
J Control Theory Appl 2011 9 (3) 391–399
DOI 10.1007/s11768-011-0272-3

A model-based approximate λ-policy iteration
approach to online evasive path planning

and the video game Ms. Pac-Man

Greg FODERARO, Vikram RAJU, Silvia FERRARI
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, U.S.A.

Abstract: This paper presents a model-based approximate λ-policy iteration approach using temporal differences
for optimizing paths online for a pursuit-evasion problem, where an agent must visit several target positions within a
region of interest while simultaneously avoiding one or more actively pursuing adversaries. This method is relevant to
applications, such as robotic path planning, mobile-sensor applications, and path exposure. The methodology described
utilizes cell decomposition to construct a decision tree and implements a temporal difference-based approximate λ-policy
iteration to combine online learning with prior knowledge through modeling to achieve the objectives of minimizing the
risk of being caught by an adversary and maximizing a reward associated with visiting target locations. Online learning
and frequent decision tree updates allow the algorithm to quickly adapt to unexpected movements by the adversaries or
dynamic environments. The approach is illustrated through a modified version of the video game Ms. Pac-Man, which is
shown to be a benchmark example of the pursuit-evasion problem. The results show that the approach presented in this
paper outperforms several other methods as well as most human players.

Keywords: Approximate dynamic programming; Reinforcement learning; Path planning; Pursuit evasion games

1 Introduction

Although simple in appearance and gameplay, the single
player video game Ms. Pac-Man offers a challenging rep-
resentation of a pursuit-evasion problem that requires ex-
tended foresight, quick decision-making and a high degree
of adaptability. Like many computer games, Ms. Pac-Man
presents an excellent benchmark for testing intelligent algo-
rithms because it is characterized by simple rules and objec-
tives but offers challenging environments and tasks [1]. The
pursuit-evasion family of games describes a predator and
prey scenario where the objective of one group is to evade
a second group in the environment, which has the goal of
tracking and catching the first group. This type of game is
analogous to several real-world applications, such as robotic
path planning [2, 3], mobile-sensor applications [4], and
path exposure [5, 6].

In Ms. Pac-Man, the player assumes the role of the evader
and must navigate a maze to visit several target locations
(‘dots’) while avoiding a team of pursuing adversaries with
individualized strategies. There is a pre determined pattern
of dots scattered in each maze that Ms. Pac-Man must eat,
and when all of the dots have been eaten, the player ad-
vances to the next level, which involves a more difficult
maze, a new set of dots, and faster adversaries. A screen-
shot of the game’s first maze is shown in Fig. 1.

The existing methodologies addressing this problem are
diverse, but all have fallen far short of expert human play-
ers [7–12]. The previous approaches use fairly short-term
greedy strategies and fail to effectively consider future game
states, which is an essential capability needed for success.

Fig. 1 Screenshot of Level 1 game maze.

In addition, classical dynamic programming methods are
not feasible due to the computational complexity caused by
the game’s large state space. This paper proposes the com-
bination of online learning with prior knowledge through
modeling to choose long-term decisions, and the frequent
reevaluation of these decisions allows for quick reactions to
unexpected changes in the environment.

The model-based approximate λ-policy iteration method-
ology presented in this paper gives an approach for de-
termining optimal paths online for an evader in a pursuit-

Received 9 November 2010; revised 23 March 2011.
This work was supported by the National Science Foundation (No.ECS 0925407).

c© South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2011

392 G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399

evasion problem where an agent must balance the tasks of
avoiding a group of pursuers while visiting several target
locations within a region of interest. Cell decomposition is
used to transform the obstacle-populated Eucledian space,
representing the environment where the agent is allowed to
travel, into a finite set of convex cells, and the resulting cell
decomposition is used to construct a decision tree. Com-
bining the decision tree with prior knowledge of the sys-
tem and online approximate λ-policy iteration, an optimal
strategy can be computed, which achieves the objective of
minimizing the risk of being caught by an adversary and
maximizing a reward associated with visiting the target lo-
cations [13, 14]. This methodology is illustrated through a
modified version of the video game Ms. Pac-Man, which
is shown to be a benchmark example of the pursuit-evasion
problem, and it is directly compared with a model-free neu-
ral player trained with Q-learning. The results show that the
model-based approximate λ-policy iteration approach out-
performs several other methods as well as most human play-
ers.

2 Problem formulation and assumptions

The path planning problem considered in this paper is to
find the optimal paths of a single mobile agent with posi-
tion or state, xp, that travels in a two-dimensional Euclidian
workspace denoted by W ⊂ R

2. The agent must navigate
through the workspace and collect a set of distributed ob-
jects or visit several points of interest within W while simul-
taneously avoiding collisions with a group of N actively-
pursuing adversaries with states denoted by xI

G, where I
corresponds to an adversary’s index, and a collision is de-
fined as any instant where xp = xI

G for all I . The optimal
paths are then those that minimize the risk of encountering
an adversary while maximizing the number of goal posi-
tions achieved. The workspace geometry and the positions
of the points of interest or distributed objects are assumed
to be known a priori, and the approach can be extended
to higher dimensional workspaces, assuming the system is
within the limits of computational feasibility. The behav-
iors or control laws of the adversaries are also assumed to
be known, and their positions are assumed to be observable
in real time.

This problem can be put in the context of a benchmark
problem taken from the video game Ms. Pac-Man, of which
the details are provided in Section 1. The agent’s (Pac-
Man’s) state and control are represented by the 2×1 vectors:

xp = [xpx xpy]
T, (1)

up = [upx upy]
T, (2)

where the subscript p corresponds to Pac-Man, xpx and xpy

are Pac-Man’s x and y coordinates in pixels, and Pac-Man’s
controls, denoted by upx and upy , signify the direction of
Pac-Man’s movement (or attempted movement, if facing
a wall) in the x and y directions, respectively. The adver-
saries’ (ghosts’) states and controls, xI

G and uI
G, are defined

in an identical manner, where the subscript G corresponds
to the ghosts. The workspace is defined as a maze encoun-
tered in the game, as shown in Fig. 1. Let W have an in-
ertial frame of reference, FW , such that all possible xy-
coordinates are in the positive orthant and are always greater

than zero. The geometries of Pac-Man and the ghosts can
be thought of as rectangular in shape such that their widths
only allow for bidirectional movement along a straight path
length. Therefore, each point within the maze has a set of
admissible actions, U [x(tk)] ⊂ U , where

U ={a1, a2, a3, a4}≡
{[

0
1

]
,

[
−1
0

]
,

[
0
−1

]
,

[
1
0

]}
(3)

is the space of all possible actions or control values for both
Pac-Man and the ghosts, and tk is a discretized instant in
time such that ti � tk � tf . According to the coordinate
frame convention, ux = +1 denotes motion to the right,
ux = −1 represents motion to the left, uy = +1 corre-
sponds to upward motion, and uy = −1 coincides with
downward motion.

Since the workspace is a rectangular grid of pixels, there
are a finite number of positions possible in the game. Also,
as shown below in Section 4, the ghosts’ decisions depend
only on the current state and action of Pac-Man. An excep-
tion is during the first few seconds of the game when the
ghosts make random decisions before they begin to chase
Pac-Man, but the associated risk is low enough that the
player may use this time to virtually move freely about the
maze. Neglecting this period of randomness, the game may
be formulated as a Markov decision process (MDP).

An MDP can be represented by a 4-tuple M = S,
A, T ,R denoting a sequential decision model, where S =
{s1, s2, . . . , sn} is the finite set of all feasible state values,
A = {a1, a2, . . . , an} is the set of possible actions, T is the
transition function where T : S × A → P (S), and R is
the reward function such that R : S ×A → R. T describes
the probability of an action ai executed at state xj resulting
in state xl. The reward function determines the immediate
reward obtained as a result of performing action ai at state
xj . From the MDP, a policy π can be derived, which maps
the states to corresponding actions.

In the game, the player’s goal is to achieve the high-
est possible score by eating various objects while evading
four pursuing ghosts. If the ghosts catch Pac-Man, a ‘life’
is lost, and when the player is out of lives, the game ends.
Therefore, the agent’s performance is based on the score
earned before being caught by a ghost. Points are scored
as follows: Each dot eaten is worth 10 points. Each power
pill, which temporarily causes the ghosts to retreat and al-
lows Pac-Man to send the ghosts back to their starting lo-
cations by eating them, is worth 50 points when eaten.
When a power pill is active and the ghosts are fleeing and
vulnerable, eating a ghost earns 200 × 2n points for the
nth ghost eaten during a single power pill’s time interval.
In other words, if all four ghosts are eaten in succession,
200 + 400 + 800 + 1600 = 3000 points would be earned.
Bonus ‘fruits’ which are objects that move randomly across
the maze and give the player extra points if the objects are
eaten, are not considered for this problem and have been
removed from the game.

3 Background

Approximate dynamic programming (ADP) is a highly
recognized approach used to find control strategies that op-

G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399 393

timize a desired performance metric for complex nonlinear
and stochastic dynamic systems. Such systems often suffer
from what is known as the ‘curse of dimensionality’ and
cannot be solved through conventional optimization meth-
ods or dynamic programming due to computational com-
plexity. ADP overcomes this by representing the system as
a parametric structure and performing the optimization in-
crementally. Approximate policy iteration by temporal dif-
ference (TD) learning and Q-learning are two ADP algo-
rithms applied here, where Q-learning is only implemented
for comparison. Temporal difference learning uses a model
of the system to predict future performance values and then
derive a policy that optimizes those values. Q-learning com-
putes an action-value function that provides estimated per-
formance values of the possible actions in a given state. One
of the major advantages of Q-learning is that it does not
have a need for a system model; however, in this paper, it
is shown that the inclusion of prior knowledge through a
model used in temporal difference learning can be utilized
to significantly reduce the complexity of the optimization
and increase controller effectiveness.
3.1 Temporal difference theory

By formulating the problem as an MDP, a policy can
be derived that maps the states to corresponding actions.
Through learning, the optimal policy, π∗, can be found
such that the value function, V π(Xk) is always maximized,
where

V π(Xk) = E{
∞∑

i=0

γirk+i|π, Xk}. (4)

The reward received at i time steps into the future is given
by rk+i. The effect that future rewards have on the present
decision is based on the discount factor, γ, where a large
discount factor results in a policy that emphasizes on the
long term effect, and vice versa. By definition, an optimal
policy is guaranteed for an MDP, but it does not have to be
unique.

Temporal difference learning seeks to find the optimal
policy, π∗, by computing a prediction function, P , of the
total reward expected from a given state such that

Pk(Xk) ≈
∞∑

i=0

γirk+i (5)

with minimal error for all k. For large systems, Pk can be
represented as the weighted linear function:

Pk(Xk) ≈
n∑

j=0

wj
kxj

k, (6)

where Xk = [x1
k x2

k · · · xn
k] is a vector of state variables at

time step k, Wk = [w1
k w2

k · · · wn
k] is a vector of weight pa-

rameters, and the super scripts correspond to the variables’
indices within the vectors. The temporal difference learning
algorithm modifies the weights at each iteration to reduce
the error in the prediction function according the following
rule [15]:

wj
k+1 = wj

k + α[rk+1 + γPk(Xk+1) − Pk(Xk)]xj
k

= wj
k + αδk+1x

j
k, (7)

where the temporal difference error term is

δt+1 = [rk+1 + γPk(Xk+1) − Pk(Xk)]. (8)

3.2 Q-learning theory

The optimal policy of an MDP is a fixed point on the Bell-
man equation. This can be determined iteratively with value
iteration or policy iteration approaches. In value iteration,
V (Xk) is the total expected discounted reward accumulated
by a policy beginning at Xk. The Q function of a state-
action pair, Q(Xk, Uk), is the total expected discounted re-
ward accrued by a policy that produces Uk = π(Xk). Then,
the Bellman equation can be rewritten such that the state-
action value function is

Q(Xk, Uk) = E{R(Xk, Uk) + γV (Xk+1)}, (9)
V (Xk+1) = max

Uk+1∈A
Q(Xk+1, Uk+1). (10)

If Q and V satisfy the above Bellman equation, then the
optimal greedy policy is

π∗(Xk) = arg max
Uk∈A

Q(Xk, Uk). (11)

The value-iteration approach uses equation (9) to find Q and
V iteratively, which can then be used to find π∗.

If the transfer function T of the MDP is known, then
value-iteration can be used to find π∗. However, if T
is not known, Q-learning can be employed instead of
value-iteration to learn an approximate state-action function
Q(Xk, Uk) that is iteratively updated by the rule:

Q(Xk, Uk)←α(Xk, Uk) × [rk+1

+γ max
U

Q(Xk+1, U)−Q(Xk, Uk)]. (12)

As displayed in equation (12), the learning rate,
αk(Xk, Uk), and the discount factor, γ, affect the genera-
tion of the new reward at each iteration. The learning rate
determines the speed at which new information is assim-
ilated by the controller and evaluated in order to execute
a given action. The discount factor affects the controller’s
consideration of future rewards. At every iterative refresh-
ment of the game state, the expected reward is evaluated for
the range of actions U to give the next Q value for the time
step k + 1 [15].

Each state upon which an action is undertaken provides
the player with a specific positive or negative reward. The
ultimate goal of this player is therefore to optimize the re-
ward by conducting the best possible action at each given
state. In a situation where the system is as complex as it is
in the game, with numerous variables and motives affecting
the possible reward, a Q-function is not easily obtained. In
this case, it is required to approximate the Q-function using
an artificial neural network.

4 Mathematical models

Although model-free techniques exist in approximate dy-
namic programming (e.g., Q-learning), if the system behav-
ior is known (or partially known) and can be represented
mathematically, the amount of information that needs to
be approximated and learned by the controller can be de-
creased. Here, we have derived models of the ghost adver-
saries in Ms. Pac-Man for use in the approximate λ-policy
iteration method for computing an optimal control policy.
The model was constructed using estimated ghost strate-
gies found on various Pac-Man websites and was improved
through trial and error.

394 G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399

Let IG = {I|I = r, p, b, o} denote the ghosts’ index set,
where r, p, b, and o represent each of the four ghosts in the
game. While in active pursuit, each of the ghosts chases Pac-
Man in an individualized manner by utilizing different rules
for choosing a set of target locations, denoted by xI

T, which
guide their decisions. The positions of the targets are func-
tions of time and Pac-Man’s state, where Pac-Man’s posi-
tion and control are represented by (1) and (2). The ghosts
then share an identical algorithm for moving to their sepa-
rate targets. The laws employed for determining the ghosts’
targets are discussed as follows:

For Ghost 1, I = r, the target is assigned as the location
of Pac-Man. This causes Ghost 1 to often chase the player
from behind.

xr
T(tk) = xp(tk). (13)

For Ghost 2, I = p, the target is set as the position slightly
in front of Pac-Man, and the resulting behavior is an adver-
sary that tries to attack from the front.

xp
T(tk) = xp(tk) + Aid for up(tk) = ai, (14)

where d = [32 32]T in units of pixels, and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1 =

[
−1 0
0 1

]
, A2 =

[
−1 0
0 0

]
,

A3 =

[
0 0
0 − 1

]
, A4 =

[
1 0
0 0

]
.

(15)

For Ghost 3, I = b, and the target is a reflection of Ghost
1’s position about Ghost 2’s target. This causes Ghost 3 to
seem like it attempts to guess Pac-Man’s future paths.

xb
T(tk) = [2 · xR(tk) − xr

G(tk)], (16)
where the reflection point, xR(tk) is,

xR(tk) = xp(tk) + Aie, e = [16 16]T. (17)
For Ghost 4, I = o, the target is set at the bottom left corner
of the maze if Pac-Man is near, and if Pac-Man is far away,
the target becomes the location of Pac-Man itself. The or-
ange ghost is the least threatening, as it often keeps its dis-
tance from Pac-Man, but its seemingly unpredictable behav-
ior sometimes causes it to get in the way of the player’s path
unexpectedly.

xo
T(tk) =

{
xB for ‖xo

G(tk) − xp(tk)‖ � c,

xp(tk) for ‖xo
G(tk) − xp(tk)‖ > c,

∀k,

(18)
where c = 80 pixels, xB denotes the position vector of the
bottom left corner of the game maze, and ‖ · ‖ is the Eu-
clidean norm.

After the target positions are calculated, the ghosts all uti-
lize a common rule for moving toward their separate targets:

uI
G(tk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai = H{B} ◦ sgn{D},
for ai ∈ U I

G[xI
G(tk)];

aj = H{C} ◦ sgn{D},
for ai �∈ U I

G[xI
G(tk)], aj ∈ U I

G[xI
G(tk)];

ak = U I
G{1},

for ai �∈U I
G[xI

G(tk)], aj �∈U I
G[xI

G(tk)],
(19)

where ◦ denotes the Schur product, H{ · } represents the
Heaviside function, and U I

G is the set of admissible actions

for ghost I .

B=

[
|xI

Gx(tk)−xI
Tx(tk)| |xI

Gy(tk)−xI
Ty(tk)|

|xI
Gy(tk)−xI

Ty(tk)| |xI
Gx(tk)−xI

Tx(tk)|

]
, (20)

C =

[
|xI

Gy(tk)−xI
Ty(tk)| |xI

Gx(tk)−xI
Tx(tk)|

|xI
Gx(tk)−xI

Tx(tk)| |xI
Gy(tk)−xI

Ty(tk)|

]
, (21)

D=

[
|xI

Tx(tk)−xI
Gx(tk)|

|xI
Ty(tk)−xI

Gy(tk)|

]
. (22)

Since it can be seen in (19) that the ghosts will not choose
an action opposite to their current action, they will not re-
verse direction on a path and will only effectively make de-
cisions when they encounter intersections where there are
three or more directions in which they can move.

5 Numerical verification of model

By recording the position of Pac-Man and the ghosts dur-
ing gameplay on an emulated Ms. Pac-Man game found
in [16] with a simple screen-capture program, it is possible
to verify the models of the ghosts’ behaviors by comparing
these positions with those generated by the equations de-
scribed above. This is done by setting the initial positions of
Pac-Man and the ghosts in a simulated game to the positions
recorded at some arbitrary instant during the real game. The
simulated game is then run for a period of time, and the re-
sulting trajectories of the ghosts are compared to those ob-
served from the real game. If the ghost trajectories produced
by the model match those recorded from the real game, then
the model effectively represents the ghost behaviors. An ex-
ample of the comparison is shown in Fig. 2.

It can be seen that the simulated ghosts behave very sim-
ilarly to the ones in the real game. When the initial state of
the simulated game was set to match the real game’s state
at an arbitrary instant, the decisions chosen and the result-
ing paths were almost always identical. The small number
of errors that are present are predicted to be caused by slight
imprecisions in the screen-capture approach when extract-
ing the game state. These may have been due to the small
amount of computation time needed to process the image or
the inability to know the exact positions referenced by the
game compared to the character images it displays. Fig. 3
shows how the path comparison of the light blue ghosts in
Fig. 2 (c) appears with respect to time, and it can be seen
that there is a small amount of error present. To calculate a
numerical approximation of the model’s accuracy, the sim-
ulated game was given an initial state from the real game
and run until a ghost’s decision from the simulated game
differed from the corresponding ghost in the real game. The
number of correct decisions was counted, and the process
was repeated several times. After 10 runs, the model of the
ghost behaviors correctly evaluated 818 decisions out of a
total of 829. Therefore, the approximate accuracy of the
model is 98.7%.

G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399 395

Fig. 2 Comparisons between the ghosts’ paths observed in the Ms. Pac-Man game and those created using the derived model.

Fig. 3 Comparison between Ghost 3’s paths in the Ms. Pac-Man game and
using the derived model.

6 Methodology

The methodology presented in this paper for computing
an optimal strategy for an automated player of Ms. Pac-
Man can be summarized as follows: The workspace W
is decomposed into rectangloids using a line-sweeping ap-
proach. From the decomposition, a connectivitiy tree, T , is
formed using the adjacency relationships between cells and
the agent cell position, κp. Each branch in the connectivity
tree represents a path extending from κp and corresponds to
a sequence of possible actions. The policy used by the agent
to choose the optimal path given an initial state is evaluated
via a temporal difference-based approximate λ-policy itera-
tion method.

6.1 Cell decomposition and connectivity tree

Cell decomposition is a well-known robotic path plan-
ning method used for obstacle avoidance [17, 18]. The ap-
proach decomposes a workspace into a finite set of non-
overlapping convex polygons, known as cells, such that
each cell represents a subset of the workspace in which the
agents and adversaries can move freely without colliding
with an obstacle. In classical cell decomposition, this can
be obtained by using a line-sweeping algorithm and con-
structing a one-dimensional representation of the free-space
geometry known as a connectivity graph.

The workspace of Ms. Pac-Man, W , is decomposed, as
shown in Fig. 4, using an approach that has an added prop-
erty compared to classical decomposition, namely, a unique
set of admissible actions from (3) is associated with each
cell, and Pac-Man and the ghosts can perform those actions
anywhere inside the cell. Let κj denote a cell in the decom-
position, and Iκ represent the index set of all cells in the
decomposition of W and in the corresponding connectivity
graph denoted by G and illustrated in Fig. 5.

Definition 1 A connectivity graph, G, is a non directed
graph where the nodes represent rectangloid cells in the cell
decomposition, and two nodes κi and κj in G are connected
by an arc (κi, κj) if and only if the corresponding cells are
adjacent in the decomposition.

Several methods can be used to search G for sequences
of adjacent cells, connecting possible paths for Pac-Man
within the maze. Based on a maximum feasible distance,
the connectivity graph can be pruned and transformed into

396 G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399

a decision tree, which is a graphical representation of all
possible paths from κp. After visiting a cell, Pac-Man can
only move to an adjacent cell, creating a causal process that
can be represented as follows.

Definition 2 The connectivity tree T associated with G
and the agent’s cell position, κp, is a tree graph with κp

as the root and branches with length L. The nodes repre-
sent cells where travel is possible, and a branch represents a
non-reversing path extending from κp.

Fig. 4 Cell decomposition of the Level 1 maze.

Fig. 5 Connectivity tree of the cell decomposition.

Based on the cell properties, it can be seen that a unique
action value is attached to each arc in T . Therefore, the set
of admissible actions is a function of xp and of up(tk − 1),
and it is denoted by Up[xp(tk)] ⊂ U . Since the agent is not
allowed to immediately reverse direction in T , the set of ad-
missible actions is given by the complement of up(tk−1) in
the set of arcs attached to the cell occupied at time tk, in G.

For the example workspace, W , in Fig. 4, the connectiv-
ity tree is illustrated in Fig. 5. Since the size of the tree used
in this paper is very large, only the first few layers of the
tree are shown, where layers are defined by their adjacency
position relative to the initial cell. For the example problem,

the connectivity tree is limited to prohibit decisions involv-
ing reversals in the middle of a cell or actions resulting in
no movement. However, these capabilities can be added by
incorporating tree reflections or additional repeating nodes.
6.2 Optimal agent strategy

Based on the above problem formulation, we seek an op-
timal strategy μ∗ defined as a sequence of functions,

μ∗ = ci, . . . , cF , (23)

where each function ck maps the state xp into an admissible
decision,

up(tk) = ck[xp(tk)] for k = i, . . . , F (24)

and maximizes the reward-to-go,

Ji,F [xp(ti)] ≡
F∑

k=i

αkL[xp(tk), up(tk)] (25)

from the present time, ti, up to the final time, tF , over the fi-
nite horizon [ti, tF], where L[·] is Pac-Man’s instantaneous
reward associated with visiting a cell κj ∈ G, and αk is
a discount factor that is defined as an exponential function
of k, such that future rewards are discounted, compared to
immediate ones.

Since the connectivity tree effectively amounts to a deci-
sion tree, as the tree is grown and the instantaneous rewards
are computed and attached to each node, along with L, the
cumulative reward,

Ji,k[xp(ti)]≡
k∑

j=i

αjL[xp(tj), up(tj)]

= Ji,k−1[xp(ti)]+αkL[xp(tk), up(tk)] (26)

can also be computed for each node at each time step, tk
in T iteratively over time, where as it can be seen inFig. 5
that each node in the time step tk denotes one of the pos-
sible values of Pac-Man’s state xp(tk), and each outgoing
arc denotes one of the possible values of Pac-Man’s con-
trol up(tk). Therefore, by the time the tree is completed,
the cost-to-go, Ji,F , for each branch (i.e., each possible se-
quence of state and decision values) will be attached to the
leaf of the branch (i.e., the last node, at tF), and, thus the
optimal branch can be determined simply by picking the
largest value or Ji,f , namely, J∗

i,F . The optimal branch will
then determine the optimal strategy μ∗, which will consist
of the actions corresponding to the sequence of arcs in the
optimal branch.
6.3 Approximate λ-policy iteration

In the game of Ms. Pac-Man, the ghosts are seen to ex-
hibit random behavior for a short period of time after a
power pill has been eaten, and Pac-Man has the ability to
chase and eat the ghosts. Therefore, the agent must often
determine the optimal set of actions with only a probabilis-
tic knowledge of future game states. To handle the existance
of stochastic effects in a system or a system with only a
partial model available, the connectivity tree approach can
be modified by adding learning components to the instan-
taneous reward function and training them through a tem-
poral difference-based learning method called approximate
λ-policy iteration adapted from that in [13, 14].

Due to the large state space associated with the game, the
reward function is represented with a linear feature-based

G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399 397

approximation architecture of the general form,

L̃(i, w) = w(0) +
A∑

a=1
w(a)φa(i), (27)

where φa, a = 0, 1, . . . , A are features of the state i, and
w(a) are the components of the weight vector w. The weight
w(0) is a bias. The values of w give an approximation of the
optimal reward-to-go function, L(i, w).

For the Ms. Pac-Man example, the reward function is ap-
proximated as

L̃(i, w) = w(0) + w(1)(1 − z(i))R(i)
+w(2)z(i)R(i) + w(3)V (i)
+w(4)RPP(i), (28)

where V (i) is the number of dots in the corresponding cell
at the time Pac-Man would visit that cell, z(i) is 1 if a power
pill is in the cell and 0 otherwise, and R(i) is the risk func-
tion that measures the distances from Pac-Man to the ghosts

R[xp(tk), up(tk)] =
∑

�∈IG

[|xp(tk) − x�
G| − ρ0]2, (29)

where | · | is the Manhattan distance, and ρ0 is a user-defined
parameter, such that when [xp(tk)−x�

G(tk)] → ρ0, R → 0.
The ghost states at the time corresponding to the layer of the
tree are evaluated using the validated equations in Section
4. The risk function for ghosts after a power pill has been
eaten, RPP(i), has the same form as (29) but measures the
distances to the fleeing ghosts. Note that z(i) switches the
terms with R(i) on and off since the distance to the ghosts
will have a negative reward during normal play to avoid
being caught but have a positive reward when considering
moving to a power pill because a smaller distance increases
the chances of eating ghosts as they flee.

A policy maps a given state to a corresponding admissible
action, and it can be written as

μj(i) = arg max
u∈U(i)

∑
κj∈G

(g(i, u) + αL(i, wj)), ∀i, (30)

where wj is the weight vector after j policy updates. The
function g(i, u) is a known immediate reward that results
from the control u at state i. This is set as the corresponding
increase in points that the agent achieves in the game (fol-
lowing the game rules described above) when the control u
is applied from state i. The policy μj is updated by training
over a batch of M games and modifying wj . The number of
games, M , is on the order of 100. Over each iteration, the
weights are updated according to

wj+1 = arg max
w

M∑
m=1

Bm∑
b=0

[L̃(im,b, w)

−L̃(im,b, wj)−
Bm−1∑

c=b

λc−bd(im,c, im,c+1)]2, (31)

where (im,0, im,1, . . . , im,Bm−1, im,Bm) denotes the se-
quence of states in the mth game of the batch, and im,Bm is
the termination state. The termination state occurs when the
agent has been caught by a ghost, and the resulting terminal
cost is L̃(im,Bm, wj) = 0. The temporal differences are

d(im,c, im,c+1) = g(im,c, μj(im,c), im,c+1)
+L̃(im,c+1, wj)−L̃(im,c, wj). (32)

Training is implemented by simulating the game starting
at the initial state shown in Fig. 1. The game ends when a

ghost catches the agent. If all of the dots and power pills
have been eaten by Pac-Man (clearing the maze), they are
restored, and the game continues until the ghosts catch the
agent. However, with each clearing of the maze, the ghost
speeds are increased slightly, so the probability of the game
terminating is 1. The policy iteration described is run until
the policy converges to a stationary optimal policy.
6.4 Q-learning player

A model-free neural player trained with Q-learning was
constructed to be used only for comparison with the approx-
imate λ-policy iteration architecture. The neural player does
not use the mathematical models from Section 5, rather the
connectivity tree from Section 6.1 is used with a shorter
branch length. The state inputs to the artificial neural net-
work are variables that are preprocessed using the connec-
tivity tree in an attempt to pass the most relevant informa-
tion possible to the controller. The decision by the agent is
then which branch to take or, more specifically, which target
cell to move toward. After some experimentation, the inputs
were selected as follows:

1) If Ghost 1/2/3/4 is on the branch, q(1) (4 variables). If
true, q(1) = 1. If false, q(1) = 0.

2) Number of fleeing ghosts on branch, q(2).
3) The Manhatten distance in pixels that Ms. Pac-Man

would arrive at the target cell ahead of each ghost if the
ghost takes the shortest path, q(3 − 6) (four variables).

4) The Manhatten distance in pixels that Ms. Pac-Man
would arrive at the target cell ahead of each fleeing ghost if
the ghost takes the shortest path, q(7− 10) (four variables).

5) Branch length in pixels, q(11).
6) Number of dots on branch, q(12).
7) Number of power pills on branch, q(13).
8) Euclidean distance from target cell to the nearest cell

containing pills, q(14).
A two-layer feed-forward sigmoidal neural network with

100 hidden neurons was used for the Q-function approxi-
mator. The network was trained with the MATLAB gradient
descent adaptive learning algorithm, traingda.

7 Results

To illustrate the effectiveness of the model-based approx-
imate λ-policy iteration approach presented in this paper,
the method was run on an accurate simulation of the game
and compared to the model-free neural player described
in 6.4 and average human players. The game simulation
was created in MATLAB and based on the verified equa-
tions in Section 4, the maze map from the first level, and
a knowledge of the game mechanics. The simulation dif-
fers slightly from the real game in that some small features
were removed, such as the appearance of the bonus ‘fruits’
which are objects that move randomly across the maze and
give the player extra points if the object is eaten, and the
slower movement is experienced by the ghosts when travel-
ing through a ‘tunnel’ which is a wrap-around path that al-
lows characters to quickly move to the opposite side of the
maze. In addition, the ghosts’ speeds have been altered man-
ually and initially set to 95% of Pac-Man’s speed, which are
approximately the speeds seen in the fifth maze of the real
game. Screenshots from the simulation’s graphical output

398 G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399

during a single run are displayed in Fig. 6.

Fig. 6 Screenshots from the simulation’s graphical output during a single
run. The square circle represents Pac-Man, and the other circles cor-
respond to the ghosts of similar color. The dots are represented by
black crosses.

Like the training process described in Section 5, the game
begins with the initial state shown in Fig. 1. If the agent is
able to clear the entire maze, the dots and power pills are
reset, the ghosts’ speeds are increased by 5%, and the game
continues until a ghost catches Pac-Man. Also, contrary to
the real game, the agent is only given one ‘life’ (attempt)
per game.

The objective of the agent is simply to earn the most
points possible. Points are scored as follows: Each dot
eaten is worth 10 points. Each power pill eaten is worth

50 points. When a power pill is active and the ghosts are
vulnerable, eating a ghost earns 200 × 2n points for the
nth ghost eaten during a single power pill’s time interval.
In other words, if all four ghosts are eaten in succession,
200 + 400 + 800 + 1600 = 3000 points would be earned.

After training, the game simulation was run 20 times us-
ing each approach, and the results are displayed in Table
1. Two human players were also asked to play the simu-
lation with the same objectives, and the average of their
scores is shown. The approach combining the connectiv-
ity tree and temporal difference-based policy iteration per-
formed the evasion, collection, and pursuit objectives well,
and its scores were much higher than that of the model-free
Q-learning method and the human players. There are ini-
tially 220 dots in the maze, so note that the presented ap-
proach was capable of clearing at least one maze on most
of its attempts before being caught by the ghosts. This level
of success is significantly greater than what has been ac-
complished with most existing automated players that are
not hand coded [7–10]. One of the major strengths of the
method is its ability to plan optimal paths relatively far into
the future, which is a common shortfall shared by the cur-
rently highest scoring programs [11, 12].

Table 1 Comparison of automated and human players
over 20 partial game simulations.

Average score High score Average dots eaten

λ-PI 4708 7710 281
Q-learning 2395 4340 152

Human 2279 3670 142

The methods were also tested with a slightly different
game format to focus on the skills that may be more rele-
vant to applications outside of Ms. Pac-Man. Since it is un-
likely that evaders will need to occasionally chase their pur-
suers in the large majority of evasion problems, the power
pills were removed from the maze, and the agents and hu-
man players were simply given the objectives to evade the
ghosts and clear all dots from the maze. If the maze was
cleared, the game was stopped and restarted. Like the other
test, only one life was given, the bonus fruits did not appear,
and the ghosts did not slow down when passing through the
tunnels. The test was run at three different ghost speeds:
95%, 100%, and 105% of Pac-Man’s speed. The results are
shown in Table 2. Again, the model-based λ-policy itera-
tion performed best. Impressively, it was able to clear 3 out
of 20 mazes with the ghosts moving much faster than Pac-
Man. Note that these conditions are not seen until the very
late stages in the real game.

Given that the ghost speeds in both tests were set to be
considerably faster than the speeds seen in the first several
levels of the game, it is shown that the performance of the
presented method is very difficult for most human players to
match. However, the approach has flaws that make it weaker
than the average human player in some situations. For ex-
ample, the method does not allow Pac-Man to reverse di-
rection in the middle of a cell or to stop moving. This lack
of capability caused many of its failures to occur when the
agent moved itself from a safe situation into a dangerous one
because it was not able to evaluate other options. This skill

G. FODERARO et al. / J Control Theory Appl 2011 9 (3) 391–399 399

is also essential to lure the ghosts near a power pill, so that
many ghosts can be eaten in succession, and a large score
can be earned. Additions can be made to the connectivity

tree that would effectively address most of the shortcom-
ings, assuming the computational demands would remain
feasible.

Table 2 Performance of artificial and human Pac-Man players over 20 partial game simulations with power pills removed.

Model-based approximate λ-policy iteration Model-free Q-learning Human player
Ghost speed/%

Mazes cleared Average dots eaten Mazes cleared Average dots eaten Mazes cleared Average dots eaten

95 18 212 1 144 4 161
100 14 197 0 109 1 105
105 3 137 0 84 0 88

8 Conclusions
This paper presents a model-based approximate λ-policy

iteration method for optimizing paths online for a pursuit-
evasion problem, where an agent must visit several tar-
get positions within a region of interest while simulta-
neously avoiding one or more actively pursuing adver-
saries. The methodology described utilizes cell decompo-
sition to construct a decision tree and implements a tempo-
ral difference-based approximate λ-policy iteration to com-
bine prior knowledge through modeling with online learn-
ing to achieve the objectives of minimizing the risk of being
caught by an adversary and maximizing a reward associ-
ated with visiting target locations. The approach is illus-
trated through a modified version of the video game Ms.
Pac-Man, which is shown to be a benchmark example of
the pursuit-evasion problem. It was shown that the model-
based approximate λ-policy iteration approach outperforms
several other methods as well as most human players.

References
[1] S. M. Lucas, G. Kendall. Evolutionary computation and games. IEEE

Computer Intelligence Magazine, 2006, 1(1): 10 – 18.
[2] J. Latombe. Robot Motion Planning. Boston: Kluwer Academic

Publishers, 1998.
[3] Z. Sun, J. Reif. On robotic optimal path planning in polygonal regions

with pseudo-euclidian metrics. IEEE Transacions on Systems, Man,
and Cybernetics – Part A, 2007, 37(4): 925 – 936.

[4] D. Culler, D. Estrin, M. Srivastava. Overview of sensor networks.
Computer, 2004, 37(8): 41 – 49.

[5] S. Megerian, F. Koushanfar, G. Qu, et al. Exposure in wireless sensor
networks: Theory and practical solutions. Wireless Networks, 2002,
8(5): 443 – 454.

[6] V. Phipatanasuphorn, P. Ramanathan. Vulnerability of sensor net-
works to unauthorized traversal and monitoring. IEEE Transactions
on Computers, 2004, 53(3): 365 – 369.

[7] S. Lucas. Evolving a neural network location evaluator to play
ms. pac-man. Proceedings of the 2005 IEEE Symposium on
Computational Intelligence and Games, Piscataway: IEEE, 2005: 203
– 210.

[8] M. Gallagher, A. Ryan. Learning to play pac-man: An evolutionary,
rule-based approach. Proceedings of the Congress on Evolutionary
Computation (CEC), Piscataway: IEEE, 2003: 2462 – 2469.

[9] P. Burrow, S. Lucas. Evolution versus temporal difference learning for
learning to play ms. pac-man. Proceedings of the 5th International
Conference on Computational Intelligence and Games, Piscataway:
IEEE, 2009: 53 – 60.

[10] L. DeLooze, W. Viner. Fuzzy Q-learning in a nondeterministic
environment: developing an intelligent ms. pac-man agent. Pro-
ceedings of the 5th International Conference on Computational
Intelligence and Games, Piscataway: IEEE, 2009: 162 – 169.

[11] M. Emilio, M. Moises, R. Gustavo, et al. Pac-man: Optimization
based on ant colonies applied to developing an agent for ms. pac-man.
Proceedings of IEEE Conference on Computational Intelligence and
Games, Piscataway: IEEE, 2010: 458 – 464.

[12] R. Thawonmas, T. Ashida. Evolution strategy for optimizing
parameters in ms. pac-man controller ice pambrush 3. Proceedings
of IEEE Conference on Computational Intelligence and Games,
Piscataway: IEEE, 2010: 235 – 240.

[13] D. P. Bertsekas, S. Ioffe. Temporal Differences-based Policy Iteration
and Applications in Neuro-dynamic Programming. Report LIDS-P-
2349. Cambridge: Laboratory for Information and Decision Systems,
MIT, 1996.

[14] A. Nedich, D. P. Bertsekas. Least-squares policy evaluation
algorithms with linear function approximation. Journal of Discrete
Event Systems, 2003, 13(1/2): 79 – 110.

[15] S. J. Russell, P. Norvig. Artificial Intelligence: A Modern Approach.
New York: Prentice Hall, 2003.

[16] Ms. Pac-Man Game. http://webpacman.com/.

[17] D. Zhu, J. C. Latombe. New heuristic algorithms for efficient
hierarchical path planning. IEEE Transactions on Robotics and
Automation, 1991, 7(1): 9 – 20.

[18] K. Kadem, M. Sharir. An efficient motion planning algorithm for
convex polygonal object in 2-dimensional polygonal space. Courant
Institute of Mathematical Science, 1990, 5(1): 43 – 75.

Greg FODERARO received his B.S. degree in
Mechanical Engineering from Clemson University,
Clemson, SC in 2009 and is pursuing a Ph.D. de-
gree at Duke University, Durham, NC and working
in the Laboratory for Intelligent Systems and Con-
trols. His primary research interests are underwater
sensor networks, robot path planning, optimal con-
trol, spiking neural networks, and artificial intelli-
gence. E-mail: greg.foderaro@duke.edu.

Vikram RAJU is a senior at Duke University,
Durham, NC and pursuing his B.S. degree in Me-
chanical Engineering. He is working in the Labo-
ratory for Intelligent Systems and Controls, and his
main research interests include robot path planning
and artificial intelligence. E-mail: vvr2@duke.edu.

Silvia FERRARI received her B.S. degree from
Embry-Riddle Aeronautical University, Daytona
Beach, FL, and her M.A. and Ph.D. degrees from
Princeton University, Princeton, NJ. She is an asso-
ciate professor of Mechanical Engineering and Ma-
terials Science with the Department of Mechanical
Engineering and Materials Science, Duke Univer-
sity, Durham, NC, where she directs the Laboratory
for Intelligent Systems and Controls. Her principal

research interests include robust adaptive control of aircraft, learning and
approximate dynamic programming, and optimal control of mobile sensor
networks. Dr. Ferrari is a member of ASME, SPIE, and AIAA. She is the
recipient of the ONR Young Investigator Award (2004), the NSF CAREER
Award (2005), and the Presidential Early Career Award for Scientists and
Engineers Award (2006). E-mail: sferrari@duke.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

