minimizing the error of the joint state (21) can
be achieved by maximizing the probability of detection (24),
and the robot control law can be obtained by solving the
following constrained optimization problem in ur(k):

max
ur(k)

Pd[qr(k + 1)] (28)

s.t. qr(k + 1) = qr(k) + Br(k)ur(k)δt (29)

B. Robot Control Law

A robot control law that takes into account the tracking
and localization performance presented in Section IV-A
and the models in Section II, while being characterized
by low computational complexity so as to afford realtime
implementation can be obtained as follows.

At any discrete time step k, the robot control inputs are
computed so as to maximize the probability of detection at
the next time step, (k + 1), subject to the robot kinematics.
The solution of the constrained optimization problem (28-29)
can be obtained by moving in the direction of the adjoined
gradient which, in this case, can be obtained analytically, thus
providing the control law in closed form. As a first step, the
Jacobian for (28) can be written as,

∂Pd[qr(k + 1)]

∂ur(k)
=
∂Pd[qr(k + 1)]

∂qr(k + 1)

∂qr(k + 1)

∂ur(k)
. (30)

where

∂Pd[qr(k + 1)]

∂qr(k + 1)
=


∂
∂xr
{Pd[qr(k + 1)]}

∂
∂yr
{Pd[qr(k + 1)]}

∂
∂θr
{Pd[qr(k + 1)]}

 . (31)

Each term of the above expression (31) is computed by
derivatives of integrals. For example, if the robot’s FoV is
approximated by a triangle ABC as in Fig. 2, the first entry
of (31) can be calculated as follows:

∂

∂xr
Pd[qr(k + 1)] =

∂

∂xr

∫
S[qr(k+1)]

ft(xt)dxt

=

∫
S[qr(k+1)]

∂

∂xr
ft(xt)dxt +

∮
∂S[qr(k+1)]

(vx · n)ft(xt)dxt
(32)

where ∂S denotes the boundary of S, and · denotes the inner
product. vx = [1 0]T is the velocity of the robot FoV. n
represents the outward-pointing unit normal vector along the
boundary of the robot FoV. The outward-pointing unit normal
vectors can be obtained through the heading of the robot and
the opening angle of the robot FoV, as shown in Fig. 2 (a),
i.e.,

n1 = C(π/2 + α/2)[cos θr sin θr]
T

n2 = [cos θr sin θr]
T

n3 = C(−π/2− α/2)[cos θr sin θr]
T

(33)

where C(·) is the 2 × 2 rotation matrix. Moreover, since
ft(xt) is not a function of qr, ∂

∂qr
ft(xt) = 0. In addition,

(25) gives the analytical form of ft. Then the partial deriva-
tive in (32) can be simplified as follows,

∂

∂xr
Pd[qr(k + 1)]

=

∫
AB

(vx · n1) exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

+

∫
BC

(vx · n2) exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

+

∫
CA

(vx · n3) exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

(34)

Similarly, the second entry of (31) can be obtained in the
same way, except that vy = [0 1]T , as follows,

∂

∂yr
Pd[qr(k + 1)]

=

∫
AB

(vy · n1) exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

+

∫
BC

(vy · n2) exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

+

∫
CA

(vy · n3) exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

(35)

Let sign(·) denote the sign function, and ` denote the
distance from a point on the boundary of the FoV to the
point A. Then, the third entry of (31) can also be calculated
analytically as follows,

∂

∂θr
Pd[xr(k + 1)] (36)

=

∫
AB

−sign(dθr)` exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

+

∫
CA

sign(dθr)` exp[−
1

2
(xt − µt)

TΣ−1t (xt − µt)]dxt

Now let us consider the the second term of (30), which
essentially is the robot motion model, i.e.,

∂qr(k + 1)

∂ur(k)
= Br(k)δt (37)

Thus, we have computed the Jacobian (34)-(37). The
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Procedure FindOptimalControl
(
ft(xt), U , ε

)
1. ur = u0

2. while(1)
3. u′r ← ur + η ∂

∂ur(k)
{Pd[qr(k + 1)]}

4. if u′r 6∈ U
5. break
6. elseif ‖u′r − ur‖ ≤ ε
7. break
8. else
9. ur ← u′r
10. endif
11. endwhile
12. return ur

Alg.1 Implementation of the optimized-visibility method

optimized-visibility method is summarized in Alg. 1, where
η is the learning rate and ε is a predefined threshold [30].
Notice that Alg. 1 does handle the situation when the target
is out of the FoV for multiple steps since this paper focuses
on analyzing the ability of avoiding target loss.

V. SIMULATION RESULTS

In order to validate the effectiveness of the proposed
approach, we conduct various simulations under different
conditions, and compare the performance to that of a state-
of-the-art potential field approach, which controls the robot
as a trailer [1]. Specifically, it first calculates a force, fp(k),
proportional to the distance between the center of the in-
scribed circle of the FoV, xp(k), and the estimated mean of
target position distribution, µt(k).

fp(k) = cp‖xp(k)− µt(k)‖, (38)

where cp is a constant. Then, the potential approach projects
the force along the robot heading and perpendicular to the
robot heading. Let θp(k) denote the angle between the robot
heading and the direction from xp(k) to µt(k). The control
is determined as a linear function of the projections, such
that

vr(k) = ap‖fp(k)‖ cos θp(k) (39)
ωr(k) = bp‖fp(k)‖ sin θp(k) (40)

where ap and bp are constants.
For the results presented in Fig. 3 and Fig. 4, the robot

and the target are assumed to move in a workspace of
W = [−50, 50]×[−50, 50] m2. The sensor’s FoV is assumed
to have a radius, γ = 2.5 m, and an opening angle, α =
π/6 rad. This choice of parameters results in a relative
small sensor’s FoV as compared to the workspace, so that
target is easy to disappear from the FoV. The sampling
time, δt, is assumed to be 0.2 sec, which means the robot
makes both the proprioceptive measurements, zr(k), and the
exteroceptive measurements, zt(k), every 0.2 second. For
the proprioceptive measurements, the noise is 2% of the
maximum speed the robot can travel at and π/180 rad/sec
for the angular speed measurement. In all the tests, it is

assumed that the maximum speed that the robot is able to
achieve is 3 m/sec, and the maximum angular speed for the
robot is 0.5 rad/sec. As a result, the proprioceptive noise
covariance is Rr ≈ diag([36 3])× 10−4. Note that we did
not restrict the robot to travel forward, which means the robot
can travel backward and reach the speed limit of 3 m/sec.
For the exteroceptive measurements, the noise level is 3%
of the maximum detection radius of the FoV for the range
measurement, and π/36 rad for the bearing measurement,
and the noise covariance is Rt ≈ diag([81 76])× 10−4.

In this test, the target adopts a constant velocity model:

Φt =


1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

 . (41)

The noise in the target state propagation equation (7) makes
the target move randomly in the workspace. It is assumed
that G = I and the noise of the target position is correlated
with its speed. The noise matrix is assumed to be

Q =


δt3σ2/3 0 δt2σ2/2 0

0 δt3σ2/3 0 δt2σ2/2
δt2σ2/2 0 δtσ2 0

0 δt2σ2/2 0 δtσ2

 , (42)

where σ is chosen to be 0.5 m/sec, which is large enough to
prevent the target from moving in a straight line. The initial
state of the target is assumed to be qt(0) = [0 0 0 0],
which enables the target to move in every direction with the
same probability.

Figure 3(a) shows the tracking performance of the pro-
posed gradient descent approach in one particular realization,
for η = 1 and ε = 10−3, from which it is clear that the robot
is able to track the target throughout the simulation. With the
identical setup, the tracking result of the potential method is
shown in Fig. 3(b). As evident, the robot lost the target at
time step k = 170, while the proposed optimized visibility
approach reliably tracks the target (see Fig. 3(a)). Figure
4 shows comparison between the estimated and true target
trajectories. The deviation of estimated target trajectory from
the true target trajectory decreases.

To further justify the result in Fig. 3, we have performed
various simulations with different parameters. In particular,
we studied the impact of FoV opening angle α and the
radius γ on the efficiency of the potential and the proposed
optimized visibility methods. In order to evaluate the tracking
performance, the percentage of target detection, β, is defined
as the number of successful target detections divided by the
total number of simulation steps. The parameter η is set to
one for all the simulations and ε is 10−3. Ten Simulations
are conducted for every scenario. The mean and one stan-
dard variance are summarized in Fig. 5 and Fig. 6, which
show that the optimized visibility approach outperforms the
potential method with higher detection percentage.
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Fig. 3. An example of the simulation result where the visibility optimized approach tracks enables the robot to keep the target in its FoV all the time
while the potential field method loses the target around 200 time step, for a FoV with α = π/6 rad and γ = 2.5 m.
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Fig. 4. The estimated and true target trajectories obtained by the optimized visibility approach and the potential field approach for the example in Fig. 3.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of target track-
ing using mobile robots (sensors), by focusing on optimal
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Fig. 6. Percentage of detections obtained by the proposed optimized
visibility and the potential approaches for various edge lengths.

motion planning for the tracking robots in order to achieve
best tracking performance. In particular, within the EKF
framework of jointly estimating the robot pose and target
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state, the robot motion planning problem has been formulated
as maximizing the target-detection probability. Furthermore,
an optimized visibility approach for solving this optimization
problem has been introduced, which is derived analytically
based on the optimality condition. Numerical simulation
results have demonstrated that the proposed approach out-
performs the state-of-the-art potential approach.

In future work, the current one-step-ahead optimization
will be extended to the multiple-step-ahead cases, and the
proposed optimized visibility method will be generalized
to the problem of simultaneous localization, mapping,
and target tracking, which is particularly important for
mobile robots working in dynamic environments. Moreover,
different estimation algorithms will be investigated for a
given application where the EKF may not be sufficient
(e.g., it is degraded due to larger linearization errors). In
particular, it is noted that the recently developed iSAM
algorithms could be an interesting alternative [31]–[33],
which will be considered for this problem.
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