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Split Happens! Imprecise and
Negative Information in
Gaussian Mixture Random
Finite Set Filtering

KEITH A. LEGRAND
SILVIA FERRARI

In object-tracking and state-estimation problems, ambiguous evi-

dence such as imprecise measurements and the absence of detections

can contain valuable information and thus be leveraged to further

refine the probabilistic belief state. In particular, knowledge of a

sensor’s bounded field of view (FoV) can be exploited to incorporate

evidence of where an object was not observed. This paper presents a

systematic approach for incorporating knowledge of the FoV geome-

try, position, and object inclusion/exclusion evidence into object state

densities and random finite set multiobject cardinality distributions.

The resulting state estimation problem is nonlinear and solved using a

new Gaussian mixture approximation based on recursive component

splitting. Based on this approximation, a novel Gaussian mixture

Bernoulli filter for imprecise measurements is derived and demon-

strated in a tracking problem using only natural language statements

as inputs. This paper also considers the relationship between bounded

FoVs and cardinality distributions for a representative selection of

multiobject distributions, which can be used for sensor planning, as is

demonstrated through a problem involving a multi-Bernoulli process

with up to 100 potential objects.

I. INTRODUCTION

Random finite set (RFS) theory has been proven a
highly effective framework for developing and analyzing
tracking and sensor planning algorithms in applications
involving an unknown number of multiple targets (ob-
jects) [1]–[7].Until recently, however, little attention has
been devoted to the role that bounded sensor fields of
view (FoVs) play in assimilating measurements, or lack
thereof, into multiobject probability distributions. Exist-
ing tracking algorithms, for example, typically terminate
object tracks when the object leaves the sensor field-of-
view (FoV). While this approach is suitable when the
FoVdoubles as the tracking region of interest (ROI), it is
inapplicable when the sensor FoV is much smaller than
the ROI and, thus, must be moved or positioned so as
to maximize information value [8]–[13]. Other technical
challenges arise in multisensor fusion problems involv-
ing bounded overlapping FoVs and have been the focus
of recent work[14]–[17].

The simple indication of an object’s presence or ab-
sence within a known region, such as an FoV, is pow-
erful evidence that can be incorporated to update the
object probability density function (pdf) in a Bayesian
framework. For example, the absence of detections is a
type of negative information indicating that the object
statemay reside outside the FoV [18]. In contrast,binary-
type sensors may produce imprecise measurements
[19]–[21] that indicate the object is inside the sensor FoV
but provide no further localization information. Sim-
ilarly, “soft” data from human sources, such as natu-
ral language statements, can be considered as imprecise
measurements due to their inherent ambiguity [22], [23].
Particle-based filtering algorithms [21], [24], [25] can ac-
commodate suchmeasurements but require a large num-
ber of particles and are computationally expensive. The
integrated track splitting filter for state-dependent prob-
ability of detection (ITSpd) [26] uses Gaussian mix-
tures (GMs) to model both the object pdf and the state-
dependent probability of detection function. Though
GMs efficiently model some detection probability func-
tions, other simple functions, such as uniform probability
densities over a 3D FoV, require problematically large
numbers of components.Other approaches [27], [28] em-
ploy stochastic sampling and the expectation maximiza-
tion (EM) algorithm to compute GM approximations to
the posterior pdf. However, the use of intermediate par-
ticle representations and EM reconstruction can lead to
information loss, and convergence is sensitive to EM ini-
tial condition specification.

This paper presents new methods for incorporating
inclusion/exclusion evidence in Bayesian single-object
and multiobject estimation and sensor planning algo-
rithms, as illustrated in Fig. 1. Section II defines the no-
tation used in this paper, and Section III details the
problem formulation and related assumptions. Section
IV presents a deterministic method that partitions a
GM state density along the boundaries of a known
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Fig. 1. Gaussian mixture probability distribution before (left) and after (center) incorporating negative information (that is, the absence of
detections) and the known bounded sensor FoV, and a Gaussian mixture distribution after incorporating an imprecise measurement

corresponding to a set of possible mug locations (right) in a robot perception application.

region, such as an FoV, through recursive Gaussian split-
ting. By this approach, negative information is lever-
aged in GM filters to further refine the posterior ob-
ject state pdf. Similarly, imprecise measurements, such
as natural language statements, can be incorporated to
obtain GM posterior distributions using a new multi-
FoV-generalized splitting algorithm. Section V presents
an application of the splitting method to the tracking
of a person in a crowded space using natural language
statements and a new GM Bernoulli filter algorithm. In
Section VI, FoV object cardinality probability mass
functions (pmfs) are derived for some of the most
commonly encountered RFS distributions. Section VII
presents an application of bounded FoV statistics to a
sensor placement problem, and conclusions are made in
Section VIII. This paper builds on previous work [29] by
presenting a generalized partitioning algorithm for use
with multiple FoVs, a derivation of a new GMBernoulli
filter algorithm applicable to imprecise measurements,
and a simulation of a tracking problem using natural lan-
guage statements.

II. NOTATION

Throughout this paper, single-object states are repre-
sented by lowercase letters (e.g., x, x̊), while multiobject
states are represented by italic uppercase letters (e.g.,
X , X̊ ). Bold lowercase letters are used to denote vec-
tors,and bold uppercase letters are used denotematrices.
The accent “˚” is used to distinguish labeled states and
functions (e.g., f̊ , x̊, X̊ ) from their unlabeled equivalents
(e.g., f , x, X ). Spaces are represented by blackboard-
bold symbols (e.g.,X,L).

The multiobject exponential notation,

hA �
∏
a∈A

h(a), (1)

where h∅ � 1 is adopted throughout. For multivari-
ate functions, the dot (·) denotes the argument of the

multiobject exponential, e.g.,:

[g(a, ·, c)]B �
∏
b∈B

g(a,b, c). (2)

The exponential notation is used to denote the product
space, X

n = ∏n(X×), whereas exponents of RFSs are
used to denote RFSs of a given cardinality, e.g., |Xn| = n,
where n is the cardinality.The set of natural numbers less
than or equal to n is denoted by

Nn � {1, . . . ,n}. (3)

The operator diag(·) places its input on the diagonal of
the zero matrix. The Kronecker delta function is defined
as

δa(b) �
{
1, if b = a
0, otherwise (4)

for any two arbitrary vectors a, b ∈ R
n. The inner prod-

uct of two integrable functions f (·) and g(·) is denoted
by

〈 f, g〉 =
∫

f (x)g(x)dx. (5)

III. PROBLEM FORMULATION AND ASSUMPTIONS

This paper considers the incorporation of inclusion/
exclusion evidence into algorithms for (multi)object
tracking and sensor planning when the number of ob-
jects is unknown and time-varying. Often in tracking,
object detection may depend only on a partial state
s ∈ Xs ⊆ R

ns , where Xs × Xv = X ⊆ R
nx forms the full

object state space. For example, the instantaneous abil-
ity of a sensor to detect an object may depend only on
the object’s relative position. In that case, Xs is the po-
sition space, and Xv is comprised of nonposition states,
such as object velocity. This nomenclature is adopted
throughout the paper, while noting that the approach
is applicable to other state definitions. Following [30],
the sensor FoV can be defined as the compact subset
S(q) ⊂ Xs. In general, the FoV is a function of the
sensor state q, which, for example, may consist of the
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sensor position, orientation, and zoom level. However,
for notational simplicity, this dependence is omitted in
the remainder of this paper.

Now, let the object state x consist of the kinematic
variables that are to be estimated from data via filter-
ing, such as the object position, velocity, and turn rate.
Then, the single-object pdf is denoted by p(x). Letting
s = proj

Xs
x denote the state elements that correspond to

Xs, an object’s presence inside the FoV can be expressed
by the generalized indicator function

1S (x) =
{
1, if s ∈ S
0, otherwise. (6)

The number of objects and their kinematic states are un-
known a priori, but can be assumed to consist of discrete
and continuous variables, respectively. The collection of
object states is modeled as an RFS X or labeled ran-
domfinite set (LRFS) X̊ ,where the single-object labeled
state x̊ = (x, �) ∈ X × L consists of a kinematic state
vector x and a unique discrete label �. It is assumed that
the prior multiobject distribution is known,e.g., from the
output of a multiobject filter, and modeled using either
the RFS density f (X ) or the LRFS density f̊ (X̊ ).

In RFS-based tracking, single-object densities are, in
fact, parameters of the higher-dimensional multiobject
density. Non-Gaussian single-object state densities are
often modeled using GMs because they admit closed-
form approximations to the multiobject Bayes recursion
under certain conditions [2], [31]. Therefore, in this pa-
per, it is assumed that single-object densities (which are
parameters of the higher-dimensional multiobject den-
sity) are parameterized as

p(x) =
L∑

�=1

w(�)N (x; m(�), P(�)), (7)

whereL is the number ofGMcomponents andw(�),m(�),
and P(�) are the weight, mean, and covariance matrix of
the �th component, respectively.

In this paper, the problem considered is forming GM
Bayesian posteriors given evidence of the forms:

T1 The existence or nonexistence of ameasurement is ev-
idence of the inclusion or exclusion of the object state
within a known set.For example, the nonexistence of
a detection (measurement) is evidence of an object’s
position exclusion from the sensor FoV.

T2 The value of themeasurement is evidence of the inclu-
sion or exclusion of the object state within a known
set. For example, the observation that a sea-level
freshwater lake is frozen is evidence that the water
temperature belongs to the set of temperatures be-
low 0 ◦C.

Mahler’s finite-set statistics (FISST) provides the
mathematical foundation for modeling types T1 and T2
using state-dependent probability of detection functions
and generalized likelihood functions, respectively. How-
ever, in both cases, the Bayes posterior involves products

of the prior GM with indicator functions such as

p(x)1S (x) � pS (x) and (8)

(1 − 1S (x))p(x) � pC(S)(x), (9)

where C(S) denotes the complement space Xs\S . Thus,
the resulting posterior is no longer a GM.

This paper presents a fast GM approximation of (8)
and (9), thereby enabling the assimilation of inclusion/
exclusion evidence in any GM-based RFS single-object
or multiobject filter. Building on these concepts, this pa-
per also considers the role of inclusion/exclusion evi-
dence in object cardinality distributions and derives pmf
expressions that describe the probabilities associated
with different numbers of objects existing within a given
set S (such as an FoV).

IV. GM APPROXIMATION OF FOV-PARTITIONED
DENSITIES

This section presents a method for partitioning the
object pdf into truncated densities pS (x) and pC(S)(x)
with supports S × Xv and C(S)× Xv , respectively. Focus
is given to the single-object state density with the aware-
ness that the method is naturally extended to RFS mul-
tiobject densities and algorithms that use GM parame-
terization.

Consider the single-object density p(x) parameter-
ized by an L-component GM, as follows:

p(x) = pS (x) + pC(S)(x) =
L∑

�=1

w(�)N (x; m(�),P(�)).

(10)

One simple approximation of densities partitioned ac-
cording to the discrete FoVgeometry, referred to as FoV-
partitioned densities hereon, is found by evaluating the
indicator function at the component means [32], i.e.,:

pS (x) ≈
L∑

�=1

w(�)1S (m(�))N (x; m(�), P(�)), (11)

pC(S)(x) ≈
L∑

�=1

w(�)(1 − 1S (m(�)))N (x; m(�), P(�)).

(12)

By this approach, components whose means lie inside
(outside) the FoV are preserved (pruned), or vice versa.

The accuracy of this mean-based partition approxi-
mation depends strongly on the resolution of the GM
near the geometric boundaries of the FoV. Even though
the mean of a given component lies inside (outside)
the FoV, a considerable proportion of the probability
mass may lie outside (inside) the FoV, as is illustrated in
Fig. 2(a). Therefore, the amount of FoV overlap, along
with the weight of the component, determines the accu-
racy of the approximations (11) and (12). To that end,
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Fig. 2. Original component density and FoV with covariance
eigenvectors overlaid (a), and same component density and FoV after

change of variables (b).

the algorithm presented in the following subsection it-
eratively resolves the GM near FoV bounds by recur-
sively splitting Gaussian components that overlap the
FoV bounds.

A. Gaussian Splitting Algorithm

The Gaussian splitting algorithm presented in this
subsection forms an FoV-partitioned GM approxima-
tion of the original GM by using a higher number of
components near the FoV boundaries, ∂S , so as to im-
prove the accuracy of the mean-based partition.

Consider for simplicity a two-dimensional example
in which the original GM, p(x), has a single compo-
nent whose mean lies outside the FoV, as shown in
Fig.2(a).The algorithmfirst applies a change of variables
x 
→ y ∈ Y ⊆ R

ns such that p(y) is symmetric and
has a zero mean and unit variance. The basis vectors of
the space Y correspond to the principal directions of the
component’s position covariance. The same change of
variables is applied to the FoV bounds [Fig. 2(b)].

A pre-computed point grid is then tested for inclu-
sion in the transformed FoV in order to decide whether
to split the component and, if so, along which princi-
pal direction. For each new split component, the process
is repeated—if a new component significantly overlaps
the FoV boundaries, it may be further split into several
smaller components, as illustrated in Fig. 3. This process
is repeated until the stopping criteria are satisfied.After
the GM splitting terminates, pS (x) and pC(S)(x) are ap-
proximated by the mean-based partition [(8) and (9)], as
illustrated in Fig. 4.

B. Univariate Splitting Library

Splitting is performed efficiently by utilizing a pre-
generated library of optimal split parameters for the uni-
variate standard Gaussian q(x), as first proposed in [33]
and later generalized in [34]. The univariate split param-
eters are retrieved at run-time and applied to arbitrary
multivariate Gaussian densities via scaling, shifting, and
covariance diagonalization.
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0
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Fig. 3. 1σ contours of components after first-split operation (a) and
second-split operation (b), where components formed in the second

operation are shown in red.

Generation of the univariate split library is per-
formed by minimizing the cost function

J = L2(q||q̃) + λσ̃ 2 s.t.
R∑
j=1

w̃( j) = 1, (13)

where

q̃(x) =
R∑
j=1

w̃( j)N (x; m̃( j), σ̃ 2) (14)

for different parameter values R, λ. The regularization
term λ balances the importance of using smaller stan-
dard deviations σ̃ with the minimization of the L2 dis-
tance. While other distance measures may be used, the
L2 distance is attractive because it can be computed in
closed form for GMs [34]. As an example, the optimal
split parameters for R = 4, λ = 0.001 are provided in
Table I.

C. Change of Variables

The determination of which components should be
split and, if so, along which direction, is simplified by first
establishing a change of variables. For each component
with index �, the change of variables h(�) : Xs 
→ Y is
applied as follows:

y = h(�)(s;m(�)
s ,P(�)

s ) � (�(�)
s )−

1
2V (�)T

s (s − m(�)
s ), (15)

(a) (b)

Fig. 4. The densities pC(S)(x) (a) and pS (x) (b), which have been
approximated using two iterations of component splitting and the

subsequent mean-based partition.
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Table I
Univariate Split Parameters for R = 4, λ = 0.001

j w̃( j) m̃( j) σ̃

1 0.10766586425362 −1.42237156603631 0.58160633157686
2 0.39233413574638 −0.47412385534547 0.58160633157686
3 0.39233413574638 0.47412385534547 0.58160633157686
4 0.10766586425362 1.42237156603631 0.58160633157686

where

V (�)
s = [v(�)

s,1 · · · v
(�)
s,ns ], (16)

(�(�)
s )−1/2 = diag

([
1√
λ
(�)
s,1

· · · 1√
λ
(�)
s,ns

])
, (17)

and m(�)
s is the ns-element position portion of the full-

state mean, and the columns ofV (�)
s are the normalized

eigenvectors of the position-marginal covariance P(�)
s ,

with v
(�)
s,i corresponding to the ith eigenvalue λ

(�)
s,i . In the

transformed space,

p(y) = N (y; 0, I). (18)

Note that, in defining the transformation over Xs, the
same transformation can be applied to the FoV, such
that

S (�)
y = {h(�)(s;m(�)

s ,P(�)
s ) : s ∈ S}. (19)

In Y, the Euclidean distances to boundary points of
S (�)
y can be interpreted as probabilistically normalized

distances. In fact, the Euclidean distance of a point y
from the origin in Y corresponds exactly to the Maha-
lanobis distance between the corresponding point s and
the original position-marginal component.

D. Component Selection and Collocation Points

Components are selected for splitting if they have
sufficient weight and significant statistical overlap of
the FoV boundaries (∂S). For components of sufficient
weight, the change of variables is applied to the FoV to
obtain S (�)

y per (19). The overlap of the original com-
ponent on S is then equivalent to the overlap of the
standard Gaussian distribution on S (�)

y , which is quan-
tified using a grid of collocation points on Y, as shown in
Fig. 2(b).

Define the collocation point ȳi1,...,ins ∈ Y such that

ȳi1,··· ,ins � [ȳ1(i1) . . . ȳns (ins )]
T , (i1, . . . , ins ) ∈ G,

(20)

ȳ j(l) = −ζ + 2ζ
(
l − 1
Ng − 1

)
, j ∈ Nns , (21)

G = {(i1, . . . , ins ) : i(·) ∈ NNg, ‖yi1,...,ins ‖ ≤ ζ }, (22)

where ζ is a user-specified bound for the grid, G is the
set of indices of points that are within ζ of the origin,

and Ng is the upper bound of the number of points per
dimension. An inclusion variable is defined as

d(�)
i1,...,ins

� 1S (�)
y
(ȳi1,...,ins). (23)

Inclusion and exclusion patterns across the grid can be
examined by first establishing an arbitrary reference in-
dex (i′1, . . . , i

′
ns ) ∈ G. With this, �S (�)

y
∈ {0, 1} is estab-

lished to mark total inclusion or total exclusion as

�S (�)
y

=
∏
G

δd(�)
i′1 ,...,i′ns

(d(�)
i1,...,ins

), (24)

which is equal to unity if all grid points lie inside of S (�)
y

or all grid points lie outside of S (�)
y , and is zero other-

wise. If either all or no points are included, then no split-
ting is required.Otherwise, the component is marked for
splitting.

E. Position Split Direction

Rather than split a component along each of its prin-
cipal directions, a more judicious selection can be made
by limiting split operations to a single direction (per
component) per recursion.Thus, by performing one split
per component per recursion, the component selection
criteria are re-evaluated, reducing the overall number
of components generated. In the aforementioned two-
dimensional example, only a subset of new components
generated from the first split are selected for further
splitting, as shown in Fig. 3(b).

The split direction is chosen based on the relative ge-
ometry of the FoV, and thus position vectors are of inter-
est. Choosing the best position split direction is a chal-
lenging problem. A common approach is to split along
the component’s covariance eigenvector with the largest
eigenvalue [33]. This strategy, however, does not con-
sider the FoV geometry and thus may increase the mix-
ture size without improvement to the FoV-partitioned
densities (11) and (12). Reference [35] provides a more
sophisticated split direction criterion based on the inte-
gral linearization errors along the covariance eigenvec-
tors.However, in the case that the FoVdoes not intersect
the eigenvectors, this criterion cannot distinguish the
best split direction. Another approach [36] determines
the split direction based on theHessian of the underlying
nonlinear transformation, evaluated at the component
mean. However, for the transformations considered in
this paper of the form g(s) = c·1S (s),where c is some ar-
bitrary constant, theHessian either vanishes (for s /∈ ∂S)
or is undefined (for s ∈ ∂S).

Ideally, splitting along the chosen direction should
minimize the number of splits required in the next
iteration as well as improve the accuracy of the parti-
tion approximation applied after the final iteration. The
computational complexity of exhaustive optimization of
the split direction would likely negate the computational
efficiency of the overall algorithm. Instead, to minimize
the number of splits required in the next iteration, the
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position split direction is chosen as the direction that
is orthogonal to the most grid planes of consistent in-
clusion/exclusion. Introducing a convenience function
s(�)j : NNg 
→ {0, 1}, the plane of constant y j = ȳ j(l) is
consistently inside or consistently outside if

s(�)j (l) =
∏
G,i j=l

δd(�)
i′1 ,...,i j ,...,i

′
ns

(d(�)
i1,...,i j,...,ins

) (25)

is equal to unity, where i′1, . . . , i j, . . . , i
′
ns is an arbitrary

index tuple in G satisfying i j = l, to which inclusion
consistency is compared (see Appendix A for a numeri-
cal example). The optimal position split direction is then
given by the eigenvector vs, j∗ , where the optimal eigen-
vector index is found as

j∗ = argmax
j

⎛
⎝ Ng∑

l=1

s(�)j (l)

⎞
⎠ . (26)

For notational simplicity, the implicit dependence of j∗

on the component index � is omitted. For example, refer-
ring back to the two-dimensional example and Fig. 2(b),
there are more rows than columns that are consistently
inside or outside the transformed FoV, and thus j∗ = 2
is chosen as the desired position split direction index.
In the case where multiple maxima exist, the eigenvec-
tor with the largest eigenvalue is selected, which corre-
sponds to the direction of the largest variance among the
maximizing eigenvectors.

F. Multivariate Split of Full-State Component

Gaussian splittingmust be performed along the prin-
cipal directions of the full-state covariance. The general
multivariate split approximation, splitting along the kth
eigenvector v

(�)
k is given by [34]

w(�)N (x; m(�), P(�)) ≈
R∑
j=1

w(�, j)N (x; m(�, j), P(�, j)),

(27)

where

w(�, j) = w̃( j)w(�), (28)

m(�, j) = m(�) +
√

λ
(�)
k m̃( j)v

(�)
k , (29)

P(�, j) =V (�)�(�)V (�)T , (30)

�(�) = diag
(
[λ1 · · · σ̃ 2λk · · · λnx]

)
, (31)

and the optimal univariate split parameters w̃( j), m̃( j),
and σ̃ are found from the pre-computed split library
given the number of split components R and regulariza-
tion parameter λ. In general, the position components of
the full-state eigenvectors will not perfectly match the
desired position split vector due to correlations between
the states. Rather, the actual full-state split is performed

along v
(�)
k∗ , where the optimal eigenvector index is found

according to

k∗ = argmax
k

∣∣[v(�)T
s, j∗ 0T

]
v
(�)
k

∣∣ (32)

where, without loss of generality, a specific state conven-
tion is assumed such that position states are first in ele-
ment order.

G. Recursion and Role of Negative Information

The splitting procedure is applied recursively, as de-
tailed in Algorithm 1. The recursion is terminated when
no remaining components satisfy the criteria for split-
ting. Each recursion further refines the GM near the
FoV bounds to improve the approximations of (11) and
(12). However, because a Gaussian component’s split
approximation (27) does not perfectly replicate the orig-
inal component, a small error is induced with each split.
Given enough recursions, this error may become domi-
nant. In the authors’ experience, the recursion is termi-
nated well before the cumulative split approximation er-
ror dominates.

Algorithm 1 split_for_fov({w(�),m(�),P(�)}L
�=1,

wmin, S ,R, λ)
split ← {}, no_split ← {}
if L = 0 then

return split
end if
for � = 1, . . . ,L do

if w(�) < wmin then
add {w(�),m(�),P(�)} to no_split
continue

end if
Compute S (�)

y according to (19)
if �S (�)

y
= 1 then

add {w(�),m(�),P(�)} to no_split
else
j∗ ← equation (26) , k∗ ← equation (32)
{w(�, j),m(�, j),P(�, j)}Rj=1 ← equation (27) with
k = k∗

add {w(�, j),m(�, j),P(�, j)}Rj=1 to split
end if

end for
split ← split_for_fov(split,wmin, S ,R, λ)
return split ∪ no_split

One of the many potential applications of the re-
cursive algorithm presented in this section involves in-
corporating the evidence of nondetections, or nega-
tive information, in single- or multiobject filtering. To
demonstrate this, a single-object filtering problem with
a bounded square FoV is considered where, in three
subsequent sensor reports, no object is detected. The
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Fig. 5. Negative information, comprising absence of detections
inside the sensor FoV S, is used to update the object pdf as the object

moves across the ROI.

true object position and constant velocity are unknown
but are distributed according to a known GM pdf at
the first time step. As the initial pdf is propagated over
time, the position-marginal pdf travels from left to right,
as shown in Fig. 5. For simplicity, the probability of
detection inside the FoV is assumed equal to one. At
each time step, the GM is refined by Algorithm 1 using
wmin = 0.01, R = 3, and λ = 0.001. Then, the mean-
based partition approximation (12) is applied and the
updated filtering density (9) is found. The results shown
in Fig. 5 are obtained using a Matlab implementation of
Algorithm 1.When executed on an AppleM1Ultra pro-
cessor with 64 GB RAM, the total execution time (over
three time steps) of Algorithm 1 is 0.176 s, which trans-
lates to <60 ms per time step.As in many GM-based fil-
ters, the number of components may increase over time
but can be reduced as needed through component merg-
ing and pruning.

H. Splitting for Multiple Regions

The presented splitting approach can be extended to
accommodate multiple closed subsets, which may rep-
resent the FoVs in a multisensor network or imprecise
measurements that take the form of multiple closed sub-
sets, as is shown in Section V. For ease of exposition, the
multiregion method is developed in the context of mul-
tiple FoVs with the awareness that the regions can be
any bounded sets. Consider the case where the GM is to
be partitioned about the boundaries ofNs FoVs {S (ı)}Ns

ı=1.
One simple approach to incorporate the multiple FoVs
is to recursively apply Algorithm 1 for each FoV. Re-
call from Section IV-E, however, that the direction or-
der in which components are split ultimately determines
the total number of components generated. Thus, by the
described naive approach, the resulting mixture size in-
herently depends on the order by which the FoVs are
processed, which is undesirable.

Instead, the remainder of this subsection establishes
a multi-FoV splitting algorithm that is invariant to FoV
order. Given S (ı), denote by S (ı,�)

y the resulting trans-
formed FoV for component � via application of (19).
Then, an inclusion variable similar to (23) is established
as

d(ı,�)
i1,...,ins

� 1S (ı,�)
y

(ȳi1,...,ins ). (33)

In each transformed FoV, grid points are either totally
excluded or totally included if and only if

�
(�)
{Sy} =

Ns∏
ı=1

∏
G

δd(ı,�)
i′1,...,i′ns

(d(ı,�)
i1,...,ins

) (34)

is equal to unity, which indicates that a component does
not require splitting. If a component is to be split, then
the direction is chosen to minimize the ultimate mixture
size, as discussed in Section IV-E. This is accomplished
by identifying grid planes that are either consistently in-
cluded/excluded in each FoV. Consistency of the plane
of constant y j = ȳ j(l) is indicated by

s(�)j (l) =
Ns∏
ı=1

∏
G,i j=l

δd(ı,�)
i′1 ,...,i j ,...,i

′
ns

(d(ı,�)
i1,...,i j,...,ins

) (35)

equal to unity. By this multi-FoV generalized indicator
function, the optimal position split direction is found via
(26).The complete multi-FoV splitting algorithm is sum-
marized in Algorithm 2.

Algorithm 2
split_for_multifov({w(�),m(�),P(�)}L

�=1,wmin,
{S (ı)}Ns

ı=1,R, λ)

split ← {}, no_split ← {}
if L = 0 then

return split
end if
for � = 1, . . . ,L do

if w(�) < wmin then
add {w(�),m(�),P(�)} to no_split
continue

end if
for ı = 1, . . . ,Ns do

compute S (ı,�)
y according to equation (19)

end for
if �

(�)
{Sy} = 1 then
add {w(�),m(�),P(�)} to no_split

else
j∗ ← equation (26) , k∗ ← equation (32)
{w(�, j),m(�, j),P(�, j)}Rj=1 ← equation (27) with
k = k∗

add {w(�, j),m(�, j),P(�, j)}Rj=1 to split
end if

end for
split ← split_for_multifov(split,wmin,
{S (ı)}Ns

ı=1,R, λ)
return split ∪ no_split

The set inputs {S (ı)} in Algorithm 2 are not restricted
to FoVs and can represent any regions. For example,
two regions relevant to the human-robot interaction de-
picted in Fig. 1 are the human observer’s binocular FoV
and the tabletop region. The application of Algorithm
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2 with respect to these two regions then enables the
incorporation of the observation “The mug is on the ta-
ble” in a GMBayes filter, as is discussed in the following
section.

V. APPLICATION TO IMPRECISE MEASUREMENTS

This section presents the application of the split-
ting algorithm to estimation problems involving impre-
cise measurements. Unlike traditional vector-type mea-
surements, imprecise measurements are nonspecific, yet
still contain valuable information. Examples of impre-
cise measurements include natural language statements
[22], [23], inference rules [37, Sec. 22.2.4], and received
signal strength type measurements under path-loss un-
certainty [23], [38]. This section demonstrates the esti-
mation of a person’s location and velocity as they move
through a public space using imprecise natural language
measurements, as originally posed in [23]. Tracking is
performed using a newGMBernoulli filter for imprecise
measurements, as discussed in the following subsections.

A. Imprecise Measurements

Imprecise measurements, such as those from natural
language statements, can be modeled as RFSs and speci-
fied using generalized likelihood functions. For example,
the statement

S = “Felice is near the taco stand” (36)

provides some evidence about Felices’s location, yet is
not mutually exclusive1 [1, p. 104, 126]. For simplicity,
this paper adopts from [1, p. 105] the definition of being
“near” a point z0 as belonging to a disc ζ ⊂ Z of radius
D:

ζ = {z : ‖z − z0‖ ≤ D}. (37)

Although this specific natural language statement inter-
pretation is considered for simplicity, the presented ap-
proach does not preclude more sophisticated models,
such as in [22], [39]. The associated generalized likeli-
hood function for this imprecise measurement is

g̃(ζ|x) = P{z ∈ ζ} = P{h(x) ∈ ζ}, (38)

where h : X 
→ Z is the deterministic mapping from
the state space to the measurement space [23]. General-
ized likelihood functions, such as those for natural lan-
guage statements, are often nonlinear in x. Through the
presented Gaussian splitting approach and expansion of
the nonlinear likelihood function about the GM compo-
nent means, GM RFS filters can accommodate impre-
cisemeasurements,as demonstrated in the context of the
RFS Bernoulli filter in the following subsection.

1In fact, this statement can further be considered vague or fuzzy due
to uncertainty in the observer’s definition of “near” [19, p. 266].

B. Bernoulli Filter for Imprecise Measurements

The Bernoulli filter is the Bayes-optimal filter for
tracking a single object in the presence of false alarms,
misdetections, and unknown object birth/death [1, Sec.
14].A Bernoulli distribution is parameterized by a prob-
ability of object existence r and state pdf p(x). The finite
set statistics (FISST) density of a Bernoulli RFS is [1, p.
516]

f (X ) =
{
1 − r, if X = ∅
r · p(x), if X = {x}. (39)

Denote by pb the conditional probability that the ob-
ject is born given that it did not exist in the previous time
step. Similarly, denote by pS the conditional probability
that the object survives to the next time step. The ini-
tial state of an object born at time k is assumed to be
distributed according to the birth spatial density bk(x).
Then, by the FISST generalized Chapman-Kolmogorov
equation, the Bernoulli filter prediction equations are
[1, p. 519]

pk|k−1(x) = pb · (1 − rk−1|k−1)bk|k−1(x)
rk|k−1

(40)

+ pSrk−1|k−1
∫

πk|k−1(x|x′)pk−1|k−1(x′)dx′

rk|k−1
,

rk|k−1 = pb · (1 − rk−1|k−1) + pSrk−1|k−1, (41)

where πk|k−1(x|x′) is the single-object state transition
density. Suppose that the spatial density and birth den-
sity are GMs and that the transition is linear-Gaussian:

pk−1|k−1(x) =
Lk−1∑
�=1

w
(�)
k−1N (x; m(�)

k−1, P
(�)
k−1), (42)

bk|k−1(x) =
Lb,k∑
�=1

ŵ
(�)
b,kN (x; m(�)

b,k, P
(�)
b,k), (43)

πk|k−1(x|x′) = N (x; Fk−1x′, Qk−1). (44)

Then, the predicted spatial density at k is the sum of two
GMs, given as

pk|k−1(x) =
Lb,k∑
�=1

w
(�)
b,kN (x; m(�)

b,k, P
(�)
b,k) (45)

+
Lk−1∑
�=1

w
(�)
S,k|k−1N (x; m(�)

S,k|k−1, P
(�)
S,k|k−1),

where

w
(�)
b,k = ŵ

(�)
b,k

pb · (1 − rk−1|k−1)
rk|k−1

, (46)

w
(�)
S,k|k−1 = w

(�)
k−1

pSrk−1|k−1

rk|k−1
, (47)

m(�)
S,k|k−1 = Fk−1m

(�)
k−1, (48)

P(�)
S,k|k−1 = Fk−1P

(�)
k−1F

T
k−1 + Qk−1. (49)
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The predicted spatial density (45) can thus be expressed
as a combined GM of the form

pk|k−1(x) =
Lk|k−1∑
�=1

w
(�)
k|k−1N (x; m(�)

k|k−1, P
(�)
k|k−1), (50)

where
∑Lk|k−1

�=1 w
(�)
k|k−1 = 1.

The FoV-dependent probability of detection func-
tion is given by

pD(x;Sk) = 1Sk (x)pD(s), (51)

where the single-argument function pD(s) is the cor-
responding probability of detection for an unbounded
FoV. The measurement ϒk is then a finite set

ϒk = {ζ1, . . . , ζmk
} ∈ F (Z) (52)

comprised of false alarms and a potentially empty impre-
cise measurement due a true object, where Z is the set of
all closed subsets of Z and F (Z) is the space of all finite
subsets of Z, as shown in [1, Ch. 5]. Assume that false
alarms are Poisson distributed with rate λc and spatial
density c̃(ζ). Then, the posterior state density and prob-
ability of existence are given by

pk|k(x) =
1 − pD(x;Sk) + pD(x;Sk)

∑
ζ∈ϒk

g̃k(ζ|x)
λcc̃(ζ)

1 − �k
pk|k−1(x),

(53)

rk|k = 1 − �k

1 − rk|k−1�k
rk|k−1, (54)

where

�k =
∫

pD(x;Sk)pk|k−1(x)dx

−
∑
ζ∈ϒk

∫
pD(x;Sk)g̃k(ζ|x)pk|k−1(x)dx

λcc̃(ζ)
, (55)

which is a generalization of the result shown in [20] for
state-dependent probability of detection.

Because (53) involves products of indicator functions
and GMs, the resulting posterior density will not be a
GM in general. Instead, the state-dependent probabil-
ity of detection and generalized likelihood function can
be expanded about the GM component means (see Ap-
pendix B), giving

pk|k(x) =
Lk|k∑
�=1

w
(�)
k|kN (x; m(�)

k|k, P
(�)
k|k), (56)

w
(�)
k|k =

w
(�)
k|k−1

1 − �k

(
1 − pD(m

(�)
k|k−1;Sk)

+ pD(m
(�)
k|k−1;Sk)

∑
ζ∈ϒk

g̃k(ζ|m(�)
k|k−1)

λcc̃(ζ)

)
, (57)

�k =
Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk), (58)

−
∑
ζ∈ϒk

Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk)g̃k(ζ|m(�)

k|k−1)

λcc̃(ζ)

m(�)
k|k = m(�)

k|k−1, (59)

P(�)
k|k = P(�)

k|k−1. (60)

The approximation error due to the zeroth-order ex-
pansion in (57) and (58) depends on the GM resolu-
tion near points of strong nonlinearity. In a high resolu-
tionmixture containingmany components with small co-
variance matrices, the region about each mean in which
the local approximation must be valid is correspond-
ingly smaller compared to a low-resolution mixture [40].
Therefore, the recursive splitting method is employed
to refine the mixture in nonlinear regions—specifically
around ∂Sk and ∂ζ(·)—before computing the posterior
GM(56).Then, the resulting posteriorGM is reduced us-
ing one of many available algorithms for GM reduction
[41]–[44]. This process, referred to as the GM Bernoulli
filter for imprecise measurements, is summarized in
Algorithm 3.

C. Airport Tracking Example

The recursive splitting approach is demonstrated in
the context of tracking a person of interest through a
crowded airport. This problem was originally posed in
[23] and solved using a particle filter (PF) implementa-
tion of the Bernoulli filter. The object state is defined as

xTk = [xk yk ẋk ẏk] = [sTk vTk ], (61)

where dimensionless distance units are used throughout.
Measurements of the object are composed of natural
language statements describing the person’s current lo-
cation in the form Zk = {ζk,1, . . . , ζk,mk}, wheremk is the
number of statements received at time k and

ζ = a ⇒ the object is near the anchor a. (62)

In (62), the integer a ∈ A ⊂ N represents a fixed anchor,
such as a taco stand or coffee shop, with corresponding
known position ra ∈ Z. Observers sometimes report in-
correct statements (as false alarms) and sometimes fail
to report true statements (as misdetections). The corre-
sponding generalized likelihood function is

g̃k(ζ = a | xk) =
{
1 if ‖sk − ra‖ ≤ 2da/3
0 otherwise , (63)

where da is the distance between anchor a and its nearest
neighboring anchor. If the object is within 2da/3 of an-
chor a, then the natural language statement reports that
the object is near a (unless misdetected). Defining the
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Algorithm 3 GM Bernoulli Filter for Imprecise Measurements

given r0|0, p0|0(x)
for k = 1, . . . ,K do

Compute rk|k−1 according to (41)
Compute {w(�)

S,k|k−1,m
(�)
S,k|k−1,P

(�)
S,k|k−1}

Lk|k−1

�=1 according to (47)–(49)

Compute {w(�)
b,k}Lb,k

�=1 according to (46)

{w(�)
k|k−1,m

(�)
k|k−1,P

(�)
k|k−1}

Lk|k−1

�=1 ← {w(�)
S,k|k−1,m

(�)
S,k|k−1,P

(�)
S,k|k−1}Lk−1

�=1 ∪ {w(�)
b,k|k−1,m

(�)
b,k|k−1,P

(�)
b,k|k−1}

Lb,k

�=1

{w(�)
k|k−1,m

(�)
k|k−1,P

(�)
k|k−1}

Lk|k−1

�=1 ←split_for_multifov({w(�)
k|k−1,m

(�)
k|k−1,P

(�)
k|k−1}

Lk|k−1

�=1 ,wmin, {Sk} ∪ ϒk,R, λ)
Compute �k according to (58)
Compute rk|k according to (54)
Compute {w(�)

k|k,m
(�)
k|k,P

(�)
k|k}

Lk|k
�=1 according to (57),(59),(60)

{w(�)
k|k,m

(�)
k|k,P

(�)
k|k}

Lk|k
�=1 ← reduce({w(�)

k|k,m
(�)
k|k,P

(�)
k|k}

Lk|k
�=1)

end for

compact subset

Aa = {s : ‖s − ra‖ ≤ 2da/3} , (64)

the generalized likelihood function (63) can be written
in terms of an indicator function as

g̃k(ζ = a | xk) = 1Aa (sk). (65)

By this likelihood function, (57) and (58) simplify to

w
(�)
k|k =

w
(�)
k|k−1

1 − �k

(
1 − pD(m

(�)
k|k−1;Sk)

+ pD(m
(�)
k|k−1;Sk)

∑
ζ∈Zk

1Aζ
(m(�)

s,k|k−1)

λcc̃(ζ )

)
, (66)

�k =
Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk) (67)

−
∑
ζ∈Zk

Lk|k−1∑
�=1

w
(�)
k|k−1pD(m

(�)
k|k−1;Sk)1Aζ

(m(�)
s,k|k−1;Sk)

λcc̃(ζ )
,

where λc denotes the clutter cardinality mean and the
density of clutter c̃(ζ ) is taken to be uniform over
support A.

The anchor locations and bounds ∂Aa are shown in
Fig. 6. The gray shaded regions indicate exclusion re-
gions the person cannot occupy due to physical barri-
ers, and thus, pk(x) = 0 in these regions. Detections are
reported every Tk = 15 [s] and include an average of
λc = 0.25 false detections. True detections are reported
with a probability of detection pD(xk;Sk) given by (51)
with pD(sk) = 0.9 and composite detection FoV

Sk =
⋃
a∈A

Aa. (68)

The object state is governed by the transition density

πk|k−1(x|x′) = N (x; Fk−1x′, Qk−1), (69)

where

Fk =

⎡
⎢⎢⎣
1 0 Tk 0
0 1 0 Tk
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (70)

Qk =

⎡
⎢⎢⎢⎢⎣

�T 3
k

3 0 �T 2
k

2 0

0 �T 3
k

3 0 �T 2
k

2
�T 2

k
2 0 �Tk 0

0 �T 2
k

2 0 �Tk

⎤
⎥⎥⎥⎥⎦ , (71)

and � = 0.004 is the intensity of the process noise.
The simulated reports are processed by the GM

Bernoulli for imprecise measurements (Algorithm 3)
and the Bernoulli PF [23] at each time step to obtain
the posterior probability of existence and state density.

Fig. 6. Anchor locations and association extents.
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Fig. 7. (a) True trajectory and GM Bernoulli filter state estimates
over time, where position state densities are shown for time steps
k = 15, 25, 55 (t = 225, 375, 825 [s]), and (b) posterior probability of

existence over time.

The Bernoulli PF is implemented using 5000 particles
and aMarkov chainMonte Carlo (MCMC)move step to
improve sample diversity, as described in [23]. By split-
ting the density about the relevant anchor boundaries,
the imprecise measurements are incorporated to refine
the probabilistic belief and estimate the person’s tra-
jectory over time. The true trajectory, minimum mean
square error (MMSE) estimates, and densities at select
time steps are shown in Fig. 7(a). The Bernoulli PF es-
timates and densities are omitted for clarity. As shown,
the true trajectory is consistently within the spatial dis-
tribution support.

The posterior probability of existence is shown over
time in Fig. 7(b). The probability of existence of the
object is consistently near one, falling momentarily to
rk|k = 0.6. This drop in probability appropriately reflects
the increased uncertainty after three consecutive misde-
tections (the latter two of which are due to the object
traveling outside detection bounds). As shown, the GM
and PF approximations produce similar probability of
existence estimates,where only slight differences are ob-
served at times of nondetection.

Fig. 8. MMSE estimation error and conditional covariance RSS of
position (a) and velocity (b) states.

TheGMBernoulli filter for imprecise measurements
is exceptionally computationally efficient, resulting in a
total simulation time of 45.2 s. When applied to identi-
cal measurement data, the Bernoulli PF simulation re-
quired 128.5 s. In fact, the largest computational bottle-
neck of the presentedGMapproach is theGMreduction
step. A two-pass reduction strategy was found to effec-
tively balance computational cost and estimation accu-
racy. The Mahalanobis distance-based merge strategy of
[31] quickly reduces the number of GM components in
the first pass. Then, if needed, the Kullback–Leibler di-
vergence (KLD)-based Runnals algorithm [42] further
reduces the mixture size to Lmax = 100.

The state estimation performance is quantified us-
ing the MMSE estimate error and the root sum squared
(RSS) of the posterior conditional covariance, as shown
in Fig. 8. The estimation performance of the GM filter
is very similar to the Bernoulli PF, with neither method
exhibiting a clear advantage in terms of estimation ac-
curacy.The velocity root-sum-square (RSS) quickly con-
verges to a steady state of approximately 0.7 [dist/s], the
lower bound of which is largely determined by the per-
son’s assumed maneuverability and associated process
noise covariance. Similarly, the largest uncertainty is ob-
served near k = 21 (t = 315 [s]), after three consecutive
misdetections.

While this example considers single-object esti-
mation, the expansion approximation and splitting
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approach described in Section V-B are applicable to any
GM RFS filter and thus can be used in multiobject esti-
mation problems. In the presented example of tracking a
person of interest and itsmultiobject extension involving
multiple persons of interest, the posterior RFS density
can be used to intelligently query or deploy resources
to find or intercept persons of interest. In this case, one
particularly useful statistic is the probability that a given
number of individuals are near a particular anchor. This
information is fully described by the RFS FoV cardinal-
ity distribution, as presented in the following section.

VI. FOV CARDINALITY DISTRIBUTION

This section presents pmfs for the cardinality of ob-
jects inside a bounded FoV S given different global mul-
tiobject densities f (·). Previous work derived expres-
sions for the first and second moments of FoV cardi-
nality distributions given Poisson, independently and
identically distributed cluster (i.i.d.c.) [45], and multi-
Bernoulli (MB) [46] global densities. This section in-
stead develops full pmfs expressions, from which first,
second, or any higher-order moments can be easily ob-
tained [47, Ch. 30]. A similar concept is discussed in [37]
in the context of “censored” RFSs, and a general ex-
pression is provided in terms of set derivatives and be-
lief mass functions. This paper presents a new direct ap-
proach to obtain FoV cardinality distributions based on
conditional cardinality functions and derives new sim-
plified expressions for representative RFS distribution
classes. The Poisson, i.i.d.c.,MB, and generalized labeled
multi-Bernoulli (GLMB) distributions are considered in
Sections VI-A, VI-B, VI-C, and VI-D, respectively.

The probability of n objects existing inside FoV S
conditioned on X can be written in terms of the indi-
cator function as

ρS (n |X ) =
∑
Xn⊆X

[1S (·)]Xn
[1 − 1S (·)]X\Xn

, (72)

where the summation is taken over all subsets Xn ⊆ X
with cardinality n.Given the RFS density f (X ), the FoV
cardinality distribution is obtained via the set integral as

ρS (n) =
∫

ρS (n |X ) f (X )δX. (73)

Expanding the integral,

ρS (n) =
∞∑
m=n

1
m!

∫
Xm

ρS (n | {x1, ..., xm}) f ({x1, ..., xm})dx1· · ·dxm.

(74)

Remark: The results presented in this section can be triv-
ially extended to express the predicted cardinality of
object-originated detections Z (excluding false alarms)

by noting that

ρS (nZ |X ) =
∑
Xn⊆X

[pD(·)1S (·)]Xn
[1 − pD(·)1S (·)]X\Xn

,

(75)

where nZ = |Z|.

A. Poisson Distribution

The density of a Poisson-distributed RFS is

f (X ) = e−NX [D]X , (76)

where NX is the global cardinality mean andD(x) is the
probability hypothesis density (PHD), or intensity func-
tion, of X , which is defined on the single-object space X.
One important property of the PHD is that its integral
over a closed set on X yields the expected number of ob-
jects within that set, i.e.,

E[|X ∩ T |] =
∫
T
D(x)dx. (77)

Proposition 1 Given a Poisson-distributed RFS with
PHD D(x) and global cardinality mean NX , the cardi-
nality of objects inside the FoV S ⊆ Xs is distributed ac-
cording to

ρS (n) =
∞∑
m=n

e−NX

n!(m− n)!
〈1S ,D〉n〈1 − 1S ,D〉m−n. (78)

Proof: Substituting (76) into (74), we get

ρS (n) =
∞∑
m=n

1
m!

e−NX

∫
Xm

∑
Xn⊆X

[1S (·)D(·)]Xn

· [(1 − 1S (·))D(·)]X\Xn
dx1 · · · dxm. (79)

The nested integrals of (79) can be distributed, rewriting
the second sum over n-cardinality index sets In as

ρS (n) =
∞∑
m=n

1
m!

e−NX
∑

In⊆Nm

[∫
1S (x(·))D(x(·))dx(·)

]In

·
[∫

(1 − 1S (x(·)))D(x(·))
]Nm\In

. (80)

Note that the value of the integrals is independent of the
product index i, and thus

ρS (n) =
∞∑
m=n

e−NX
1
m!

m!
n!(m− n)!

〈1S ,D〉n〈1 − 1S ,D〉m−n,

(81)

from which (78) follows. �
Remark: Computation of (78) requires only one in-

tegral computation, namely 〈1S ,D〉, which can be found
either by summing the weights of (11) or throughMonte
Carlo integration. Using the integral property of the
PHD (77), the integral

〈1 − 1S ,D〉 = NX − 〈1S ,D〉. (82)
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Furthermore, for m � NX , the summand of (78) is neg-
ligible, and the infinite sum can be safely truncated at an
appropriately chosen m = mmax(NX ).

B. Independent Identically Distributed Cluster
Distribution

The density of an i.i.d.c. RFS is

f (X ) = |X |! · ρ(|X |)[p]X , (83)

where ρ(n) is the cardinality pmf and p(x) is the single-
object state pdf.

Proposition 2 Given an i.i.d.c.-distributed RFS with car-
dinality pmf ρ(·) and state density p(·), the cardinality of
objects inside the FoV S is distributed according to

ρS (n) =
∞∑
m=n

ρ(m)
(
m
n

)
〈1S , p〉n〈1 − 1S , p〉m−n, (84)

where
(m
n

)
is the binomial coefficient.

Proof: Substituting (83) into (74), we get

ρS (n) =
∞∑
m=n

1
m!

m!ρ(m) (85)

∫
Xm

∑
Xn⊆X

·[1S (·)p(·)]Xn
[(1 − 1S (·))p(·)]X\Xn

dx1· · ·dxm.

The integral can be moved inside the products so that

ρS (n) =
∞∑
m=n

ρ(m)
∑

In⊆Nm

[∫
1S (x(·))p(x(·))dx(·)

]In

·
[∫

(1 − 1S (x(·)))p(x(·))dx(·)

]Nm\In
.

(86)

Equation (84) follows from (86) by noting that there
are

(m
n

)
unique unordered n-cardinality index subsets

of Nm. �

C. MB Distribution

The density of a MB distribution is [37, p. 102]

f (X ) =
[(

1 − r(·)
)]NM ∑

1≤i1 �=···�=in≤M

[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nn

,

(87)

where M is the number of MB components and maxi-
mum possible object cardinality, ri is the probability that
the ith object exists, and pi(x) is the single-object state
density of the ith object if it exists.

Proposition 3 Given at MB density of the form of (87),
the cardinality of objects inside the FoV S is distributed

according to

ρS (n) =
[(

1 − r(·)
)]NM

·
∑

I1�I2⊆NM

δn(|I1|)
[

〈1S , r(·)p(·)〉
1 − r(·)

]I1 [ 〈1 − 1S , r(·)p(·)〉
1 − r(·)

]I2
,

(88)

where the summation is taken over all mutually exclusive
index partitions I1, I2 such that I1 ∪ I2 ⊆ NM.

Proof of Proposition 3 is given inAppendix C.Within
a given summand term of (88), the index sets I1, I2, and
NM\(I1 ∪I2) can be interpreted as the indices of objects
within the FoV, objects outside the FoV, and nonexis-
tent objects, respectively. Following the same procedure,
similar results for the labeled multi-Bernoulli (LMB) [3]
and multi-Bernoulli mixture (MBM) [48] RFS distribu-
tions may be obtained.

Direct computation of (88) is only feasible for small
M due to the sum over all permutations I1 � I2 ⊆ NM.
For largeM, an alternative formulation based on Fourier
transforms allows fast numerical computation. For each
MB component, the integral 〈1S , p(i)〉 is computed either
by summing the weights of the partitioned GM or by
Monte Carlo integration. Using the integral results, the
probability of object i existing inside the FoV is found
as

r(i)S = r(i)〈1S , p(i)〉. (89)

Then, as shown in [49], (88) can be equivalently written
as

ρS (n) = 1
M + 1

× (90)

M∑
m=0

{
e− j2πmn/(M+1)

M∏
k=1

[
r(k)S e j2πm/(M+1) + (1 − r(k)S )

]}

and solved using the discrete Fourier transform, for
which a number of efficient algorithms exist.

D. GLMB Distribution

The density of a GLMB distribution is given by [2]

f̊ (X̊ ) = �(X̊ )
∑
ξ∈�

w(ξ )(L(X̊ ))[p(ξ )]X̊ , (91)

where each ξ ∈ � represents a history of measure-
ment association maps, each p(ξ )(·, �) is a probability
density on X, and each weight w(ξ ) is nonnegative with∑
(I,ξ )∈F (L)×�

w(ξ )(I) = 1. The label of a labeled state x̊ is

recovered by L(x̊), where L : X × L 
→ L is the pro-
jection defined by L((x, �)) � �. Similarly, for LRFSs,
L(X̊ ) � {L(x̊) : x̊ ∈ X̊ }. The distinct label indicator
�(X̊ ) = δ(|X̊ |)(|L(X̊ )|) ensures that only sets with dis-
tinct labels are considered.
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Proposition 4 Given a GLMB density f̊ (X̊ ) of the form
of (91), the cardinality of objects inside a bounded FoV S
is distributed according to

ρS (n) =
∑

(ξ,I1�I2)∈�×F (L)

w(ξ )(I)δn(|I1|)〈1S , p〉I1〈1 − 1S , p〉I2 . (92)

Proof: Equation (72) can be rewritten to accommo-
date the labeled RFS as

ρS (n | X̊ ) =
∑
X̊ n⊆X̊

[1S (·)]X̊ n
[1 − 1S (·)]X̊\X̊ n

. (93)

If X̊ is distributed according to the LRFS density f̊ (X̊ ),
the FoV cardinality distribution is obtained via the set
integral

ρS (n) =
∫

ρS (n | X̊ ) f̊ (X̊ )δX̊ . (94)

Expanding the integral,

ρS (n)

=
∞∑
m=n

1
m!

∑
(�1,...,�m)∈Lm

∫
X
m

ρS (n | {(x1, �1), ..., (xm, �m)})

· f̊ ({(x1, �1), ..., (xm, �m)})dx1 · · · dxm. (95)

Defining p(ξ,�)(x) � p(ξ )(x, �), substitution of (91) and
(93) yields

ρS (n) =
∞∑
m=n

1
m!

m!
∑

{�1,...,�m}∈Lm

∑
ξ∈�

w(ξ )({�1, . . . , �m})

∑
In⊆{�1,...�m}

〈1S , p(ξ,·)〉In〈1 − 1S , p(ξ,·)〉{�1,...,�m}\In

=
∑

(ξ,I)∈�×F (L)

w(ξ )(I)
∑
In⊆I

〈1S , p(ξ,·)〉In〈1 − 1S , p(ξ,·)〉I\In ,

(96)

from which (92) follows. �
Remark: Substitution of n = 0 in (92) gives the

GLMB void probability functional [6, Eq. (22)], which,
while less general, has theoretical significance and prac-
tical applications in sensor management.

VII. SENSOR PLACEMENT EXAMPLE

The FoV statistics developed in this paper are
demonstrated through a sensor placement optimization
problem subject to multiobject uncertainty. The global
distribution is assumed to beMB-distributed.Numerical
simulation is performed for the case of 100 MB compo-
nents, with probabilities of existence randomly chosen
between 0.35 and 1. Each MB component has a Gaus-
sian density and randomly chosen mean and covariance.
To visualize the global distribution, the PHD is shown in
Fig. 9.

Fig. 9. PHD of the global MB distribution with 100 potential
objects, where object means are represented by orange circles and the
bounds of the FoV that maximize the FoV cardinality variance are

shown in white.

The PHD is analogous to the expected value for
RFSs and is defined as [50]

D(x) � E[δX (x)] =
∫

δX (x) · f (X )δX, (97)

for an arbitrary RFS X with density f (X ), where

δX (x) �
∑
w∈X

δw(x). (98)

It follows that the PHDof anMBRFS (87) is [37, p. 102]

D(x) =
M∑
i=1

ripi(x). (99)

The objective of the sensor control problem is to
place the FoV, comprising a square of 1 × 1 dimensions,
in the ROI (Fig. 9) such that the variance of object car-
dinality inside the FoV is maximized. This objective can
be interpreted as placing the FoV in a region of the ROI
where the object cardinality is most uncertain.A related
objective thatminimizes the variance of the global cardi-
nality using CB-MeMBer predictions was first proposed
in [5]. For each candidate FoV placement, the FoV car-
dinality pmf is given by (88) and efficiently computed
using (90). The variance of the resulting pmf is shown as
a function of the FoV center location in Fig. 10. The op-
timal FoV center location is found to be (−0.8,−1.25).

Fig. 10. FoV cardinality variance as a function of FoV center
location, where the red star denotes the maximum variance point.
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Fig. 11. (a) True trajectory and state estimates over time, where
position state densities are shown for time steps k = 15, 25, 55

(t = 225, 375, 825 [s]), and (b) posterior probability of existence over
time.

A compelling result is that, by virtue of the bounded
FoV geometry, spatial information is encoded in the FoV
cardinality pmf. It can be seen that the optimal FoV
(Fig.9) has boundary segments (lower half of left bound-
ary and right half of lower boundary) that bisect clusters
ofMB components.These boundary segments divide the
components’ single-object densities such that significant
mass appears inside and outside the FoV, increasing the
overall FoV cardinality variance.

VIII. CONCLUSIONS

This paper presents an approach for incorporat-
ing bounded FoV geometry into state density updates
and object cardinality predictions via FISST. Inclu-
sion/exclusion evidence such as negative information
and soft evidence is processed in state density updates
via a novel Gaussian splitting algorithm that recur-
sively refines a Gaussian mixture approximation near
the boundaries of the discrete FoV geometry. Using
FISST,cardinality pmfs that describe the probability that
a given number of objects exist inside the FoV are de-
rived. The approach is presented for representative la-
beled and unlabeled RFS distributions and, thus, is ap-
plicable to a wide range of tracking, perception, and sen-
sor planning problems.

APPENDIX A Inclusion Consistency Example

Consider a plane of constant y2 = ȳ2(9)—that is,
j = 2 and l = 9. As shown in Fig. 11, the index l = 9
denotes the ninth grid plane from the bottom. To eval-
uate inclusion/exclusion consistency in this plane, an ar-

bitrary reference point is selected as ȳ2,9 (where the cor-
responding indices are i′1 = 2 and i j = i2 = l = 9). Note
that this reference index tuple (2,9) belongs to G (de-
picted by the set of orange dots) and lies in the plane of
constant i j = l.

It is apparent from Fig. 11 that ȳ2,9 /∈ S (�)
y . Thus, the

corresponding component inclusion variable (23) for the
selected reference point is

d(�)
i′1,i2

= d(�)
2,9 = 1S (�)

y
(ȳ2,9) = 0. (100)

In the following inclusion/exclusion consistency check,
which follows from (25), the inclusion variables are com-
puted for all remaining points in the plane and compared
to d2,9:

s(�)j (l) = s(�)2 (9) =
∏

G,i2=9

δd(�)
2,9
(d(�)

i1,9
)

= δd(�)
2,9
(d(�)

2,9) · δd(�)
2,9
(d(�)

3,9) · · · δd(�)
2,9
(d(�)

14,9)

= δ0(0) · δ0(0) · · · δ0(0) = 1, (101)

where it is noted that i1 ranges from 2 to 14 in the con-
sidered plane (in which there are thirteen corresponding
orange dots). Thus, s(�)j (l) = 1 signifies that the plane
is indeed consistently inside or consistently outside the
FoV, the latter of which is easily verified by inspecting
Fig. 11.

APPENDIX B Taylor Series Expansion About Means

Equation (53) can be written compactly as

pk|k(x) = α(x)pk|k−1(x) (102)

=
Lk|k−1∑
�=1

α(x)w(�)
k|k−1N (x; m(�)

k|k−1, P
(�)
k|k−1), (103)

where

α(x) =
1 − pD(x;Sk) + pD(x;Sk)

∑
ζ∈ϒk

g̃k(ζ|x)
λcc̃(ζ)

1 − �k
(104)

and where the functional dependence of α on the FoV
and measurement is omitted for brevity. The function
α(x) can be approximated locally by a Taylor series ex-
pansion about a given component mean as

α(x) ≈ α(m(�)
k|k−1) +

(
∂α

∂x

)∣∣∣∣
x=m(�)

k|k−1

(x − m(�)
k|k−1) + · · · .

(105)

To zeroth order, α(x) ≈ α(m(�)
k|k−1), such that

pk|k(x) ≈
Lk|k−1∑
�=1

α(m(�)
k|k−1)w

(�)
k|k−1N (x; m(�)

k|k−1, P
(�)
k|k−1),

(106)

from which (56)–(60) follow.
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APPENDIX C Proof of Proposition 3

Let K
(n)
M � {(i1, ..., in) : 1 ≤ i1 �= · · · �= in ≤ M}.

Then, (87) can be rewritten as

f (X ) =
[(

1 − r(·)
)]NM ∑

(Iσ )∈K
(n)
M

[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nn

,

(107)

where Iσ denotes the (unordered) set {i1, ..., in} and
(Iσ ) denotes the (ordered) sequence (i1, ..., in) =
(ασ (1), ..., ασ (n)), where the n-tuple index set
{α1, ..., αn} ⊆ NM and σ is a permutation of Nn.

Substituting (107) into (74),

ρS (n) =
[(

1 − r(·)
)]NM

·
M∑
m=n

1
m!

∫
Xm

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nm

·
∑
Xn⊆X

[1S (·)]Xn
[1 − 1S (·)]X\Xn

dx1 · · · dxm. (108)

The last sum can be written in terms of label index sets
I1 � I2 = Iσ as

ρS (n) =
[(

1 − r(·)
)]NM

(109)

·
M∑
m=n

1
m!

∫
Xm

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
[
ri(·) pi(·) (x(·))

1 − ri(·)

]Nm

·
∑

I1�I2=Iσ

δn(|I1|)[1S (x(·))]{ j:i j∈I1}[1 − 1S (x(·))]{ j:i j∈I2}

dx1 · · · dxm,

where the innermost sum is taken over all mutually dis-
joint subsets I1, I2 such that I1 ∪ I2 = Iσ . Distributing
terms from the second summation,

ρS (n) =
[(

1 − r(·)
)]NM

(110)

·
M∑
m=n

1
m!

∫
Xm

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
∑

I1�I2=Iσ

δn(|I1|)

·
[
1S (x(·))ri(·) pi(·) (x(·))

1 − ri(·)

]{ j:i j∈I1}

·
[
[1 − 1S (x(·))]ri(·) pi(·) (x(·))

1 − ri(·)

]{ j:i j∈I2}
dx1 · · · dxm.

Because I1∩I2 = ∅, then {x j : i j ∈ I1}∩{x j : i j ∈ I2} = ∅
and the integral onX

m becomes a product of integrals on

X, such that

ρS (n) =
[(

1 − r(·)
)]NM

(111)

·
M∑
m=n

1
m!

∑
(Iσ )∈K

(n)
M

δm(|Iσ |)
∑

I1�I2=Iσ

δn(|I1|)

·
[ 〈1S , ri(·) pi(·)〉

1 − ri(·)

]{ j:i j∈I1} [ 〈1 − 1S , ri(·) pi(·)〉
1 − ri(·)

]{ j:i j∈I2}
.

Now note that the result of the innermost sum does
not depend on the permutation order of (Iσ ). Thus, the
property [51, Lemma 12], which states that for an arbi-
trary symmetric function h,∑
(i1,...,im)

h({i1, . . . , im}) = m!
∑

{i1,...,im}
h({i1, . . . , im}) (112)

is applied, yielding

ρS (n) =
[(

1 − r(·)
)]NM

(113)

·
M∑
m=n

∑
I1�I2⊆NM

δm(|I1 � I2|)δn(|I1|)

·
[

〈1S , r(·)p(·)〉
1 − r(·)

]I1 [ 〈1 − 1S , r(·)p(·)〉
1 − r(·)

]I2
.

The term δm(|I1 � I2|) is nonzero only when the com-
bined cardinality of I1 and I2 is equal tom—the index of
the outermost sum.Thus, the outermost sum is absorbed
by the second sum to give (88). �
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