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Minimizing the amount of communication required by a sensor network is crucial to minimizing both energy and

time consumption, as well to operating covertly and robustly in communication-contested environments. This paper

presents a novel intermittent communication control approach applicable to sensor networks deployed to sense and

model spatio-temporal processes by nonparametricmodels such asGaussian processes (GPs). The approach relies on

a novel and efficient approximation of the GP average generalization error (AGE), as well as on novel GP sensor

control and regression methods presented in this paper. This novel AGE approximation allows each sensor to

characterize the nominal prediction performance of the learned GP model in the absence of communications. As a

result, individual sensors can update the GP hyperparameters based solely on local measurements and decide to

communicate only if and when their estimate of the nominal prediction performance falls below an acceptable

threshold.

I. Introduction

S IGNIFICANT progress has been made to date on the develop-

ment of planning and control methods for coordinating the

motion and measurements of collaborative sensor networks so as

to maintain communications [1–3] andmaximize information value

[4–9]. These methods typically assume that the network connectiv-

ity is to be maintained by ensuring that sensors (nodes) are within a

desired communication range, thus enabling pairwise or nearest-

neighbor communication links. Under this assumption, sensors are

able to exchange local measurements and other relevant informa-

tion, such as control policies and environmental conditions, neces-

sary for collaborative sensing tasks. In many sensing applications,

however, constantly maintaining communication links over time is

undesirable even when communication constraints are satisfied by

the sensor location [10,11]. This is because establishing communi-

cation links may require significant resources due to contested

communication environments or the need for covertness and, thus,

may pose undue burden on available bandwidth and energy supply

[12–18]. Example applications include ecological and environmen-

tal monitoring [19], underwater sensor networks [20], and physical

security [21]. Energy conservation is crucial to extending the net-

work lifetime in these applications, as well as in many other battery-

powered wireless sensor networks [22]. This paper develops an

approach for automatically controlling communication broadcast-

ing based on the desired level of network sensing performance in

spatio-temporal learning problems. While this paper considers the

control of broadcast communications, the approach can also be

extended to other communication protocols and network topol-

ogies, such as those discussed in [22].

Existing communication control approaches can be divided into
time-driven and event-driven algorithms. In time-driven algorithms,
sensors communicate periodically at a fixed time interval determined
from sensing parameters. Because these parameters must be obtained
from all sensing nodes, however, the policy may become obsolete in
the absence of communication links [23–29]. In particular, the com-
munication time interval is determined by the maximum allowable
transfer interval between two subsequent message transmissions to
ensure closed-loop stability. Event-driven algorithms trigger com-
munications based on a predefined event that can be monitored at the
sensor level [30]. In the “send-on-delta” algorithm proposed in [31],
for instance, sensors communicate when the change in the observed
signal exceeds a predefined threshold. The “deadband” algorithm
developed in [32] determines the communication time for a network
of proportional-integral-derivative (PID) controllers based on system
state error bounds that can be adjusted based on system response and
network traffic. Other event-based communication strategies have
been developed for formation maintenance [33], and decentralized
control of linear time-invariant systems [34–36].
Most of these existing communication control approaches have

been developed for networks of linear or nonlinear dynamic systems
characterized by a fixed number of parameters. To date, few results
exist on communication control for networks engaged in sensing for
learning nonparametric models, such as Gaussian processes (GPs).
The advantage of nonparametric models is that they allow the sensor
network to learn the dynamics of a stochastic process from data,
adjusting the model dimensionality to the sensor measurements
received incrementally over time [37–41]. By this approach, the
dimensionality of the model can be increased or reduced based on
the information underlying new sensor measurements, as reviewed
in Sec. III.
This paper develops a novel approach for estimating the network’s

GP average generalization error (AGE) locally, in the absence of
communications and ground truth. Due to the duality of the sensor
inference and control problems, the predictedGPgeneralization error
depends on the future actions of the sensors, which are unknown in
the absence of communications. By deriving an approximation to the
network’s generalization error that assumes uniform sampling, this
paper develops an automatic control method that is able to determine
communication times and prevent the sensing performance from
falling below an acceptable level. The generalization error provides
a nominal performance baseline for the entire sensor network that can
be monitored and updated based on local measurements when com-
munication links are absent.
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The novel and efficient approximation of the network generaliza-
tion error is presented inSec. IVandvalidatednumerically inSec.VII.
The computational complexity of this approximation is shown to be
linear in the number of collocation points and polynomial in the
number of admissible sensor positions. As a result, the approximate
GP generalization error can be computed recursively and monitored
over time to control communications, while optimizing the sensor
network placement. The effectiveness of the communication control
method developed in Sec. VI is demonstrated on a temperature
modeling problem for the Conterminous United States.
The numerical simulation results presented in Sec. VII show that,

by the proposed control method, climate sensors require few inter-
mittent communication events in order to maintain the GP error
above the desired threshold. Moreover, even in the presence of rare
and intermittent communications, the sensor network is able to
significantly improve the GP model generalization performance by
means of sensor control and GP hyperparameter optimization algo-
rithms leveraging fusion only at the chosen communication times,
when all past measurements are broadcasted to the sensors.

II. Problem Formulation

Consider a network of N sensors deployed in a region of interest
(ROI) in order to learn themodel of a spatio-temporal process that is
time invariant and possibly nonlinear. The sensors may be installed
on fixed stations or unmanned vehicles in order to obtain multiple
observations distributed over both space and time. Examples of
relevant applications are modeling of environmental characteristics
such as atmospheric temperature, gas concentration, or oceanic
features [42,43], or modeling of traffic patterns and pedestrians
[39,44]. Let the underlying process be represented by an unknown
function f:Rn → R that is possibly nonlinear and, at any time t,
maps any spatial inertial coordinate vector x into a hiddenvariable y,

y�k� � f�x�t��; x ∈ X ; y ∈ R (1)

where the domain X ⊂ Rn represents the ROI of dimensions

n ∈ Z�. The function f is assumed to be of class C1 (i.e., differ-
entiable and with continuous derivatives) and to be bounded in X .
The domain X is assumed to be a connected, compact, and non-
empty subset of a Euclidean space that may or may not be con-
vex [45].
Typically the variable of interest, y, is hidden (or nonobservable)

everywhere in X . Thus, the process (1) is to be modeled based on
point measurements obtained by the sensor network over time. Each
sensor in the network, indexed by i, can decide where to move over
time based on a set of admissible sensor positions, denoted by Si,
assumed discrete, finite, and known a priori. Sensor measurements
obtained at discrete moments in time, indexed by k, obey the meas-
urement equation

zi�k� � f�xi�k�� � ν�k�; xi�k� ∈ Si; i � 1; : : : ; N (2)

where the measurement noise ν is zero-mean, white, and Gaussian,
and is characterized by a known standard deviation σ. Every point
measurement (2) is obtained by a sensor positioned atxi ∈ Si, chosen
by the sensor control algorithm from a set of positions dictated by the
range of the mobile platform, or other motion constraints, such as
feasible orbital or aerial trajectories. As an example, this paper
considers a sensor network used to model the average monthly mean
temperature over the Conterminous United States (Fig. 1), where at
every time k each sensor can take a measurement at one of its
admissible locations and decide whether to communicate its mea-
surements to the rest of the network.
In communication-contested environments, establishing commu-

nication links is problematic due, for example, to their energy cost or
the need for covertness. On the other hand, communication links
are required for learning the spatial process (1) everywhere in X ,
because of the need for fusing the decentralized sensor measure-
ments, z1; : : : ; zN , obtained by the network over time. Let ui�k� ∈
f0; 1g denote the ith sensor’s decision to communicate at time k,

where ui � 1 represents the decision to communicate, and ui � 0
represents the decision to remain silent. This paper considers a net-
work broadcasting problem in which, once any one sensor in the
network decides it must communicate, a connected communication
graph, G � �V; E�, is established over the set of vertices V, repre-
senting the set of N sensors, where the set of edges E represents the
communication channels.
In the absence of communications, each sensor only has access to

its local information composed of all position and temperature mea-
surements obtained up to the present time. The local data set of
sensor i at time k is denoted byQi�k� ≜ fxi�l�; zi�l�jl � 1; : : : ; kg.
Because the ground truth is always unknown, in the absence of
communications every sensor i performs local learning of the spatial
process (1) based only on Qi�k�, and plans its future movements,
xi�k� 1�,xi�k� 2�, : : : , so as to optimize its local information gain.
Although other variables, such as local sensor travel distance and
associated cost, may also be considered for planning [4,46–49], they
are not considered in this paper for simplicity.
Once the local sensing performance falls below an acceptable

level, however, network communications must be established so as
not waste valuable time and resources. Because each sensor is subject
to different environmental conditions (e.g., noise), the goal is to
establish communications as soon as any of the sensors in the net-
work exhibits unsatisfactory performance. The decision to com-
municate at time k by any of the sensors in the network can be
represented by the following clause:

∨
N

i�1
ui�k� � 1 (3)

where ∨ denotes the logical disjunction operator, and the positions
andmeasurements of allN sensors, represented by the global data set

Q�k� ≜ S
N
i�1 Qi�k�, are shared via the communication graph G.

The intermittent communication control problem considered in
this paper is to develop a decentralized policy by which each sensor i
plans the sensor positions, xi�k�, and communication decisions,
ui�k�, to learn the spatial process (1) incrementally over time with
minimal information exchange with the network.

III. Gaussian Process Model

GPs are an effective approach for learning spatio-temporal proc-
esses from noisymeasurements, because they are capable of learning
stochastic nonlinear processes from data without specifying the
dimensionality of the model a priori [44,50–52]. The advantage over
other data-driven approaches is that the dimensionality of the GP
model can be adapted incrementally to data that become available
over time by adjusting theGP hyperparameters and dimensionality to
the underlying complexity while avoiding overfitting.

Fig. 1 Average monthly mean temperature in March 2016 for the
Conterminous United States,¶ sets of measurement locations available
to N � 4 sensors (colored dots).

¶PRISMClimate Group, Oregon State University, http://prism.oregonstate
.edu, created March 2016, archived at https://perma.cc/KWS3-84AR.
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A GP defines a multivariate Gaussian distribution P�⋅�, over a
function f:X → R, that can be used to model a spatial or temporal
process, as shown in Eq. (1). Let F � fyijyi � f�xi�; i � 1; : : : ; ηg
be a set of η function evaluations in X . Then, the multivariate
distribution P�f� is a GP if the marginal distribution P�F� is a joint
multivariate Gaussian distribution for any finite set of points in the
function domain, fxijxi ∈ X ; i � 1; : : : ; ηg [53]. The existence of a
GP can be proven using Kolmogorov’s consistency theorem, as
shown in [54,55].
A GP is completely specified by its mean function

θ�x� ≜ Ey�f�x��; ∀ x ∈ X (4)

and its covariance function

ϕ�x; x 0� ≜ Ey;y 0 f�f�x� − θ�x���f�x 0� − θ�x 0��g (5)

for ∀ x; x 0 ∈ X, where Ey�⋅� denotes the expectation operator with
respect to the random variable y [37,39,56]. Then, the notation

f�x� ∼ GP�θ�x�;ϕ�x; x 0��; ∀ x; x 0 ∈ X (6)

is used to indicate that f is “distributed as” theGPwithmean function
θ�⋅� and covariance function ϕ�⋅; ⋅�.

A. GP Regression

Amajor advantage ofGPmodels is the existence of simple analytic
formulas for updating the mean and covariance of the posterior
distribution [57]. Let the set of all available data be denoted by

Q � f�xi; zi�jxi ∈ X ; zi � f�xi� � νi; i � 1; : : : ; ηg
where η is the number of data pairs collected up to the present time
and all other variables are defined in Sec. II. Under the assumption of
additive Gaussian noise (νi, ∀ i), the posterior distribution of the
spatial process (1) conditioned on Q is also a GP with its own mean
and covariance functions.
To obtain the mean and covariance of the posterior for the hidden

variable given the data Q, the data pairs are organized into a �ηn × 1�
vectorX≜ �xT1 · · · xTη �T, and a �η × 1� vector z≜ �z1 · · · zη �T. Then,
the unknown function evaluations corresponding to the η data pairs can
be denoted by a η × 1 vector y≜ �y1 · · · yη �T comprising unknown

random variables. Consider now any other set of m positions and
measurements, say X 0 and z 0, to which there corresponds a vector
of hidden variables y 0. Then, the �η ×m� cross-covariance matrix of
the two random vectors y and y 0 is given by

Φ�X;X 0� ≜ Ey;y 0 ��y − E�y���y 0 − E�y 0��T �

�

2
6664
ϕ�x1; x 0

1� · · · ϕ�x1; x 0
m�

..

. . .
. ..

.

ϕ�xη; x 0
1� · · · ϕ�xη; x 0

m�

3
7775 (7)

where ϕ�⋅; ⋅� is defined in Eq. (5). Without loss of generality, the GP
mean function is assumed zero; i.e., θ�x� ≡ 0.
Then, fromGP regression [58], the joint distribution ofz andy 0 is a

multivariate Gaussian distribution, such that�
z
y 0

�
∼N

�
0�m�η�;

�
Σ Φ�X;X 0�

Φ�X 0;X� Φ�X 0;X 0�
��

(8)

where

Σ ≜ Φ�X;X� � σ2Iη (9)

andN �μ;K� denotes a multivariate Gaussian distribution with mean
μ and covariance K. The notation 0n represents an �n × 1� vector of
zeros, and In is an �n × n� identity matrix.Marginalizing Eq. (8) over
z shows that the posterior distribution of y 0 given the dataQ is also a
multivariate Gaussian distribution with mean

μ 0 � Φ�X 0;X�Σ−1z (10)

and covariance

Σ 0 � Φ�X 0;X 0� −Φ�X 0;X�Σ−1Φ�X;X 0� (11)

B. GP Hyperparameter Learning

In GP regression, a function f�x� with desired properties, such as
smoothness and periodicity, can be learned from data by a proper
choice of covariance function [59]. For example, if f�x� is stationary
(i.e., the joint probability distribution of f�x� and f�x 0� does not
change when x and x 0 are translated simultaneously) stationary
covariance functions such as the squared exponential covariance
function should be used. As another example, if f�x� is periodic,
then the periodic covariance function can be used to model the
periodicity [60]. Each of these families of covariance functions
typically is specified by a finite number of hyperparameters whose
values need to be determined before GP regression [53]. The prefix
“hyper” is used to distinguish these parameters from the GP regres-
sion model parameters, which are learned from data. These hyper-
parameters, denoted by Θ, provide added flexibility to the choice of
covariance function families. A common choice of stationary covari-
ance function is the squared exponential

ϕ�x; x 0� � σ2f exp

�
−
1

2
�x − x 0�TΛ−1�x − x 0�

�
(12)

which provides smoothness characteristics specified by a diagonal

matrix Λ � diag��λ1 · · · λn��. In Eq. (12), the term σ2f is the func-
tion output variance that determines the average distance between
f�⋅� and its mean θ�⋅�, and λi is a length scale in the ith dimension of

x ∈ Rn. The measurement noise variance σ2, defined in Eq. (2), is
also treated as a hyperparameter [53]. Then, the complete set of GP
hyperparameter to be learned from data is Θ � fσf;Λ; σg.
In the Bayesian inference framework, the GPmodel and its hyper-

parameters are viewed as the prior distribution of the underlying
stochastic process. In order for the GP model to best match the
underlying process, the optimal hyperparameters can be learned by
maximizing the logarithm of the marginal likelihood function [61],

L � logp�zjX;Θ� � −
1

2
zTΣ−1z −

1

2
log��2π�ηjΣj� (13)

whereΣ is the covariancematrix of the noisymeasurementszdefined
in Eq. (9), and j ⋅ j denotes the determinant of a matrix.
The maximization of the marginal likelihood function can be

solved by a gradient-based algorithm, such as the conjugate gradient
method [62]. In this paper, the gradient search directions are defined
by the partial derivatives of the likelihood function (13) with respect
to the hyperparameters Θ. For the squared-exponential covariance
function (12), these partial derivatives are found by matrix calculus,
as follows:

∂L
∂σf

� 1

σf
tr��ααT − Σ−1�Φ�X;X�� (14)

∂L
∂σ

� 1

σ
tr�ααT − Σ−1� (15)

∂L
∂λl

� 1

4λ2l
tr��ααT − Σ−1��Φ�X;X� ∘ D�� (16)

where l � 1; : : : ; n, �∘� denotes the Hadamard (or elementwise)
product between two matrices, tr�⋅� is the trace of a matrix, and

α ≜ Σ−1z (17)

D�i;j� ≜
�
eTlxi − eTlxj

�
2 (18)
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el ≜
�
0 · · · 0|������{z������}

l−1

1 0 · · · 0|������{z������}
n−l

�
T

(19)

The inverse matrix Σ−1 is first evaluated based on prior available
data and can be computed with a computational complexity of

O�η3�. Once Σ−1 is obtained, the computational complexity associ-

ated with evaluating the marginal likelihood derivatives is O�η2� for
Eqs. (14–16), when l � 1, and it is O�1� for Eq. (16) when l ≠ 1.
Therefore, the GP hyperparameters can be learned efficiently, which
will in turn improve the prediction performance, as demonstrated by
the simulation results in Sec. VII.
The next section shows how theGP-regressionAGEs can be used to

estimate the network performance in the sensing problem formulated
in Sec. II, and derives an efficient generalization error approximation
for online implementations. Subsequently, the results presented in
the next section are used in Secs. V and VI to develop motion and
communication control policies, respectively.

IV. Nominal Sensor Network Performance

This paper presents a novel approach for controlling network
communications based on the expected nominal sensing network
performance. By definition, this is a challenging problem because
when a sensor is not communicating with the rest of the network, it is
unaware of the performance and policies of other sensors. GP gen-
eralization errors have been previously used in the literature to
represent deviations between the model predictions and the ground
truth for “unseen” data sets. Therefore, while they may be used to
characterize the generalized performance of a model in some sto-
chastic settings [63–65], existing generalization errors are not appli-
cable to problems in which both the ground truth and the other
sensors’ policies are unknown.
This section derives an approximation of the GPAGE that can be

used by individual sensors to estimate the effectiveness of recent
measurements and decide whether communications are required to
prevent the network sensing performance from falling below an
acceptable threshold. In the absence of communications, a sensor i
has no knowledge of the measurements and policies of other sensors
in the network and, therefore, cannot evaluate standard generalization
error or other existing performance metrics such as information gain
[4]. The novel GP generalization error presented here, on the other
hand, can be used to provide an estimate of nominal prediction
performance for the sensor network described in Sec. II. The estimate
can be obtained in the absence of both communications and ground
truth, based solely on the local datasetQi�k�, as shown in Sec. IV.A.
By this approach, the nominal network performance can be esti-

mated by each sensor locally at any time, and used to determine
whether the sensor network performance has fallen below a mini-
mum acceptable threshold, as shown in Sec. VI. Because this mea-
sure of nominal sensor network performance must be evaluated
repeatedly over time, a computationally efficient approximation of
the GP generalization error is derived in Sec. IV.B, thereby signifi-
cantly reducing the computational complexity by means of a set of
time-invariant collocation points adjoined to the set of admissible
physical sensor positions described in Sec. II.

A. GP Generalization Error

In regression problems, the prediction performance is typically
measured by the squared difference between the true value and the
estimated value of the variable(s) of interest, i.e., the dependent
variable y in Eq. (1) for some x ∈ X [66]. Such a performance
measure, however, is not applicable when y is latent or hidden,
because its true value is never known to the sensor. Consider a GP
model learned from observations of the spatial process (1), using the
GP regression approach in Sec. III, under the assumptions described
in Sec. II. Then, the estimated value of y at time k can be obtained
from the mean of the posterior distribution function, conditioned on
the available data. Therefore, although the true value of y is never
available, knowledge of the network measurements can be used

to improve prediction performance provided communications are
available (Sec. VII).
In the absence of communications, the data available to a sensor i at

time k are limited to the local data setQi�k�. Let all sensor measure-
ments zi�l� ∈ Qi�k�, l � 1; : : : ; k, be grouped in a �k × 1� meas-
urement vector

zi�k� ≜ �zi�1� · · · zi�k��T; i � 1; : : : ; N (20)

and all prior sensor positions xi�l� ∈ Qi�k�, l � 1; : : : ; k, be
grouped into an �nk × 1� position vector

Xi�k� ≜ �xTi �1� · · · xTi �k��T; i � 1; : : : ; N (21)

When communications become available andG is a connected graph,
all N measurement vectors can be organized into an �Nk × 1� vector
containing all of the sensor network measurements,

z�k� ≜ � zT1 �k� · · · zTN�k� �T (22)

and all N position vectors can be organized into an �Nkn × 1� vector
containing all of the sensor network positions:

X�k� ≜ �XT
1 �k� · · · XT

N�k� �T (23)

The above measurement and position vectors are used for GP
learning and will also be used later to evaluate the prediction
performance of GP learning in the absence of communications.
To best reflect the performance of GP learning, one needs to pick
a set of reference spatial points that is preferably invariant with
respect to sensor locations and time. For large state spaces, such as
the Conterminous United States in Fig. 2, a tractable estimate of the
GP mean and covariance is obtained by considering a finite set of
collocation points in the process domain X [39,41]. In this paper,
the collocation set is chosen from a uniform grid over X, and is
denoted by Ω � fξıjξı ∈ X ; ı � 1; : : : ;Mg. Then, the spatial proc-
ess (1) is discretized by evaluating f�⋅� at every collocation point in
Ω obtaining a set of function evaluations denoted by Fc � fyıjyı �
f�ξı�; ξı ∈ X ; ı � 1; : : : ;Mg.
Substituting Eqs. (22) and (23) into Eqs. (10) and (11), where now

η � kN, the posteriorGPmean and covariance functions conditioned
on Q�k� can be obtained as follows:

θk�ξı� � Φ�ξı;X�Σ−1z (24)

ϕk�ξı; ξj� � Φ�ξı; ξj� −Φ�ξı;X�Σ−1Φ�X; ξj� (25)

for ı; j � 1; : : : ;M, where Σ is defined in Eq. (9), and where the
index k has been omitted from the covariance matrices and sensor
network position matrix for brevity. Then, the GP prediction error at
the collocation points is

ε�ξı; Q�k�� ≜ �yı − θk�ξı��2 (26)

Fig. 2 Collocation points (Ω) used forGPperformance evaluation in the
temperature modeling problem for the Conterminous United States.
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for all ξı ∈ Ω and yı ∈ Fc. Although Eq. (26) can provide a measure
of the prediction performance of GP regressions, it cannot be evalu-
ated in the absence of communications, or in the absence of ground
truth on the hidden variable value yı, which is always unknown to the
network (Sec. II).
Therefore, this paper develops a novel approach that adopts the

Bayesian generalization error presented in [67] to evaluate the GP
prediction performance in the absence of both communications and
ground truth. Under the proposed novel framework, the GP gener-
alization error is defined to be the expectation of the GP prediction
error, ε�ξı; Q�k��, with respect to the hidden variable yı. The expected
GP generalization error, e�ξı; Q�k��, at a single collocation point is
then obtained by taking the expectation of theGPgeneralization error
with respect to the network measurement vector z as follows:

e�ξı; Q�k�� ≜ EzfEyıfε�ξı; Q�k��gg � ϕk�ξı; ξı� (27)

for any ı, whereϕk is the posterior GP covariance function in Eq. (25).
The proof of the above result, taken from Ref. [68], is provided in the
Appendix for completeness. Then, the GP prediction performance
over the entire state space is estimated by averaging the GP gener-
alization error with respect to the network data that may not be
available in the absence of communications.
If sensor trajectories are known, the expected GP AGE can be

obtained from the expected average value of Eq. (27) over all collo-
cation points in Ω:

E�k� ≜ EQ�k�

(XM
ı�1

wıe�ξı; Q�k��
)

(28)

where every collocation point is weighed by a positive parameter wı
that represents the importance of recovering the function value at ξı
(ı � 1; : : : ;M) from noisy sensor measurements, and

P
M
ı�1 wı � 1.

However, in the absence of communications, individual sensors do
not have information about other sensors’ future policies. Therefore,
this paper addresses the fundamental challenge of reducing commu-
nications in problems in which the motion and sensing processes are
inevitably intertwined. A probabilistic model of future sensor poli-
cies (positions) is introduced in order to allow for the local evaluation
of the network AGE between communication times. Since the AGE
inEq. (28) only depends on the time step k, it can be evaluated by each
sensor at any time, with or without communications with the rest of
the network. The relationship of AGE and the number of sensor
measurements (Nk) is also commonly known as the learning curve

[69–71]. As more data are obtained by the sensors over time, GP
learning improves decreasing the AGE.
In most cases, exact evaluation of the AGE in Eq. (28) is ana-

lytically and computationally intractable because it requires per-
forming a marginalization over the joint distribution of the sensor
positions and the collocation points. The marginalization process is
further daunted by complexities in the sensor control algorithms. To
this end, a recursive algorithm for approximating the AGE effi-
ciently and incrementally online is presented in the next section by
exploiting the fact that Ω and S are both discrete and time-invari-
ant sets.

B. Recursive Approximation of GP AGE

An efficient approximation of the AGE proposed in Eq. (28) is
derived in this section by using the recursive update formula of theGP
covariance function from [53]. Given a new sensor position for the
ith sensor, xi�k� 1�, the posterior covariance function can be
updated as follows:

ϕk�1�ξı; ξj� � ϕk�ξı; ξj� −
ϕk�ξı; xi�k� 1��ϕk�xi�k� 1�; ξj�
ϕk�xi�k� 1�; xi�k� 1�� � σ2

(29)

for ı; j � 1; : : : ;M, and i � 1; : : : ; N [53]. Therefore, the expected
GP posterior covariance function can be obtained by taking the expect-
ation of Eq. (29) with respect to the sensor positions. Assuming that

the sensor measurements are independent, the expected GP posterior

covariance can be approximated as follows:

E�ϕk�1�ξı; ξj�� ≈ ~ϕk�1�ξı; ξj� � ~ϕk�ξı; ξj�

−
XN
i�1

X
sl∈Si

~ϕk�ξı; sl� ~ϕk�sl; ξj�
~ϕk�sl; sl�� σ2

pXi
�sl� (30)

for ı; j � 1; : : : ;M, where

pXi
�sl� ≜ pXi

�xi�k� 1� � sl� (31)

denotes the probability that the sensor obtains measurements at position

sl ∈ Si, which is a decision made by the sensor control algorithm

presented in Sec. V. Note that Eq. (29) is nonlinear in ϕk�xi; xi�, and
thus Eq. (30) is only an approximation of the true expected covariance

E�ϕk�1�ξı; ξj��. Then, the AGE can be iteratively approximated as

follows:

E�k� ≈ ~E�k� �
XM
ı�1

wı
~ϕk�ξı; ξı� (32)

Although Eqs. (30) and (32) present a recursive AGE calculation,

they require repeated steps with complexity O�k�M� L�3� at every
time stamp k, and for every new collocation point or new sensor

position, where L denotes the total number of admissible sensor loca-

tions. Given that the complexity scaleswith the cube of the total number

of admissible sensor positions, the computational complexity can be

quite high for many real-world applications. Because sets Ω and S in

many applications can be assumed to be time invariant, it is possible to

derive an efficient algorithm with a complexity that does not grow with

k. Let ~Φk denote the approximate expected posterior cross-covariance

matrix defined by substituting ϕ�⋅; ⋅� with ~ϕk�⋅; ⋅� in Eq. (7). Then, all
the information needed for calculating ~E�k� can be stored in an �M�
L� × �M� L� symmetric matrix:

where

ξ ≜ � ξT1 · · · ξTM �T (34)

S ≜ � sT1 · · · sTL �T (35)

Furthermore, the elementsof the set fpXi
�sl�gLl�1

canbeplacedon the

diagonal of a zero matrix:

Pi ≜ diag��pXi
�s1� · · · pXi

�sL��� (36)

for i � 1; : : : ; N. Because sensors have bounded range and can only be
placed at a subset of available facilities, it follows that pXi

�sl� � 0 if

sl ∈ Si for l � 1; : : : ; L (l ≠ i). Now, let P ≜
P

N
i�1 Pi, such that the

M2 equations defined by Eq. (30) can be summarized by the following

matrix operation:

~Φk�1�ξ; ξ� � ~Φk�ξ; ξ� − ~Φk�ξ;S�Q ~Φk�S; ξ� (37)

where

Q≜PD−1D≜�diagfdiag� ~Φk�S;S��g � σ2IL�;

anddiag�⋅� denotes an operation that retrieves the principal diagonal of a
matrix argument. The remaining elements ofM are updated according

to the relationships

398 WEI ETAL.

D
ow

nl
oa

de
d 

by
 2

4.
21

3.
20

1.
20

1 
on

 M
ay

 2
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
09

34
 



~Φk�1�ξ;S� � ~Φk�ξ;S� − ~Φk�ξ;S�Q ~Φk�S;S� (38)

~Φk�1�S;S� � ~Φk�S;S� − ~Φk�S;S�Q ~Φk�S;S� (39)

Then, the AGE can be obtained by the weighted sum of the diagonal

elements of ~Φk�1�ξ; ξ�, such that

~E�k� � tr�W ∘ ~Φk�ξ; ξ�� (40)

whereW ≜ diag��w1 · · · wM��.
FromEqs. (37–40), it can be seen that the computational complex-

ity of AGE evaluation is dominated by the matrix multiplications,

which require O�L�L2 � LM�M2�� time. Storing the matrix M
requires space complexityO��M� L�2�. However, because only the
diagonal of ~Φk�ξ; ξ� in the top-left block ofM needs to be stored, the

space complexity can be reduced to O�L�L�M��.
From Eq. (36), it can be seen that the predicted GP generalization

error also depends on the sensor control policy. Due to the duality of

the sensor inference and control problems, in fact, the GP perfor-
mance depends not only on the network’s past measurements but

also on its future actions. In the absence of communications, indi-

vidual sensors are not only unable to make optimal motion planning
decisions but also to predict other sensors’ future planning decisions.

Therefore, a conservative estimate of the nominal GP prediction

performancemeasure is obtained in this paper by assuming a uniform
network control algorithm in the AGE approximation. While this

policy may never be actually implemented by the sensors, it allows
each sensor to locally estimate theAGEby assuming that other sensor

positions are sampled uniformly at random from Si, such that

pXi
�sl� �

(
1
Li
; sl ∈ Si

0; sl ∈= Si

(41)

for i � 1; : : : ; N, and l � 1; : : : ; L, whereLi is the cardinality ofSi.
In practice, the sensors use an informed control policy, such as the

greedymethodology described in Sec. Vor, possibly, an information-

driven controller [4]. Nevertheless, the above assumption allows for
a local AGE evaluation that is both computationally efficient and

conservative. In fact, fromEq. (41), thematrixP used in Eqs. (37–40)

can be written as

P � diag

��
1
L1

· · · 1
L1|����{z����}

L1 times

· · · 1
LN

· · · 1
LN|�����{z�����}

LN times

��
(42)

and, thus, the approximate AGE, denoted by ~Eu�k�, is obtained by
substituting Eq. (42) into Eqs. (37–40). The nominal AGE obtained

by assuming a uniform control policy will be denoted by Eu�k�
hereon.
The nominal and approximate AGEs functions, Eu�k� and ~Eu�k�,

can be viewed as the “average”GP predicted performance among all

the sensor planing algorithms. Therefore, they can be used by indi-
vidual sensors to evaluate the performance of the sensor network in

the absence of communications, i.e., when no information about
other sensors’decisions is available. TheAGEperformance baselines

established in this section are used in Sec. VI to develop a commu-

nication control policy. Because in contested-communication envi-
ronments sensors may often be disconnected from the rest of the

network, a new sensor control algorithm that can function with

intermittent communications is also presented in the next section.

V. Sensor Control Policy

This section presents a greedy sensor control algorithm that max-
imizes the reduction of theAGE in Eq. (28) based on the local data set

Qi�k�. In the absence of communications, the local AGE of a sensor

can be found similarly to Eq. (28) as follows:

ϵi�k� ≜ EQi�k�

(XM
ı�1

wıe�ξı; Qi�k��
)

(43)

Although the generalization error in Eq. (43) depends only on the
local data Qi�k�, it is averaged over all collocation points ξı ∈ Ω, as
shown in its definition (28). Then, the next sensor position at time k
can be obtained by solving the maximization problem

x�i �k� 1� � argmax
xi∈Si

fϵi�k� − ϵi�k� 1�g

� argmax
xi∈Si

f−ϵi�k� 1�g (44)

for sensor i (i � 1; : : : ; N). The second equality in Eq. (44) holds
because ϵi�k� is independent of xi�k� 1� at time step k.
The localAGE for the greedy sensor control policy can be obtained

similarly to Eq. (40) as follows:

ϵi�k� 1� � tr�W ∘ Φk�1�ξ; ξ�� (45)

The matrix Φk�1 can be obtained efficiently from Φk by the GP
covariance update formula (29), such that

Φk�1�ξ; ξ� � Φk�ξ; ξ�

−
Φk�ξ; xi�k� 1��Φk�xi�k� 1�; ξ�
ϕk�xi�k� 1�; xi�k� 1�� � σ2

(46)

Then, a greedy sensor policy canbe obtained by substitutingEqs. (45)
and (46) into Eq. (44), such that

x�i �k� 1� � argmax
xi∈Si

	
tr

�
W ∘

Φk�ξ; xi�Φk�xi; ξ�
ϕk�xi; xi� � σ2

�

� argmax

xi∈Si

fwT �Φk�ξ; xi� ∘ Φk�ξ; xi��g (47)

where w ≜ �w1 · · · wM �T .
From Eq. (47), it can be seen that computing the ith sensor’s

position requiresO�LM� time. Because the same data structure used
in Eq. (33) are also required by the sensor control policy, its space
complexity also isO�L�M� L��. After the optimal sensor position is
found, the matrices Φk�ξ; ξ�, Φk�ξ;S�, and Φk�S;S� are updated
similarly to Eqs. (37–39), where Q is substituted by

�ϕk�x�i ; x�i � � σ2�−1. Therefore, the total computational complexity
of the sensor control policy presented in this paper isO�L�M� L��.

VI. Communication Control Policy

A communication control policy for the class of sensor network
problems formulated in Sec. II is developed in this section by
leveraging the nominal approximated expected AGE, derived in
Sec. IV, and the greedy sensor control policy presented in Sec. V.
The philosophy behind the communication control policy developed
in this section is that a sensor decides to establish communications
with other sensors in the network when the nominal performance of
its GP model falls below a minimum acceptable threshold. The
expected network performance, as expressed by the approximate
AGE derived in Sec. IV, assumes a sensing baseline corresponding
to uniform control that is conservative and does not rely on network
communications. Furthermore, the communication control policy
takes into account the local AGE of the greedy sensor control policy
(Sec. V) that represents the network performance as will be improved
by the actions of the individual sensor.
Similarly to integral compensation [72], any nonzero difference

between the local AGE and predicted network AGE is summed over
time and compared to the desired threshold before triggering a
communication event. Let k 0 denote the last communication time
and k denote the present time at which communication control a
decision is to be made given that sensor i is going to move to the
optimal position x�i �k� 1�, obtained from Eq. (47), at the next time
step. Then, the communication control policy is given by
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ui�k� �
	
1; if

P
k
l�k 0 jϵi�l� − ~Eu�l�j ≥ γ

0; otherwise
(48)

where ϵi�k� is the local AGE of the sensor control policy given by

Eq. (45), γ is a user-defined threshold, and ~Eu is the approximate

network AGE obtained by assuming a uniform control policy, as

described in Sec. IV. By considering the accrued error between the

local AGE and the local prediction of the network AGE, the local

AGE may approach the actual network AGE in the steady state. This

is because any nonzero difference in the local and predicted network

AGE will eventually trigger a communication event, immediately

afterwhich the twoAGEestimates coincide thanks to the broadcasted

sensor trajectory information. Furthermore, although the policy pro-

posed in Eq. (48) is based on the novel AGE approximation, ~Eu

approaches the nominal network performance (Eu), as shown by the

results in Sec. VII.
A schematic of the communication control algorithm is shown

in Fig. 3. The pseudocode of the integrated sensor and com-

munication control method is provided in Algorithm 1, where

Si≜ �sT1 ··· sTLi
�T denotes the �Lid × 1� vector that aggregates all

of the Li sensor positions in the set of allowable facilities for sensor
i, namely, Si. Because it does not require knowledge of sensor
measurements, the communication control policy (48) may be
computed offline provided that all sensor trajectories are known a
priori and without error. On the other hand, online evaluation is
required when the sensor positions are not known a priori or when
the intermittent hyperparameter optimization described in Sec. III.B
is adopted in order to improve GP performance.

VII. Simulation Results

The integrated AGE-driven sensing and control method presented
in the previous sections is first illustrated on a network of four sensors
deployed over a uniformgrid (Fig. 4a) tomeasure andmodel a spatio-
temporal temperature process. The sensor and communication con-
trol results are shown at two samplemoments in time in Figs. 4 and 5.
The instantaneous sensor position and communication links are
shown in Figs. 4a, 4b, and 5a and the time-histories of individual
sensors’ AGEs are shown in Figs. 4a, 4b, and 5b. The network’s
approximate predicted AGE and the average local AGE in the total
absence of communications are also plotted for comparison by
dashed red and gray lines, respectively. Corrections in the network
AGE approximation are observed at the communication times, where
the approximation becomes exact by communicating the true sensor
position histories. These results demonstrate that, by using the pro-
posed integrated sensing and control policy, the sensors are able to
achieve a GP generalized prediction performance near that of the
ideal constant communication case and below the desired threshold
by means of only few communication times (brown vertical lines). It
can be seen that the frequency of communication required decreases
over time as the model improves and local measurements become
useful even without fusion.
The overall effectiveness of the sensing and communication con-

trol policy is demonstrated by using a Monte Carlo (MC) simulation
of the GP temperature modeling problem formulated in Sec. II, with
nonuniform sensor locations. The MC simulation takes into account
all random inputs, including the GP hyperparameters, that affect the
performance of the integrated sensing and communication policy.
The AGE approximation, ~Eu�k�, is first compared to the nominal
AGE, Eu�k�, defined in Sec. IV in order to validate the theoretical
result derived in Sec. IV.B. MC simulations are performed to obtain
the nominal AGE, Eu�k�, for the spatial process and the admissible
sensor positions shown in Fig. 1. The collocation points plotted in

Fig. 2 are used to compute ~Eu�k� for various length scales (λi) of the
covariance function in Eq. (12), which play a key role in the GP
generalization ability. As shown in Fig. 6, the approximate AGE
closely approaches the nominal AGE for all length scales, ranging

from small (λi � 10−2) to large (λi � 103) values. Therefore, it can
be concluded that the computational savings afforded by the approxi-
mation can be justified without compromising performance.

Communication 
Control Policy
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+

-

O
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en
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Q\Qi Qi

Q\Qi

Qi

Local AGE

Global AGE

Fig. 3 Communication control architecture.

Algorithm 1 Sensing and communication control algorithm

Input: Admissible sensor positions fSigNi�1; Collocation points Ω; GP
parameters fθ�⋅�;ϕ�⋅; ⋅�g; Communication threshold γ; Cross-
covariance matrices Φk and ~Φk

Output:Communication control signalui�k� 1� ∈ f0; 1g; Cross-covariance
matricesΦk�1 and ~Φk�1

1: Obtain x�i �k� 1�, by the greedy policy (47).

2: UpdateΦk�1�ξ; ξ�, with respect to x�i �k� 1� using Eq. (46).
3: Obtain local AGE ϵi�k� 1� from Eq. (45).

4: Update ~Φk�1�ξ; ξ�, ~Φk�1�ξ;S�, ~Φk�1�S;S� using Eqs. (37–39).
5: Obtain approximate network AGE ~Eu�k� 1� from Eq. (40).

6: Determine ui�k� 1� from Eq. (48).

a) b)

Fig. 4 Sensor positions (colored dots) (a) and AGE time histories (b) of individual sensors (i � 1; : : : ;4) with controlled intermittent communications

(brown dotted lines), and average sensor performance in the absence of communication up to the present time (k � 50).
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The performance of the communication control policy for a rep-

resentative sensor (i � 1) is shown in Fig. 7 for a case study with

λ1 � λ2 � 10 and a performance threshold γ � 0.4. The results of
the communication control policy are illustrated by dotted brown

lines that represent all communication times. In between these

times, none of the sensors communicate to minimize cost and

maximize covertness. A comparison of the local sensor AGE,

ϵ1�k�, the nominal AGE, ϵ�k�, and the approximate AGE, ~Eu�k�,
shows that when performance falls below the threshold the sensor

initiates communications and, as a result, at these times sensor

fusion improves the GP model. Since the communication times

are chosen based on the accumulated AGE errors, the communica-

tion control policy (48) is able to automatically adjust the time

interval between intermittent communications, reducing the indi-

vidual sensor error ϵi�k� to ϵ�k� as a result. Also, Fig. 7 shows that at
the onset of the sensing process, when the nominal AGE decreases

rapidly because the first measurements are becoming available,

more frequent communications are initiated by the sensors. As a

result, the cost of communications is offset by a high uncertainty

reduction, and the sensing and communication control algorithm

learns the spatial process very efficiently. In contrast, toward the

end of the sensing process, when new measurements are less

informative, the control policy increases the intervals between

intermittent communications because fusion brings about less gain

compared to the individual sensor measurements.

a) b)

Fig. 5 Sensor positions (colored dots) and communication links (dotted lines) (a) and AGE time histories (b) of individual sensors (i � 1; : : : ;4) with
controlled intermittent communications (brown dotted lines), and average sensor performance in the absence of communication up to k � 70.
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Fig. 6 Validation of novel AGE approximation via MC simulation as a function of length scale.

Fig. 7 Communication times and AGE values obtained by intermittent
communication control policy for λ1 � λ2 � 10 and γ � 0.4.
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The effect of GP length scales (λ), which reflect the assumption of

the complexity of the spatial process under observation, is also

investigated. Figure 8 shows that the required communication fre-

quency decreases as the length scales of the GP increase. This

behavior is expected because smaller GP length scale indicates that

the underlying spatial process ismore complex, andmeasurements of

the spatial process by different sensors are less correlated. In other

words, when GP length scales are small, individual sensors cannot

adequately model and predict the spatio-temporal process over the

entire state space based solely on their individual measurements.

Therefore, as determined by the communication control algorithm,

more frequent communications are needed.

The performance of theAGE-based communication control policy

is compared to a randomcommunication policy in Fig. 9. The average

random communication control network AGE Er is the AGE aver-

aged over 100 MC trials, where in each trial, five communication

times are randomly chosen. Note that the number of communication

events is kept constant across both policies and all trials to ensure a

fair comparison. As shown, the AGE-based communication policy

results in a network AGE Eg that is several orders of magnitude lower

than that of the average random communication policy. In the sim-

ulation of both policies, GP hyperparameter optimization is per-

formed at the times of communication to further reduce the AGE,

as evidenced by the sharp decreases in Eg at communication times.

Simultaneously to sharing and fusing measurements at communi-

cation times, the GP hyperparameter optimization described in

Sec. III.B can be carried out to improve the GP model of the under-

lying process. This approach has shown to lead to a reduction of

individual sensor AGEs, demonstrated here by considering the same

sensor control problem with and without GP hyperparameters

optimization at intermittent communication times. As shown in

Fig. 10, the AGE obtained by intermittent GP hyperparameter opti-

mization (ϵ�1�k�) is significantly reduced when compared to the

traditional AGE (ϵ1�k�).
A second study, carried out using a database of mean temper-

atures obtained in March 2016, demonstrates the performance of

the AGE-based communication control policy in a large-scale

sensing problem. Figure 11 shows the sequence of measurement

locations by four notional sensors, such as satellites capable of

making focused thermal infrared radiation measurements. The

integrated sensing and communication control policy results in a

significant decrease in AGE using only six broadcast events, as

shown in Fig. 12. Hyperparameter optimization is also shown to

k

u(
k)

a)

k

u(
k)

b)

k

u(
k)

c)

k

u(
k)

d)

k

u (
k )

e)

Fig. 8 Communication control policy history for various GP length
scales: a) λ1 � λ2 � 0.1, b) λ1 � λ2 � 1, c) λ1 � λ2 � 10,
d) λ1 � λ2 � 20, and e) λ1 � λ2 � 50.

(min)

A
G

E

Fig. 9 Comparison of AGE-driven and random intermittent communi-
cations.

Fig. 10 Effect of GP hyperparameters optimization with controlled
intermittent communications.

Fig. 11 Progression of measurement locations over first 10 time steps.

Fig. 12 Communication times and unnormalized AGE values obtained
by intermittent communication control policy used in Fig. 11.
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lead to improved GP regression performance. The GP regression

results with and without GP hyperparameter optimization, shown

in Figs. 13 and 14, respectively, indicate that the prediction errors

are significantly reduced in the former. Furthermore, the final AGE

with and without hyperparameter optimization is 8.41 �°C�2 and

13.05 �°C�2, respectively, suggesting that GP hyperparameter opti-

mization under the intermittent communication control policy is

capable of improving both the GPmodel generalization (AGE) and

prediction performance.

VIII. Conclusions

This paper presents a new method for controlling intermittent
communications in networks of collaborative mobile sensors.
Collaborative sensor networks require communications in order to
fuse and learn from distributed sensor measurements, as well as to
plan future actions. In many sensing applications, however, constant
communications are not always possible and, furthermore, require
significant resources, such as energy and time required to resur-
face and establish a communication link. This paper presents a new
approach for controlling intermittent communications based on the
AGE of the learned GP. The approach allows to decide locally if and
when to establish communication links, based on the expected qual-
ity of service expressed by the AGE. By this approach, the network is
able to learn the GP model of a nonlinear spatio-temporal process by
means of minimal communications, as demonstrated through a tem-
perature modeling problem for the Conterminous United States.

Appendix: GP Generalization Error

It was shown in [68] that the right-hand side of the GP generali-
zation error in Eq. (27) can be expanded and grouped with respect to
the expectations, as follows:

e�ξı; Q�k�� � Eyı �f�ξı�2� − 2Φ�ξı;X�Σ−1EzEyı �f�ξı�z�
� Ez�Φ�ξı;X�Σ−1zzTΣ−1Φ�X; ξı�� (A1)

Since the third term of Eq. (49) is a scalar, it can be rearranged as
follows:

e�ξı; Q�k�� � Eyı �f�ξı�2� − 2Φ�ξı;X�Σ−1EzEyı �f�ξı�z�
� Ez�zT�Σ−1Φ�X; ξı�Φ�ξı;X�Σ−1�z�

� Ez

	
tr�zT�Σ−1Φ�X; ξı�Φ�ξı;X�Σ−1�z�



(A2)

Because the trace of a matrix is invariant under cyclic permutation,
Eq. (A1) can be expressed in terms of the covariance matrices in
Eq. (7), such that

e�ξı; Q�k�� � Φ�ξı; ξı� − 2Φ�ξı;X�Σ−1Φ�X; ξı�
� tr�Σ−1Φ�X; ξı�Φ�ξı;X�Σ−1Ez�zzT�� (A3)

Substituting Ez�zzT� � Σ into Eq. (A3) and applying the cyclic
permutation to the third term of Eq. (A3), it can be shown that the
following holds:

e�ξı; Q�k�� � Φ�ξı; ξı� −Φ�ξı;X�Σ−1Φ�X; ξı�
� ϕk�ξı; ξı� (A4)
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