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Abstract A new probabilistic roadmap method is presented for planning the path
of a robotic sensor deployed in order to classify multiple fixed targets located in an
obstacle-populated workspace. Existing roadmap methods have been successful at
planning a robot path for the purpose of moving from an initial to a final configu-
ration in a workspace by a minimum distance. But they are not directly applicable
to robots whose primary objective is to gather target information with an on-board
sensor. In this paper, a novel information roadmap method is developed in which
obstacles, targets, sensor’s platform and field-of-view are represented as closed and
bounded subsets of an Euclidean workspace. The information roadmap is sampled
from a normalized information theoretic function that favors samples with a high
expected value of information in configuration space. The method is applied to a
landmine classification problem to plan the path of a robotic ground-penetrating
radar, based on prior remote measurements and other geospatial data. Experiments
show that paths obtained from the information roadmap exhibit a classification
efficiency several times higher than that of existing search strategies. Also, the
information roadmap can be used to deploy non-overpass capable robots that must
avoid targets as well as obstacles.
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1 Introduction

Sensor planning refers to the problem of determining a strategy for gathering sensor
measurements to support a sensing objective, such as target classification. When
the sensors are installed on robotic platforms an important part of the problem is
planning the sensor path [1–3]. Several approaches have been proposed for planning
the path of mobile robots with on-board sensors to enable navigation and obsta-
cle avoidance in unstructured dynamic environments, e.g., [4–10]. However, these
methods are not directly applicable to robotic sensors whose primary objective is to
support a sensing objective, rather than to simply navigate a dynamic environment
[11]. The reason is that these methods focus on how the sensor measurements can
best support the robot motion, rather than focusing on the robot motions that
best support the sensing objective [11]. This paper focuses on the latter, addressing
the problem of planning the path of a robotic sensor in order to classify multiple
fixed targets distributed in an obstacle-populated workspace, which arises in many
applications, such as, robotic mine hunting [12], cleaning [1], and monitoring of urban
environments [13], manufacturing plants [14], and endangered species [15].

Existing approaches to sensor path planning include coverage path-planning
[2, 11], random [2], grid [16], and optimal search strategies [16, 17]. Optimal search
strategies typically outperform other approaches in applications where a-priori
information is available, such as sensor models, environmental conditions, and prior
measurements [16]. However, they do not yet provide a systematic and general
approach for sensor path planning in geometric sensing problems. Geometric sensing
problems require a description of the geometry and position of the targets and of the
sensor’s field-of-view [18]. Viewpoint planning has been shown by several authors
to be an effective approach for optimally placing or moving vision sensors based on
the target geometry and sensor field-of-view, using weighted functions or tessellated
space approaches [18–20]. Probabilistic deployment computes a search path based
on the probability of finding a target in every unit bin of a discretized, obstacle-free
workspace [1, 21, 22]. This paper presents a new information roadmap method that
combines information-driven sensor planning with probabilistic roadmap methods
(PRMs) to compute the sensor path in a geometric sensing problem. Its advantages
over existing techniques are that it takes into account the motion and geometry
of closed and bounded subsets of an Eucledian space, representing the sensor’s
platform and field-of-view, as well as the geometry and position of multiple fixed
targets and obstacles in the workspace.

Traditionally, PRMs have been used to plan the motions of a robot with geometry
A, in order to avoid collisions with multiple fixed obstacles in a workspace W
[23–26]. While robot path planning typically aims to optimize a deterministic additive
function such as Eucledian distance, sensor planning aims to optimize a stochastic
sensing objective that is not necessarily additive. Another basic difficulty in sensor
planning is that, although the measurements ultimately determine the sensor per-
formance, they cannot be factored into the planning problem because the sensor’s
position must be planned prior to obtaining the sensor’s measurements [27–31].
Recently, several authors have shown that this difficulty can be overcome by an
approach known as information-driven sensor planning, which uses information
theoretic functions to estimate the measurements’ value prior to deploying the sensor
[27–30].
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Existing PRMs and sensor modeling approaches used for information-driven
sensor planning are reviewed in Section 3. Existing methods, however, are not
directly applicable to the geometric sensor path planning problem formulated in
Section 2, because they do not account for the geometry of the sensor and the
workspace. In Section 4, a novel information roadmap method is developed that
combines PRM and information-driven sensor planning by sampling a normalized
information theoretic function defined over the robot’s free configuration space.
The information theoretic function is the expected conditional entropy reduction
(EER) of potential targets, presented in Section 4.1. A new hybrid sampling strategy
is presented in Section 4.2 to generate an information roadmap that contains a
high density of milestones with high EER, as well as milestones that capture the
connectivity of the free configuration space. Section 4.3 presents a new query phase
for searching the information roadmap using an A∗-type algorithm that returns
the path of maximum information profit whenever one exists, and returns failure
otherwise.

The information roadmap method is demonstrated by planning the path of a mine
hunting ground-penetrating radar (GPR) installed on a ground robot (Section 5).
The results in Section 6 show that the method outperforms existing sensor path-
planning methods that are applicable to geometric sensing (namely, complete cov-
erage [2, 11] and random search [2]) under a wide range of workspace conditions
and geometries, increasing the average classification efficiency by up to one order
of magnitude. Also, the information roadmap can be used to deploy non-overpass
capable robotic sensors that may be damaged or destroyed when driving over
landmines. As a result, the robotic sensor avoids collisions with potential mines, while
obtaining measurements from them, both in wide-open regions of the workspace and
inside narrow passages.

2 Problem Formulation and Assumptions

This paper addresses the problem of planning the path of a robotic sensor with a
platform geometry A ⊂ R

2, and a field-of-view geometry S ⊂ R
2, that navigates a

workspace W ⊂ R
2 for the purpose of classifying multiple fixed targets based on new

(posterior) and prior sensor measurements, and environmental information. Both A
and S are assumed to be rigid polygons, and S has a fixed position and orientation
with respect to A. Prior measurements may be available from airborne sensors,
environmental maps, or from another robotic sensor, and are used to estimate the
geometry and location of targets and obstacles in W [21, 32]. The robotic sensor
workspace W is populated with n fixed obstacles B = {B1, . . . ,Bn} ⊂ W ⊂ R

2, and
r fixed targets T = {T1, . . . ,Tr} ⊂ W ⊂ R

2, with Bi ∩ T j = ∅ for ∀i ∈ IB and ∀ j ∈ IT ,
where IB and IT are the index sets of B and T.

Let FA be a moving Cartesian frame embedded in A. Then, every point of A
and every point of S have a fixed position with respect to FA, and a configuration
vector q = [x y θ ]T can be used to specify the position (x, y) and orientation θ of
both A and S with respect to a fixed inertial frame FW , embedded in W . Obstacles
and targets are also assumed to be fixed and rigid in W , such that every point of Bi,
for ∀i ∈ IB, and every point of T j, ∀ j ∈ IT , have a fixed position with respect to FW .
Let the configuration space C denote the space of all possible robot configurations.
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A C-obstacle is a subset of C that causes collisions with at least one obstacle in B,
i.e., CBi ≡ {

q ∈ C | A(q) ∩ Bi 	= ∅}
, where A(q) denotes the subset of W occupied

by the platform geometry A when the robot is in the configuration q. The union
of all C-obstacles obtained from B is referred to as the C-obstacle region. Thus, in
searching for targets in W , the robotic sensor is free to rotate and translate in the free
configuration space, which is defined as the complement of the C-obstacle region CB
in C, i.e., Cfree = C\CB [33]. The path of the robotic platform’s centroid is defined as
a continuous map τ : [0, 1] → C, with q0 = τ(0) and qf = τ(1), where q0 and qf are
the initial and goal configurations, respectively. Since S is mounted on A, the path
τ determines the targets in W that can be measured by the robotic sensor, while
traveling from q0 to qf .

The purpose for deploying the robotic sensor in W is to obtain additional
measurements to properly classify a subset of targets in T. It is assumed that to
each target Ti ∈ T there is associated a discrete and, possibly, random variable,
yi, with finite range Y = {

y1
i , . . . , yp

i

}
, representing its classification. Due to limited

sensor measurements or to targets being buried underground, yi is non-observable
or hidden, and must be inferred from a set of measurements, Mi = {mi1, . . . , mif }.
Every measurement mi� ∈ Mi also is a discrete and random variable, with finite range
Mi� = {

m1
i�, . . . , mN�

i�

}
, where mk

i� denotes the kth value of mi�. After the robotic
sensor obtains the set of measurements Mi from Ti, yi can be inferred from an
available sensor model, which is typically given by a known joint probability mass
function, P(yi, Mi).

While the platform A must avoid collisions with the obstacles in B, the sensor’s
field-of-view S must intersect Ti ∈ T in order to obtain the measurements Mi and
infer yi . Since S is mounted on A, the platform motion must be planned in concert
with the sensor measurements, and the path τ must allow the robot to simultaneously
avoid obstacles and search for the most valuable targets. Let the measurement set of
a robotic sensor along a path τ be defined as M(τ ) = {Mi | Ti ∩ S(q) 	= ∅, τ (s) = q,

s ∈ [0, 1], i ∈ IT}, where S(q) is the subset of W occupied by S at a configuration
q, along τ . Then, the robotic sensor path τ between q0 and qf must achieve multiple,
simultaneous objectives:

1. Avoid all obstacles in W
2. Minimize the distance traveled from q0 to qf

3. Maximize the information value of M(τ )

In order to meet objectives 2 and 3, the robotic sensor performance is defined by an
additive reward function that represents the profit of the information obtained along
the path τ :

R(τ ) = wV V(τ ) − wD D(τ ) (1)

Where, V(τ ) is the information value of M(τ ), and D(τ ) is the distance traveled along
τ , as defined in Section 4.3. The user-defined constants wV and wD weigh the trade-off
between the value of the measurements and the distance traveled, respectively. Then,
a robotic sensor path that meets objectives 1–3 is obtained by solving the following
problem:

Problem 1 (Geometric Sensor Path Planning Problem) Given a layout W and a joint
probability mass function, P(yi, Mi), ∀i ∈ IT , find a path τ ∗ for a robotic sensor with
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platform A and field-of-view S that connects q0 to qf in Cfree, and maximizes the
profit of information defined in Eq. 1.

The next section reviews existing probabilistic roadmap methods, and Bayesian
sensor models that can be used to compute the measurements’ information value.
In Section 4, a new information roadmap deployment method is developed to solve
Problem 1. The methodology is implemented on a demining application in Section 5,
and its effectiveness is demonstrated through numerical simulations in Section 6.

3 Background

3.1 Probabilistic Roadmap Methods

Probabilistic roadmap methods (PRMs) are a class of randomized motion planning
algorithms that have recently received considerable attention because they are
capable of handling problems with many degrees of freedom, and large workspaces
with many obstacles, for which other motion planning methods are computationally
infeasible [23–26]. So far, these methods have been applied to classical motion
planning, that is, to plan the path of a robot with geometry A that avoids collisions
with the set of obstacles B in W , and connects q0 to qf by a minimum distance.
In Section 4, PRM is modified to solve a geometric sensor path planning problem
(Problem 1), accounting for the sensor’s field-of-view geometry S , and the set of
targets T in W to find the robotic sensor path τ ∗.

PRM planners sample the free configuration space Cfree and construct a roadmap
graph by means of a learning phase. Subsequently, a collision-free path from q0 to
qf is determined from the roadmap by a so-called query phase [26]. The roadmap
is an undirected graph G = (L, A), comprised of a set of nodes or milestones
L = {

c1, . . . , cNm

}
, and a set of arcs A = {

(ci, c j)| ci, c j ∈ L
}
. Every milestone ci ∈ L

represents a value of the robot configuration q sampled from Cfree using a probability
density function (PDF). Every arc (ci, c j) ∈ A represents a simple local path, typically
a straight line, that connects ci and c j in Cfree, and is determined by an extremely fast
local planner. Assuming the roadmap properly represents the connectivity of Cfree,
multiple queries can be used in the second stage to construct a path from q0 to qf

by concatenating several feasible paths in G, in order of increasing distance from
nodes q0 and qf , until they are successfully connected. A smoothing algorithm can
then be applied to obtain a more natural and shorter path by means of geometric
operations [34].

The main difficulties in constructing appropriate roadmaps for PRMs are pro-
viding coverage of wide-open regions of Cfree, and representing the connectivity of
Cfree even in the presence of narrow passages. The use of uniform and Gaussian
distributions have been proposed in [26] and in [25], respectively, in order to generate
milestones that would properly cover wide-open regions of Cfree. More recently, an
hybrid strategy combining a bridge test with a Gaussian probability density function
along narrow passages, and a uniform probability density function in wide-open
regions of Cfree was proposed in [23] in order to construct appropriate roadmaps for
workspaces with both characteristics. The bridge test is based on the observation
that a narrow passage in C has at least one restricted direction between C-obstacles
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that can be identified by a short straight-line segment or bridge with endpoints
on two C-obstacles. Let b and b ′ be two random variables representing the two
endpoints of a bridge in C. Since bridges must connect C-obstacles, b is sampled
from a uniform distribution f (b) over CB that is zero in Cfree, and b ′ is sampled from
the conditional PDF,

f (b ′ | b) = λb (b ′ )I(b ′ )/Zb (2)

normalized by Zb ≡ ∫
C λb (b ′ )I(b ′ )db ′. λb is a multivariate Gaussian PDF that is

radially symmetric, and has a standard deviation that depends on the width of the
bridge length (Section 5.2). I(b) is a binary function that equals 1 when b ∈ CB,
and 0 otherwise. Then, as shown in [23], milestones can be obtained with a higher
frequency inside narrow passages by sampling the PDF,

πG(q) =
∫

C
f (b ′ | b) f (b)db =

∫

CB
λb (2q − b)I(2q − b)/Zb db (3)

obtained by choosing the desired configuration q as the midpoint on the bridge from
b to b ′, such that b ′ = 2q − b . In order to also include milestones from wide-open
regions of C, a uniform probability density function πU is defined over Cfree, and the
hybrid sampling strategy,

πH = vπG + (1 − v)πU (4)

is used to cover both wide-open regions and narrow passages in Cfree. The user-
defined parameter 0 ≤ v ≤ 1 is chosen to emphasize either distributions in the
mixture (Section 5.2).

In Section 4, a new PDF is presented for sampling milestones based on the
geometry and information value of the targets in W . A new hybrid sampling strategy
(Section 4.2) is derived from prior measurements and environmental information,
and from the probabilistic sensor model reviewed in the next section. Then, the profit
of information defined in Eq. 1 is used in place of the classical distance metric [24] in
the query phase (Section 4.3) to determine the path of maximum information profit
in the roadmap.

3.2 Bayesian Network Approach to Sensor Modeling

A common approach for modeling the sensor measurement process is to utilize a
joint probability mass function (PMF) of the relevant variables, which may include
target classification and features, sensor measurements and parameters (or mode),
and environmental conditions. The joint PMF of a particular sensor may be obtained
by means of estimation algorithms (e.g., [27, 30]), or by learning algorithms using
wavelets or mixtures of Gaussians [16, 35]. In this paper, we adopt the method
presented in [36, 37], in which the PMF is learned from data and represented by
a Bayesian network (BN) model. The advantages of BN models are that they can
easily deal with many variables, they are accompanied by very efficient learning
and inference algorithms, and they provide a convenient factorization of the joint
PMF that can be used to simplify the computation of posterior PMFs required by
information theoretic functions (Section 4.1).
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A Bayesian network model is a pair comprised of a directed graph and of a set
of conditional probability tables (CPTs) that together specify the multivariate joint
PMF of a set of discrete and random variables known as the universe [38]. Every
random variable in the BN universe is assumed to have a finite range, and is
represented by a node in the graph. Arcs between the nodes represent conditional
probability relationships between the variables. As shown in [36, 37], the BN model
of a sensor measurement process is obtained by defining the universe as the set of
all variables that influence the sensor measurements, such as, the set of sensor-mode
parameters S, the set of environmental conditions E, the set of measurements M,
the set of hidden target features F to be inferred from M, and the hidden target
classification variable y, i.e., U ≡ {S, E, M, F, y}. Then, the BN arcs and CPTs are
determined from a database of prior sensor data, using BN batch learning algorithms
[39]. The database consists of several cases in which all variables in U are sampled by
obtaining sensor measurements from several known targets, under known operating
and environmental conditions [36].

After the BN model is determined, it specifies the joint PMF underlying the sensor
measurements in terms of the recursive factorization,

P(Ui) ≡ P
(
Si, Ei, Mi, Fi, yi

) =
∏

u j∈Ui

P
(
u j | pa(u j)

)
(5)

= P
(
Mi | Si, Ei, Fi

)
P(Fi | yi)P(yi)P(Si)P(Ei) (6)

which holds for any target Ti, i.e., ∀i ∈ IT . Where, pa(u j) denotes the set of parents
of a node u j ∈ Ui, and factors in Eq. 5 are the BN CPTs. Since the parents of a
node u j are all the nodes in the BN with an outgoing arc to u j, the factorization in
Eq. 5 reflects the BN graph structure, which is learned from data and, thus, depends
on the sensor type. The factorization in Eq. 6, corresponding to the BN structure
in Fig. 1, has been shown to apply to various sensor types [36, 37]. When sensor
measurements are available from a target Ti, a junction-tree BN inference algorithm
[40] computes the posterior PMF P(Fi, yi | Ei) from the BN CPTs in Eq. 6, and from
the evidence Ei, which includes the values of the measurements Mi, and the values
of known operating (Si) and environmental conditions (Ei). The unknown target
features and classification are estimated as the values with the highest posterior
probability, i.e., (F̂i, ŷi) = argmaxF j

i ,y
l
i
P(Fi = F j

i , yi = yl
i | Ei). And, the posterior

probability P(F̂i, ŷi | Ei) is known as the confidence level (CL). The BN models of
multiple and heterogeneous sensors can be used in combination with the Dempster–
Shafer (DS) rule of evidence combination to perform feature-level sensor fusion [36].
Also, in this paper, the factorization in Eq. 6 is used to compute the information
value of a measurement set before the measurements become available, as shown in
Section 4.1.

Fig. 1 Typical structure
of a BN sensor model [36]
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4 Methodology: Information Roadmap Deployment (IRD)

PRM algorithms have been shown very effective at planning a collision-free path for
robots with many degrees of freedom for the purpose of moving from an initial to a
final configuration in a workspace by a minimum distance [23–26]. Along a separate
line of research, several information-driven sensor planning algorithms have been
developed to plan a sensor measurement process based on the expected information
value of the measurements. The information roadmap deployment (IRD) presented
in this section combines these two lines of research by using an information-value
function to generate a new hybrid sampling strategy that increases the milestone
density near targets with high information value, while also covering wide-open
regions and narrow passages. As a result, IRD presents several advantages over
existing sensor path planning approaches, such as, coverage path-planning [2, 11],
random [2], grid [16], and probabilistic search strategies [1, 16, 17, 21, 22]. By
extending the concept of a roadmap to the sensor planning problem, IRD can
account for the geometries of the targets and of a moving sensor’s field-of-view,
and can be applied to robotic sensors with a finite platform geometry that navigate
an obstacle-populated workspace. Also, thanks to the information-value function
presented in the next section, IRD accounts for the influence of operating and
environmental conditions on the measurements that can be obtained along the sensor
path, prior to determining the features or classification of the targets that are inferred
by following it.

4.1 Measurement Information Value

A basic difficulty in sensor planning consists of assessing the value or utility of the
sensor measurements prior to obtaining them from the targets. Several information-
theoretic functions have been proposed for this purpose. Cross entropy was used
in [28] to solve a multisensor-multitarget assignment problem, and in [29, 30] to
manage agile sensors with Gaussian models for target detection and classification.
Entropy and the Mahalanobis distance measure were used in [27] for sensor selec-
tion in ad-hoc sensor networks. Recently, the authors showed that using entropy
reduction leads to improved target classification and feature inference from multiple,
heterogeneous sensor fusion, when the sensor models are not necessarily Gaussian
[41]. As shown in this subsection, the expected entropy reduction (EER) can be used
to represent the value of information, V, in terms of the joint PMF P(yi, Mi) known
from the sensor model (Section 3.2). Other information-theoretic functions can be
similarly applied, as shown in Section 4.2, to construct information roadmaps for
other sensor applications, e.g., [27, 28, 30].

Entropy reduction is formulated in terms of conditional entropy, which can be
used to represent the uncertainty in a discrete and random variable Y, given the
value of another discrete and random variable Z , based on their joint and conditional
PMFs,

H(Y|Z ) = −
∑

z

∑

y

P(y, z) log2 P(y|z) (7)

where,
∑

y denotes marginalization over the range of Y [42]. Although infor-
mation entropy is not additive, it can be shown [41] that the entropy reduction
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�Ĥ(Y; Z j | Zi) ≡ H(Y | Zi) − H(Y | Zi, Z j) is additive, and represents the re-
duction in uncertainty brought about by Z j, given prior information or evidence
about Zi.

In Problem 1 sensor measurements from a target Ti are sought to reduce the
uncertainty in the classification variable yi. Thus, entropy reduction can be used
to represent the value of a new (posterior) set of measurements Mi, given an
a-priori evidence set E0

i , which may include known environmental conditions, as well
as the measurements and mode of a previously-deployed sensor. The superscript (·)0

denotes a set of random variables whose values are known a priori. Since the actual
entropy reduction, �Ĥ

(
yi; Mi | E0

i

)
, cannot be determined prior to measuring Mi,

the expected entropy reduction (EER), defined as,

�H
(
yi; Mi | E0

i

)≡ H
(
yi | E0

i

)−
f∑

�=1

N�∑

k=1

[
H

(
yi | mi� =mk

i�

)
P

(
mi� =mk

i� | E0
i

)]
, ∀i

(8)

is used to represent the expected reduction in uncertainty in yi that would be brought
about by Mi, given E0

i .
The conditional entropy H

(
yi | E0

i

)
in Eq. 8 is computed from the definition in

Eq. 7, and from the posterior PMF P
(
yi | E0

i

)
computed by a junction-tree BN

inference algorithm [40]. The conditional entropy H
(
yi | mi� = mk

i�

)
is computed

from Eq. 7, using the posterior PMF,

P
(
yi | mk

i�

) = P(yi)P
(
mk

i� | yi
)

P
(
mk

i�

)

=
P(yi)

∑
j

∑
l P

(
mk

i� | fij = f l
ij

)
P

(
fij = f l

ij | yi

)

∑
j

∑
l P

(
mk

i� | fij = f l
ij

)∑
j P

(
fij = f l

ij | yi = yj

i

)
P

(
yi = yj

i

) , ∀�,

(9)

where
∑

j and
∑

l denote marginalization over the range of all features fij ∈ Fi, and∑
j denotes marginalization over the range of yi (i.e., Y). Now, all of the probabilities

in Eq. 9 are known from the BN CPTs P(yi), P(Fi | yi), and P(Mi | Si, Ei, Fi).
P(Mi | Si, Ei, Fi) can be used to compute P(Mi | Fi) either by marginalization
or by using the evidence E0

i when available. Equation 9 is derived using the
simplification,

P
(
Mi | yi

) =
∑

j

∑

l

P
(
Mi | f l

ij, yi
)
P
(

f l
ij, yi

)

=
∑

j

∑

l

P
(
Mi | f l

ij

)
P
(

f l
ij, yi

)
, ∀i (10)

obtained by noting that yi and Mi are d-separated given Fi, because of the serial
connection between the respective nodes (Fig. 1). Finally, the last term in Eq. 8 is
computed as P

(
Mi | E0

i

) = ∑
j

∑
l P

(
Mi | fij = f l

ij

)
P
(

fij = f l
ij | E0

i

)
, where P

(
Fi | E0

i

)

is obtained using a junction-tree BN inference algorithm [40].



J Intell Robot Syst

In the presence of multiple targets, the information value of a set of measurements
M(τ ) along the path τ is the cumulative EER,

V(τ ) = V[M(τ )] ≡
∑

Mi∈M(τ )

�H
(
yi; Mi | E0

i

)
(11)

where, yi, Mi, and E0
i are the classification variable, measurements, and a-priori

evidence set corresponding to target Ti, respectively, and M(τ ) is defined in Section 2.
Since the BN sensor model holds for any target in W , every term in the summation
in Eq. 11 can be computed from the corresponding a-priori evidence set E0

i using
Eqs. 7–10. In the next subsection a new sampling strategy is presented that is based
on a probability density function obtained from the EER in Eq. 8. By combining
this information-based sampling distribution with πH in Eq. 4, a roadmap is con-
structed that captures the information value of the targets as well as the connectivity
of Cfree.

4.2 Learning Phase: Analysis of the Sampling Distribution

As shown in the previous subsection, EER can be used to compute the expected
information value of the measurements from a target Ti prior to obtaining the mea-
surements Mi, and prior to determining the target’s features and classification Fi and
yi. In order for a sensor with a bounded field-of-view S to obtain the measurements
Mi, S must intersect the ith target geometry Ti. Therefore, the subsets of W where
the sensor can make target measurements can be defined as follows:

Definition 1 (C-Target) The target Ti in W maps in the robot’s configuration space,
Cfree, to the C-target region CT i = {

q ∈ Cfree | S(q) ∩ Ti 	= ∅}
.

The union of all the C-targets in Cfree is the C-target region CT , and the union
of all C-targets corresponding to a robot configuration q is the set of C-targets
CT (q) = {

CT i | i ∈ IT , S(q) ∩ Ti 	= ∅}
. The measurement set that can be obtained in

q is the set of measurements corresponding to these C-targets, i.e., M(q) = {
Mi | i ∈

IT , CT i ∈ CT (q)
}
. Therefore, the information value of the measurements that can

be obtained in a robotic sensor configuration q ∈ Cfree is the cumulative EER,

V(q) = V[M(q)] ≡
∑

Mi∈M(q)

�H
(
yi; Mi | E0

i

)
(12)

It follows that a high density of milestones with high information value can be
obtained by sampling the PDF defined as,

πV(q) = V(q)
∫
CT V(q)dq

(13)

which is proportional to the EER function V(q), and is normalized by the total EER
of the C-target region.
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The above PDF is combined with a uniform PDF πU and a Gaussian PDF πG

obtained by the bridge test in order to construct a roadmap that also captures the
connectivity of Cfree by covering narrow passages and wide-open regions. The new
hybrid strategy,

π = v2πV + (1 − v2)πH

= v2πV + v1(1 − v2)πG + (1 − v1)(1 − v2)πU (14)

is obtained from the sampling strategy in Eq. 4 and the PDF in Eq. 13. Where,
0 ≤ v1 ≤ 1 and 0 ≤ v2 ≤ 1 are user-defined parameters that are chosen to empha-
size the narrow passages versus wide-open areas, and to emphasize information
value versus connectivity, respectively. In the actual implementation, the PDF π

is discretized into a probability mass function (PMF) over W ∈ R
2, as shown in

Algorithm 1. The sampling distribution π obtained by Algorithm 1 is plotted in Fig. 2
for a simple example involving a robotic sensor that can translate freely but cannot
rotate, and has a square platform geometry A (grey), and a square field-of-view S
(white). This robotic sensor navigates the workspace shown in Fig. 2a, where the
obstacles’ geometry are shown in black, and the target geometries are shown in color
patterns that are representative of their information value. The sampling distribution
over C is plotted in Fig. 2b. In this simple example, C is equal to W because
q = [x y]T . As plotted in Fig. 2b, C-obstacles (black) have zero sampling probability,
and C-targets have sampling probability proportional to their information value
(EER). As shown in Sections 5 and 6, the same approach is applicable to robotic
sensors with more degrees of freedom, such as robots that are capable of rotating, as
well as to any other geometries for W , A, and S .

After the sampling distribution π is computed by Algorithm 1, it is sampled Nm

times to obtain the set of milestones L that constitute the nodes of the roadmap
G = (L, A). Subsequently, the set of arcs A is obtained by a local planner that con-
nects every milestone ci ∈ L to every other milestones with a straight line segment.
The lengths of these straight-line segments are used to sort the milestones, such that
only the k nearest milestones to ci are elected as its candidate neighbors. Where, k
is a user-defined parameter that is chosen based on Nm and on the complexity of W .
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Fig. 2 Example of (normalized) sampling probability distribution π (b) for the non-rotating robotic
sensor with platform A and field-of-view S, navigating the workspace W in (a)
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Algorithm 1 Sampling Distribution Generation

given W,A,S, P(yi, Mi), and E0
i for ∀i ∈ IT

discretize C into Nq configurations C = {
q1, . . . , qNq

}

create an empty set of sample configurations, Q = ∅
initialize variables, and let I(q) = 0, UQ = 0 and VQ = 0
for ∀qi ∈ C do

if qi ∈ Cfree then
U(qi) = 1
I(qi) = 0
compute V(qi) from Eq. 12

else
U(qi) = 0
V(qi) = 0
I(qi) = 1

end if
for ∀qi

0 ∈ C do
compute f

(
b ′ = qi|b = qi

0

)
from Eq. 2

end for
end for
UQ = ∑

qi∈C U(qi)

VQ = ∑
qi∈C V(qi)

for ∀qi ∈ C do

πU (qi) = U(qi)

UQ

πV(qi) = V(qi)

VQ

πG(qi) = ∑
qi

0∈C f
(
2qi − qi

0|qi
0

)
I
(
2qi − qi

0

)
I(qi

0)

π(qi) = v2πV(qi) + v1(1 − v2)πG(qi) + (1 − v1)(1 − v2)πU (qi)

end for

For each candidate neighbor of ci, the collision-check algorithm presented in [26] is
implemented to check whether a simple path between them (typically a straight line
segment) is collision free, by discretizing the path into a sequence of configurations.
Then, the candidate neighbors with collision-free paths are connected to ci to
construct G. After G is constructed, it can be used to find the path with maximum
information profit in Eq. 1 between any pair of q0 and qf , as explained in the next
subsection.

4.3 Information-Driven Query Phase

After the information roadmap G is constructed by the method presented in the
previous section, the query phase seeks a path τ ∗ from q0 to qf of maximum
information profit (Problem 1). A query consists of connecting q0 and qf to G by
searching for two milestones c0, cf ∈ G that have the shortest collision-free distance
to q0 and qf , respectively, and then finding the path from c0 to cf of maximum
information profit. A path from c0 to cf in G is a sequence of adjacent cells that
are pairwise connected by a simple collision-free path represented by the arc between
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them, e.g., τ = {c0, ci, c j, . . . , cf }, with (ci, c j) ∈ A ⊂ G, for any consecutive pair of
indices in the index set Iτ of τ . Since every milestone represents a robot configura-
tion, an additive distance metric can be defined for every pair (ci, c j) ∈ A, and used to
compute the total path distance D(τ ). A scaled Euclidian distance is adopted from
[24] that changes the relative importance of position and orientation components
of q through a set of weights organized in a diagonal and positive-definite matrix
W ∈ R

3×3. Then, the total path distance is given by the sum of all weighted Euclidian
norms along τ , i.e.,

D(τ ) =
f−1∑

i=0

∥∥W[q(ci+1) − q(ci)]
∥∥ (15)

where, q(ci) denotes the robot configuration represented by ci, and ‖ · ‖ represents
the Euclidian norm [43, pp. 28–29].

Planners based on the A∗ algorithm are the most effective at searching for the
path of minimum total distance in G [24]. The A∗ algorithm explores G iteratively,
starting at c0 and visiting every neighbor node ci, to which a cost function is assigned
by estimating the minimum-cost path from c0 to cf , through ci [44, 45]. Based on the
principle of optimality [46], this cost can be estimated as the sum of the actual cost
of a path from c0 to ci, g(ci), plus an estimate of the minimum-cost path from ci to
cf obtained from a heuristic function, h(ci). If the heuristic function is chosen such
that h(ci) is always less than the actual cost of the (same) path from ci to cf , then
the A∗ algorithm is guaranteed to return a path of minimum cost whenever such a
path exists in G [44, 45]. After a node is visited, the algorithm stores only the path
of minimum cost, and labels the node as visited, assigning it a pointer to its parent
node. This process forms a spanning tree Ts of the subset of G that has already been
explored, and brings about considerable computational savings compared to other
graph-searching algorithms [33, 47].

Since the goal of the robotic sensor is to maximize the measurement information
profit, after connecting q0 and qf to G the information-driven query phase seeks the
path τ ∗ with the maximum value of R(τ ), defined in Eq. 1 as the trade-off of V(τ ),
defined in Eq. 11, and D(τ ), defined in Eq. 15. Then, the A∗ algorithm can be applied
by defining the actual cost of a path τ s

0,i connecting c0 to ci in the current spanning
tree Ts as

g(ci) ≡ −R
(
τ s

0,i

) = −wV · V
(
τ s

0,i

) + wD · D
(
τ s

0,i

)
. (16)

In order to guarantee that the cost estimated by the heuristic function is less than
the actual cost, h(ci) is based on the cumulative EER of all measurements remaining
after τ s

0,i, M̄
(
τ s

0,i

)
, and on the length of a straight line segment si, f connecting q(ci) to

q(cf ) in C:

h(ci) = −
∑

M̄(τ s
0,i)

wV · �H
(
yi; Mi | E0

i

) + wD · D(si, f ) (17)

Where, the complement measurement set of a path is defined as M̄
(
τ s

0,i

) = {
Mi | i ∈

IT , Mi 	∈ M
(
τ s

0,i

)}
. The estimated total cost for a path from c0 to cf through ci is

f (ci) = g(ci) + h(ci). Thus, it includes the cumulative EER of all targets in W . The
actual set of measurements M(τi, f ) obtained along a path τi, f from ci to cf in G is a
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subset of M̄
(
τ s

0,i

)
. Then, since the EER in Eq. 8 always is positive by the properties

of mutual information [42], the inequality,
∑

Mi∈M̄(τ s
0,i)

�H
(
yi; Mi | E0

i

)
>

∑

Mi∈M(τi, f )

�H
(
yi; Mi | E0

i

)
, for M

(
τi, f

)⊂ M̄
(
τ s

0,i

)
,

(18)

holds for any path τi, f that is concatenated with τ s
0,i to connect c0 to cf through ci.

Since the length of si, f is always less than or equal to the shortest path between ci

and cf in G, it also follows that h(ci) < −R(τi, f ). Therefore, the A∗-type search in
Algorithm 2 is guaranteed to always return the path τ ∗ of minimum cost or maximum
information profit in the information roadmap G.

Algorithm 2 Pseudocode of A∗-search for τ ∗ in G
procedure A∗(G, c0, cf , R, h)

initialize Ts and OPEN as empty
install c0 into Ts

OPEN := (c0,OPEN); label c0 as visited
while OPEN 	= ∅ do

find c := arg minc( f (c)) in OPEN
if c = cf then

exit loop
end if
for every neighbor c′ of c in G do

if c′ is not visited then
OPEN := (c′,OPEN); mark c′ as visited, and label it with a pointer to c

else
if g(c′) > g(c) + R(c, c′) then

modify Ts by redirecting the pointer of c′ toward c
remove c′ from OPEN
OPEN := (c′,OPEN)

end if
end if

end for
end while
if OPEN 	= ∅ then

return the minimum-cost path by tracing the pointers in Ts from cf to c0

else
return failure

end if

5 Implementation of Information Roadmap Deployment for Robotic Demining

The information roadmap deployment (IRD) methodology presented in the previous
section is demonstrated through a demining system application in which the path
of a robot with an on-board ground-penetrating radar (GPR) is planned based on
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prior infrared (IR) sensor measurements and environmental information available
from a minefield W ⊂ R

2. The purpose for deploying a GPR robotic sensor in
W ⊂ R

2 is to infer the classification of targets that are either mines or clutter
objects, and are buried in heterogeneous soils, under non-uniform environmental
conditions [48]. The classification variable of every target, yi, is non-observable and
has two mutually-exclusive possible values Y = {

y1
i , y2

i

}
. yi can be inferred from a set

of measurements Mi = {
dmi , zmi , smi

}
that pertain to the target features, namely,

depth (di), size (zi), and shape (si). The measured target features are typically
extracted from raw sensor measurements through signal processing techniques,
and thus contain random measurement errors and errors caused by unfavorable
environmental conditions [49]. The actual target features Fi = {di, zi, si}, together
with yi, can be inferred from Mi and any prior evidence E0

i using a GPR BN sensor
model described in Section 5.1. It is assumed that an IR sensor previously deployed
on an airborne platform, such as an unmanned air vehicle (UAV), is used to obtain
cursory measurements that together with other geospatial data (e.g., topography,
land cover, and satellite imagery) provide E0

i for ∀i ∈ IT , as well as estimated targets’
and obstacles’ geometries, T and B, in W . The GPR robotic sensor, on the other
hand, makes more accurate measurements on the ground, but can only visit a subset
of the targets in W due to energy and time limitations.

The simulation of a demining sensor system developed in [36] is used to generate
a rectangular minefield of chosen dimensions, or workspace, that includes several
buried mines, clutter objects, obstacles, and heterogenous environmental conditions.
A two-dimensional grid is superimposed on the minefield dividing it into square
bins that are assigned a squared unit distance. Soil characteristics, vegetation, and
time-varying meteorological conditions are modeled according to [50, 51], as shown
in Table 1. The simulation assigns a set of environmental conditions to each bin,
either at random or at user-specified positions. The targets are comprised of anti-
tank mines (ATM), anti-personnel mines (APM), unexploded ordnance (UXO), and
clutter objects (CLUT) that are sampled and reproduced using the Ordata Database

Table 1 Simulated minefield, sensor, and target characteristics

Symbol Nodes Range

y Target classification {clutter, mine, empty bin}
S GPR mode: mGPR {depth search, resolution search,

anti ground-bounce-effect search}
IR mode: mIR {surface-mine search, shallow-buried-mine search}

E Soil moisture (%): sr {dry [0, 10], wet (10, 40], saturated (> 40)}
Soil composition: sc {very-sandy, sandy, high-clay, clay, silt}
Soil uniformity: su {yes, no}
Vegetation: g {no-vegetation, sparse, dense}
Weather: w {clear, overcast, raining}
Illumination: i {low (7–10 a.m. and 6–9 p.m.), medium (10–1 p.m.),

high (1–6 p.m.)}
F Depth (cm): d {surface [0], shallow-buried (0, 12], buried (12, 60],

deep-buried (> 60)}
Size (cm): z {small (2, 13], medium (13, 24], large (24, 40],

extra-large (> 40)}
Shape: s {cylinder, box, sphere, long-slender, irregular}
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[52], which contains over 5,000 explosive items and 3,000 metallic and plastic objects
that resemble anti-personnel mines. Each target occupies one or more bins in the
minefield depending on its size (zi), and is characterized by a depth (di) and a shape
(si) that may take any of the values shown in Table 1. Thus, Ti ⊂ W represents the
geometry of the set of bins from which prior IR measurements are obtained for the
ith target detected in W . The ground robot is simulated using the nonholonomic
unicycle model in FW [53, 54], with a platform geometry A ⊂ W specified by the
user. On-board the ground robot is a GPR sensor with a field-of-view geometry
S ⊂ W , also specified by the user, that moves with the robot in FW and remains
fixed with respect to A. In the simulation, as soon as S intersects a bin containing a
target, measurements are reproduced and deteriorated based on the target features,
the sensor mode and working principles, and the environmental conditions in the
bin [36, 55].

5.1 GPR and IR Bayesian Network Models

The BN models of a GPR sensor (Fig. 3a) and of the Agema Thermovision 900 IR
[36] are implemented in this paper to compute the expected information value of a
path, defined in Eq. 11, or a robot configuration, defined in Eq. 12, and to fuse the
sensors’ measurements after they are obtained. These BN models are learned from a
database of sensor measurements using the approach presented in [36] and reviewed
in Section 3.2. Because they rely on different operating principles and may function
in different modes, these demining sensors are more or less effective depending on
the environmental conditions. IR sensors, for example, detect anomalies in infrared
radiation that is either emitted by mines, soil, or vegetation. Based on the location
of the sensor, the radiation data can be processed to build an image of an horizontal
area and to estimate the depth of the object therein for depths up to 12 cm. The
mode mIR influences the measured target features and is uniquely determined by
its height above the ground. Therefore, airborne IR sensors typically obtain only
cursory measurements of size z and shape s for shallow-buried objects. Because
they rely on temperature variations, their performance also is highly influenced by
illumination (time of day) i, weather w, vegetation g, and soil properties sr, sc, and su,
with ranges described in Table 1.

d z

s

cs

us

GPRm

ms

mz

md

rs

(b)
(a)

Fig. 3 Example of BN model (a), adapted from [36], and geometric characteristics (b) of a GPR
robotic sensor
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GPR sensors emit radio waves that penetrate the ground and process their re-
flections at the boundaries of materials characterized by different refraction indexes.
Images of underground vertical slices and of any objects buried within are obtained
over the field-of-view S by sensing discontinuities in electrical properties. The
measured size zm, shape sm, and depth dm of an underground object can be obtained
from these images through signal processing techniques such as edge extraction [49].
The frequency of the radio wave and its bandwidth determine the search mode mGPR.
Since penetration depth increases at lower frequencies and image resolution im-
proves at higher frequencies, the optimal GPR mode depends on the target features
F, and on the environmental conditions E shown in Table 1. For example, very high
frequencies may be required in the presence of ground discontinuities to overcome
the so-called ground-bounce effect (GBE) [50]. By providing complementary infor-
mation about the targets, the GPR measurements can significantly improve target
classification through feature-level fusion with prior IR data [36, 50]. As explained in
Section 3.2 and [36], after τ ∗ is planned and executed, the GPR and IR BN models
are used to estimate Fi and yi for each target intersected by S along τ ∗ using the
a-posteriori evidence set Ei. Here Ei is comprised of fused GPR and IR measure-
ments, and of the operating and environmental conditions, mGPRi , mIRi , and Ei.

5.2 Information Roadmap Deployment of Mobile GPR Sensor

Since the GPR sensor has a bounded field-of-view S and is installed on a ground
robot, its measurements depend on the robot path in W . At the same time, the
ground robot has a finite geometry A that must avoid natural or man-made obstacles
(e.g., water bodies, trees, and buildings) in W . An example of robotic sensor
geometry is shown in Fig. 3b. As explained in Section 2, the position and orientation
of every point in S and A can be specified using one configuration vector, q,
containing the coordinates and orientation of FA with respect to FW . Airborne IR
measurements are processed to obtain a map of the geometries and locations of
potential obstacles B and targets T in W . Together with the environmental infor-
mation and the GPR BN model in Fig. 3a, the IR measurements are also used to
compute the sampling PDF in Eq. 13, and to generate a set of Nm milestones by
means of the hybrid sampling strategy in Eq. 14. Nm is defined by the user based
on the size and complexity of W , CB, and CT . The number of configurations Nq

used to discretize C (Algorithm 1) depends on the size of W , and on the ranges of
the robot’s degrees-of-freedom. In this paper, the range θ ∈ [0, 7π/4] is discretized
in eight intervals, and the ranges of x and y are discretized according to the two-
dimensional grid superimposed on the minefield (Section 5). For example, for the
workspace in Fig. 7, Nq = 56.68·103 and Nm = 900.

The multivariate Gaussian λb can be generated using the Matlab� function
mvnrnd [56], as follows: λb = mvnrnd(μ, σ ), where the mean is μ = (x, y), and σ is a
diagonal covariance matrix whose elements are chosen based on the width of the
narrow passages from the interval [0.5, 2]. The user-defined parameters v1 and v2 in
the sampling strategy (Eq. 14) determine the relative frequency of milestones sam-
pled from narrow passages and from high information-valued targets, respectively.
For example, the values used for minefields with a high density of obstacles and
narrow passages (e.g., Fig. 9a) are v1 = 0.1 and v2 = 0.3. Similarly, the weights wV

and wD in the reward function (Eq. 1) represent a trade-off between the value of
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the measurements and the distance traveled, which typically is to be minimized to
conserve time and energy. Thus, they depend on the application domain and on the
units of V and D. Values of wV and wD in the intervals [0.5, 1] and [0, 0.5], respec-
tively, were investigated in this paper, ultimately selecting wV = 0.9 and wD = 0.1
for the demining application.

The weighting matrix W in Eq. 15 is chosen as W = diag(0.9, 0.9, 0.1) to scale the
Eucledian distance based on the relative importance of the translational versus the
rotational distance which, in turn, depends on the complexity of CB [24]. Together
with computational requirements, CB also determines the number of candidate
neighbor nodes k considered by the local planner, which in this paper takes integer
values in the interval [5, 20]. In most of the simulations shown in Section 6, k = 6.
However, for high-density obstacles minefields (Fig. 9a) the best value is found to
be k = 15. For these parameters and the large workspace in Fig. 7 the maximum
running time of the IRD algorithms was 1.5·104 s for the learning phase, and 155 s
for the query phase on an Intel T2060 1.6 GHz CPU computer with 1.00 GB
of RAM.

6 Results

The information roadmap deployment of a robotic GPR is tested on a variety of
minefields exhibiting low-to-high densities of targets, obstacles, and narrow passages,
as well as non-uniform soils, weather, and other environmental conditions. In
Section 6.1, simple examples are used to illustrate and motivate the IRD approach,
demonstrating the influence of the target geometries and prior information on the
sensor path. In Section 6.2, the performance of IRD is compared to that of existing
search strategies that are applicable to Problem 1 by means of the information
roadmap, namely, shortest path [23–26], complete coverage [2, 11], and random
[2] searches. Let �Ny(τ ) denote the number of targets that are correctly classified
after fusing GPR and IR measurements along τ , minus the number of targets that
were correctly classified based solely on IR measurements. Then the classification
efficiency of a path τ is defined as the number of correctly-classified targets per dis-
tance traveled, ηy(τ ) ≡ �Ny(τ )/D(τ ). After the path is executed and M(τ ) becomes
available, the actual entropy reduction, denoted by V̂(τ ), can be computed, and the
function V̂(τ )/D(τ ) can be used to assess the actual information value per distance
traveled along a path τ . The results in Section 6.2 indicate that IRD outperforms
existing approaches by up to one order of magnitude. Also, as shown in Section 6.2,
IRD can be applied to plan the path of a non-overpass capable GPR platform, which
must avoid collisions with mines as well as obstacles in order to prevent loss of the
robotic sensor.

6.1 Influence of Prior Information and Workspace Geometry on the Sensor Path

In this section, a series of simple examples are used to demonstrate why the geo-
metric characteristics of the problem, together with prior information, must be taken
into account in planning the sensor path. In every example, the IRD sensor path
τ ∗ is illustrated by plotting sample sensor configurations on the workspace. Other
hypothetical paths are schematized by dashed lines for comparison. The first example
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Fig. 4 Influence of target
presence on τ ∗
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in Fig. 4 illustrates that both the location and geometry of targets and obstacles in W
must be accounted for in planning the path of a robotic sensor. Suppose the sensor
must travel from q0 to qf , and W contains two obstacles (black) and four equally-
important targets (diagonal pattern) (Fig. 4). Although two obstacle-free paths τ 1

and τ ∗ of approximately the same distance can be found from q0 to qf , the path τ 1

(dashed line in Fig. 4) allows the GPR sensor to only make measurements from one
target. Whereas, the IRD path τ ∗ allows the GPR sensor to make measurements
from three of the targets in W .

Besides accounting for targets’ geometries and locations, IRD also accounts for
the expected information value of the measurements that can be obtained from them.
Consider another simple example (Fig. 5) in which there exist three paths, τ 1, τ 2,
and τ ∗, that all allow the sensor to visit two targets by traveling approximately the
same distance. Based on prior IR measurements, however, the information value
of individual targets, defined in Eq. 8, is either medium (diagonal pattern) or low
(horizontal lines), as shown in Fig. 5. The information value is discretized only for
illustration purposes. If only the targets’ locations and geometries were taken into
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Fig. 5 Influence of prior sensor measurements on τ ∗
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account, these three paths would be considered equivalent. Instead, by maximiz-
ing the information profit, τ ∗ obtains a much higher classification efficiency than
τ 1 or τ 2.

The influence of the environmental conditions surrounding a target, Ei, on the
sensor measurements is also accounted for by the value of information in Eq. 8. This
is illustrated through an example in which the same targets buried in different soils
lead to very different reduction of the uncertainty (entropy) in yi, depending on how
favorable the conditions are to the IR and GPR sensors. In the example in Fig. 6
two types of targets are buried in three different soil, for a total of six targets. In this
workspace there are three paths from q0 to qf of approximately equal distance that
each visit the same two targets buried in soils with different moisture. One target
has high information value in saturated soil, and two targets have high information
value in dry soil. As shown in Fig. 6, by visiting targets with high information value
the GPR sensor obtains much higher classification efficiency along τ ∗. Therefore, the
environmental conditions influence the sensor path by making targets more or less
valuable to the GPR, and IRD finds the path that enables the most valuable GPR
measurements.

6.2 IRD Efficiency Comparison and Results

This section summarizes the results obtained by testing the IRD approach on a
variety of minefields with various sizes, geometries, and environmental conditions.
A representative example of GPR path computed by IRD is shown in Fig. 7 for
a 64 × 108 (bin) minefield with 755 buried objects that include mines and clutter,
concave polygonal obstacles, several narrow passages, and heterogeneous environ-
mental conditions (not shown for simplicity). The bins measured by the GPR along
τ ∗ (solid black line) are show in grey, and the resulting path efficiency is ηy = 0.0913.
These results show that the robotic GPR is capable of navigating in an obstacle-
populated workspace, and through narrow passages, in order to make measurements
from targets with high information value (plotted in red and magenta in Fig. 7) with
minimum distance.
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Fig. 6 Influence of environmental conditions on τ ∗
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Fig. 7 Robotic GPR sensor path obtained by information roadmap deployment (IRD)

The average efficiency of IRD paths is compared to that of existing sensor path
planning methods that are applicable to Problem 1, namely, shortest path [23–26],
complete coverage [2, 11], and random [2] searches. Using the information roadmap
presented in Section 4, these methods are implemented for the same workspace
and robotic GPR sensor. The shortest path search [23–26] is a classical robot path
planning strategy that is applied in the query phase (Section 4.3), and provides the
value of the efficiency metric ηy when the presence of targets is not taken into
account. By this approach, the roadmap G, obtained in Section 4.2, is searched for
the path of minimum distance, τshort, with an A∗-type algorithm that uses the straight-
line distance as heuristic function, and does not consider the expected information
value. Then, the GPR is turned on in a fixed mode along the path, and known
environmental conditions are used as evidence in the GPR BN model to infer the
targets’ classification from fused GPR-IR measurements.

Coverage path-planning algorithms play an important role in robotic sensing,
because they emphasize the space swept by the robot’s sensor [11]. As pointed
out in [11], one of the most significant sensor path planning results is a planner
that generates a path that completely covers the obstacle-free space (e.g., see
[1, 2, 22, 57]). For comparison, in this paper a complete-coverage path τcover is
obtained for the robotic GPR in Fig. 3 by computing a lawn-mower-type path. This
path consists of back-and-forth motions that avoid collisions between A and the
obstacles B, while making measurements from the entire free-configuration space
Cfree with S . Since computing the shortest complete-coverage path is known to be NP-
hard [11], an ad-hoc solution to τcover is sought by placing milestones inside narrow
passages, and near the boundaries of the C-obstacles and of the configuration space
C, denoted by ∂CBi and ∂C, respectively. The milestones inside narrow passages
are obtained by the bridge test [23], and those near ∂CBi, i ∈ IT , are obtained by
a Gaussian sampler [25]. The milestones near ∂C are placed regularly spaced at a
distance dl that is based on the projection of S onto ∂C. The set of milestones is
ordered by increasing x and y coordinates, as to reproduce a lawn-mower path in an
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Fig. 8 Robotic GPR sensor paths obtained by complete coverage (a), and random search (b)

obstacle-free workspace. Then, the local planner described in Section 4.2 is used to
connect the ordered milestones by collision-free straight-line segments. When the
local planner fails (say in the x-direction), a milestone is inserted in the ordered list
by increasing the other coordinate (say y) by a distance dl . The new milestone is then
connected to the nearest milestone in the list in the −x direction, and so on. The
result is a complete-coverage path that covers Cfree, as illustrated by the grey bins
measured by the GPR in Fig. 8b. The average efficiency of complete-coverage paths
is shown in Table 2.

A popular approach in robotic demining and UXO clearance is to drive the robot
in the minefield using a randomized search [2]. By this approach, a robot moves along
a simple path, such as a straight line, until an obstacle is met, and then rotates a
random amount before continuing along another simple path, while the on-board
sensor is on at all times to detect targets along the path [2]. Using the roadmap G
developed in Section 4.2, a random-search path, τrand, can be obtained by randomly
selecting a node from the list of neighbors of c0 in G, and then repeating the process
for every new node until a pre-defined number of adjacent milestones connected by
collision-free paths (arcs in G) is obtained. Although this approach does not optimize
distance or information value in the query phase, it uses the information roadmap
developed in Section 4.2 which contains a high density of configurations that enable
high information-value measurements. Therefore, the resulting path τrand guarantees
obstacle avoidance by A, and S is more likely to measure important targets than if
deployed by a completely random strategy, such as the one presented in [2]. The four
deployment strategies are applied to various minefields, for different values of q0 and
qf , to obtain a representative average path efficiency ηy. The results are summarized

Table 2 Average sensor path efficiency

Metric Deployment method

IRD Shortest path Random search Complete coverage

D(τ ) 77 58 280 1,491
V̂(τ )/D(τ ) 0.119 0.0463 0.0243 0.0432
ηy(τ ) 0.2093 0.0175 0.0504 0.0693
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Fig. 9 Examples of workspaces with high (a) and low (b) obstacle density

in Table 2, and illustrate that IRD clearly outperforms the other methods leading to
an average path efficiency three times greater than that of complete coverage, and
one order-of-magnitude greater than that of shortest-path deployment. Additionally,
these results show that the information roadmap developed in Section 4.2 also is very
useful for implementing other search strategies, such as complete coverage, that may
be valuable in other applications.

Since the sensor path efficiency depends on the characteristics of the workspace,
extensive numerical simulations were performed to obtain average efficiency func-
tions for different environmental conditions, and densities of obstacles and targets.
Figure 9 illustrates two representative examples of workspaces that are considered

Fig. 10 Influence of obstacle
density on GPR sensor path
efficiency
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to have high (a) or low (b) obstacle density. The target density is held constant in this
study. As shown in Fig. 10, the path efficiency of IRD is significantly higher than
that of shortest-path, random search, or complete coverage deployments, for both
levels of obstacle density. The influence of environmental conditions on the method’s
efficiency is investigated by considering a minefield with the same geometric char-
acteristics as the high obstacle-density example (Fig. 9a), but with two typologies
of environmental conditions, such as the example shown in Fig. 11. The soil com-
position, moisture, and vegetation are plotted over the workspace in Fig. 11a for
mild conditions, and in Fig. 11b for harsh conditions. As shown in Fig. 12, IRD
achieves the best performance under both types of conditions, but its improvement
compared to other methods is smaller for harsh environments, because the accuracy
of the GPR measurements decreases regardless of the path. In fact, the shortest-
path performance improves under harsh environmental conditions because when all
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Fig. 12 Influence of
environmental conditions
on GPR sensor path
efficiency
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targets have low information value the efficiency metric is more heavily influenced
by distance.

In another study, the average path efficiency is evaluated for low, medium, and
high target densities (Fig. 13), using a constant obstacle density. As shown in Fig. 14,
the IRD efficiency is significantly higher than that of complete coverage and random
search methods, for all levels of target density. The most significant improvement is
obtained in minefields with high target density because the sensor is able to visit more
targets, taking full advantage of the proposed method. On the other hand, when the
targets’ density is low, their influence on the sensor path is considerably reduced,
and therefore the efficiency of the IRD path approaches that of the shortest path.
Conversely, the higher the target density, the closer the complete coverage efficiency
will be to the IRD path, because the robotic sensor deployed by IRD will attempt to
visit more targets within its reach.
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Fig. 13 Example of low (a), medium (b), and high (c) target density
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Fig. 14 Influence of target
density on GPR sensor
path efficiency
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Based on the results in Figs. 10–14 it can be concluded that the efficiency of
IRD is significantly higher than that of existing robotic sensor planning approaches
applicable to geometric sensing under a wide range of workspace conditions and
characteristics. Another important application of the proposed method is planning
the path of non-overpass capable robotic sensors that can be seriously damaged or
even destroyed when driving over landmines [12]. For this type of robotic platforms,
the set of targets T in W must be treated as an additional set of obstacles, B :=
{B1, . . . ,Bn} ∪ T, to be avoided by A in case they are landmines. As shown by the
examples in Fig. 15, the robotic GPR can still obtain measurements from the targets
by navigating near them, such that they may be intersected by S but avoided by A.
By implementing the information roadmap developed in Section 4.2, both IRD and
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Fig. 15 Examples of IRD (b) and complete-coverage (c) paths for a non-overpass capable robotic
platform A, equipped with an on-board GPR sensor with field-of-view S (a)
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Fig. 16 Average sensor
path efficiency for the
non-overpass capable GPR
sensor in Fig. 15a
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complete coverage methods allow a non-overpass capable GPR sensor to navigate
the workspace and make measurements from targets in W , including those inside
narrow passages which further restrict the free configuration space (Fig. 15). As
can be expected, the average efficiencies (Fig. 16) are lower than those obtained by
overpass-capable platforms (Table 2), because the sensor may need to travel a longer
distance in order to avoid platform collisions with the targets. However, compared to
shortest path, random search, and complete coverage, IRD still improves the number
of targets that are properly classified per unit distance (ηy) by up to one order of
magnitude (Fig. 16).

7 Summary and Conclusions

A novel information roadmap deployment (IRD) approach that combines informa-
tion theory with probabilistic roadmap methods (PRMs) is presented and imple-
mented in a simulated demining system. IRD computes a robotic sensor path that
accounts for the geometry of the sensor’s platform and field-of-view, and for the
geometric characteristics of a workspace that is populated with multiple fixed targets
and obstacles. The novel learning-phase and query-phase algorithms presented in
Sections 4.2 and 4.3 use the targets’ expected information value to generate a
roadmap with a high density of high-information-value milestones, and a path that
optimizes a desired trade-off between sensing performance and distance traveled.
The value of information is quantified by the expected entropy reduction function
presented in Section 4.1. By implementing an existing BN approach to model the
sensor measurements (Section 3.2), the expected entropy reduction can be computed
from the BN CPTs and from prior information, such as, prior sensor measurements
and environmental conditions. Therefore, the couplings between environmental
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and measurement uncertainty and the sensor’s position are taken into account in
planning the sensor path.

The IRD method is demonstrated by planning the path of a GPR sensor installed
on a ground robot, based on prior measurements obtained by an airborne IR sensor,
and environmental information, such as, soil characteristics, vegetation, and weather
(Section 5). The results obtained from the simulations in Section 6 show that IRD
outperforms existing sensor path planning methods applicable to geometric sensing,
such as, complete coverage and random search, under a wide range of workspace
conditions and geometric characteristics, increasing the average path efficiency by up
to one order of magnitude. Also, the novel learning phase presented in Section 4.2
can be used to plan the path of non-overpass capable robotic sensors that can be
seriously damaged or even destroyed when driving over landmines. As a result, IRD
displays a classification efficiency several times greater than that of other methods,
and the robotic sensor can make measurements even from targets located inside
narrow passages which, in this case, further restrict the configuration space as they
constitute potential obstacles.
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