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Abstract
Search operations performed by adaptive autonomous maritime vehicles have been a topic of considerable interest for many
years. Such operations require carefully scheduled coordination of multiple vehicles performing search tasks across the region
of interest. Due to the inherent uncertainty of the maritime environment, however, an initially planned search schedule may
not be maintained if the vehicles have significant capability to adapt their tasks to match the environment they detect in
real time. We propose a multi-vehicle adaptive algorithm for dynamic evaluation and elastic re-planning of variable-length
tasks commonly found in the maritime environments. In adaptive evaluation and re-planning problems, a set of tasks are
initially planned for execution by adaptive, autonomous search vehicles. Tasks are allocated to search vehicles under a pre-
defined schedule based on prior knowledge and desired outcome. Because of the vehicles’ autonomy and reactivity to in situ
conditions such as environment or target pose, the precise duration and actions required by each task are unknown a priori.
We develop a hidden Markov model (HMM) for propagating task estimates, coupled with a quadratic-programming-based
elastic re-scheduler. The result is an integrated estimate-and-schedule adaptation scheme that quickly and efficiently re-plans
the vehicles’ schedules based on in situ observations. The numerical simulation results show that this novel HMM approach
decreases avoidable schedule variation by over a factor of two compared to existing methods.

Keywords Autonomous agents · Scheduling · Hidden markov model · Path planning

1 Introduction

Many planning and coordinated control methods have been
recently developed for autonomous and adaptive unmanned
maritime systems engaged in underwater search tasks.
New methods for the search and inspection of underwater
objects with varying degrees of reactivity to the environment
have been proposed in [1–3]. In [1] the authors leverage
information-theoretic techniques to develop bounds on the
information potentially gained by a search by viewing the
search problem as a communication channel. The authors
then use the search channel to guide the mode switch for
an individual agent from a broad search tactic to a focused
search. When combined with significant advances in auto-
mated target recognition (ATR), see [4–6], these planning
and control capabilities will soon allow autonomous mar-
itime vehicles to perform a variety of complex, coordinated
tasks that may vary both in expected duration and perfor-
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mance over time. More recently, in [7], the authors develop a
heuristic-based task allocation method for maritime patrols.
This emerging need to coordinate unmanned maritime vehi-
cles engaged in cooperative tasks is accompanied by closely-
coupled constraints that necessitate minimizing changes to
the overall schedule. Minimizing schedule changes reduces
the risk ofmissing vehicle rendezvous, dramatic reconfigura-
tion of vehicle tasking, and other performance degradations
due to task changes. To date, very few methods have been
developed for evaluating and re-planning the schedule of
autonomous search vehicles in situ or for determining if
and when higher-level re-allocation and re-scheduling is
warranted. We propose a multi-vehicle adaptive algorithm
for dynamic evaluation and elastic re-planning of variable-
length tasks commonly found in the maritime environments.
While the work herein are specifically applied to the mar-
itime domain, the task estimation and adaptive re-planning
algorithms are generalizable to other domains as well.

Prior work in vehicle scheduling and task allocation has
largely involved planning based on pre-defined capabilities
and estimated durations of all tasks [8, 9]. The uncertainty
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in task duration has been previously handled using proba-
bilistic models and formal risk metrics in [10]. Other studies
have dealt with discrete schedule interruption events, such as
vehicle inoperability or loss by minimizing deviations from
the original plan [11].

However, existing approaches failed to develop schedul-
ing and task re-allocation techniques able to persistently
evaluate the performance of maritime vehicles in order to
determine if andwhen re-allocation and re-scheduling should
occur, or how to adapt current plans to gradual changes in
performance. Sidoti et al. in [12] develop amethod to perform
multi-objective planning in amaritime domain using approx-
imate dynamic programming with the specific application of
vehicle routing to take into account weather conditions. They
do so while incorporating uncertainty in environmental fore-
cast with time and node-dependent cost scaling. The authors
then extend the work to context-aware methods to assign
multiple vehicles to multiple interdiction tasks in a spatio-
temporal context [13].De et al. develop adynamic scheduling
algorithm using mixed integer nonlinear programming to
dynamically plan a maritime vehicle schedule across mul-
tiple time horizons [14]. Our new approach presented in this
paper fills the need for holistic adaptive planning algorithms
by creating a rigorous algorithmic approach to plan and re-
plan task schedule and assignment for multiple vehicles with
varying degrees of autonomy in the face of constantly chang-
ing conditions. We do so by leveraging a HMM for task
prediction of duration mean and variance coupled with the

concept of elasticity related to a variant of the flexible job-
shop scheduling problem (FJSP).

Recently, there have been other metaheuristic approaches
proposed for solving FJSP problems, including the tabu
search algorithms [15], evolutionary approaches [16], and
even using Lagrangian relaxation methods to reformulate
the original MILP problem as a pure LP [17]. All of these
approaches can be applied to the re-scheduling problem, but
they effectively optimize the main problem again without
directly solving it as an adaptation of the existing plan.

An extensive review of the literature regarding the related
field multi-robot task allocation (MRTA) was recently devel-
oped by Chakraa et al. in [18]. The authors discuss at length a
number of taxonomies of MRTA, including a detailed com-
parison of the various methods for task allocation. In the
context of this review, our work is in regard to single-task
- multi-robot - time-extended assignment (ST-MR-TA) with
cross-schedule dependencies (XD). While the HMM is for a
single-robot, our elastic scheduler takes into account depen-
dencies between all vehicles within the network. We refer to
Table 1 in Chakraa for a comparison between various works
in the literature.

Recently, Dai et al. propose a number of heuristic algo-
rithms to performMRTA in [19], including an auction-based
method, a vacancy-chain method, and a learning-based
approach. Each approach has advantages and disadvantages.
For example, the auction-based approach fixes the task
allocation at each iteration, and thus may not be robust

Table 1 SATP Notation

Type Symbol Definition

Set M Set of maritime vehicles

P Set of tasks

S Set of service areas

Sp Set of subtasks for task p

K Set of tasks, k ∈ K ={move, service, dock,

deploy, wait}

Parameters T (ys) Time/cost to execute task at subtask s.

Im,p Task tuple such that Im,p = 〈κm,p,Lm,p,Sm,p,Em,p〉
S̄m,p Planned start time for vehicle m executing phase p.

Ēm,p Planned end time for vehicle m executing phase p.

Variables As A priori information for subtask s

Sm,p Start time of phase p for vehicle m

Ŝm,p Expected start time of phase p for agent m

Em,p End time of phase p for agent a

Êm,p Expected end time of phase p for agent m

Random Variables Ym,p,s Variable representing the sensed characteristic for a location sensed by

vehicle m during subtask s of phase p.

Bs Random variable representing the actual environmental state under which

the vehicle executes subtask s
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to unexpected changes in the environment. The vacancy
chain approach allows dynamic re-planning, but only for
the limited case of a vacancy existing in the schedule. The
learning-based approach mitigates these issues, but does not
scale as number of robots increases. Our proposed algorithm,
on the other hand, is linear with respect to robots for the
HMM and allows each robot to independently compute their
schedule estimate. The centralized scheduler we proposed is
demonstrated to be solvable in polynomial time.

Lippi et al. develop aMILP formulation to schedule tasks,
then during execution monitor for changes in parameters
largely based on human variability on the team [20]. Based
on the parameter change, they evaluate a modified cost for
future tasks. If it deviates enough from the originally planned
cost, then the execute a reallocation through re-running the
MILP. Essentially their work formalizes a full replan step
we tangentially discuss if the elastic scheduling fails due to
constraint violation. However, our work has the additional
benefit of modifying schedules without a computationally
costly full re-plan.

The direct application of adaptive approaches that do not
involve an adaptive solution to the original scheduling opti-
mization problem have been limited. One recent approach is
the PI-MaxAss algorithm [21], which adapts the scheduling
of search-and-rescue vehicles by prioritizing the objective of
maximizing the number of allocated tasks in a fixed amount
of time over more direct objectives. Another recent example
of re-scheduling is by Wang et al. [22], where they look at
the impact of machine disruption on schedule adaption. They
use a GA to solve the schedule adaptation problem and com-
pare their results to two heuristics, a right-shifting scheduler
which simply moves every task forward and a pre-scheduler
that accounts for projected downtime. While the heuristics
may have their advantages in speed, in many cases lack any
bounding on the opimality gap.Our quadractic-programming
scheduler allows optimal scheduling on polynomial time.

In our algorithm, we use a HMM to learn the delays that
occur in the planned schedule. Hidden Markov models have
historically been used in traditional machine learning (ML)
applications for linguistics [23, 24], speech recognition [25,
26], and pose estimation [27, 28]. Schedule adaptation has
been studied previously by Gabel for learning optimal poli-
cies to admit new jobs to the machine queue [29]. Buttazzo
et al. first proposed the concept of using elasticity as a means
to determine how to adjust schedules under changing con-
ditions [30]. However, their work relied on the periodicity
of tasks to determine the variation from one machine cycle
to the next. We generalize these ideas to the scenario where
tasks are not periodic, and instead use elasticity to determine
a re-configuration of the timing of tasks in the job queue
based on their expected HMM estimate.

Expected task end time completion statistics, the primary
output of the HMM component of the presented work, has

been studied previously using probabilistic and heuristic
techniques. Li et al. developed an SME-based fuzzy network
system for developing task completion times for a job-shop
scheduling problem in [31].While themethods provide a use-
ful way of developing task completion time estimates with
limited data, the method does not develop probabilistic esti-
mates of the likelihood of those completion times. Barcelo
et al. develop a Kalman filtering approach to travel time esti-
mation in [32]. A related work by Hadachi et al. develop
similar methods using particle-based techniques [33]. While
their method provide a means to leverage collected data and
a system model to create a forecasting system, the method
does not provide a sufficiently generalizable method for task
allocation including extraneous data. Recently, Ding et al.
leverage a HMM to develop task allocation and sequencing
for a set of smart machines on a factory floor in [34].While in
the same general field of task allocation as in our work, there
are a few notable differences, including the focus onmachine
sequencing as opposed to schedule estimation and coordi-
nation. Additionally, they rely on a rather specific process
flow for the sequencing compared to a generalized schedul-
ing algorithm. To our knowledge, the proposed HMM-based
approach is the first method to provide both a probabilistic
technique and sufficiently generalizable method to be useful
for general task allocation purposes.

We present an adaptive algorithm for dynamic evalua-
tion of tasks within a queue that have been assigned to the
unmanned maritime vehicles according to an initial sched-
ule. A HMM is developed for estimating both the end time
and relative uncertainty of the tasks as they are being car-
ried out by the vehicles. Using real-time estimates of tasks’
end times and uncertainty, the approach leverages concepts
from elastic re-planning to solve a new version of the FJSP
in which the start times of future tasks are modified to simul-
taneously maintain a valid schedule, minimize completion
time, and reduce aggregate variation between the original
schedule and modified schedule. The specific contributions
of our work are:

• a HMM-based method to efficiently predict the expected
time and duration variance of task execution that provides
an improvement in flexibility and statistical refinement
over other task completion time forecasting techniques.

• an FJSP-based elastic scheduling technique to maintain
task precedence, while minimizing the aggregate start
times between the pre-planned schedule and the executed
schedule.

• numerical demonstration of the estimation and schedul-
ing techniques with an adaptive low-level maritime
survey planning algorithm in a simulation setting.

DISTRIBUTION STATEMENT A. Approved for public release; dis-
tribution is unlimited.
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The paper is organized as follows. We formulate the esti-
mation and scheduling problem in Section 2.We then discuss
the details of the HMM in Section 3, which is then used
to develop an estimate for the task end time variance. In
particular, we extend the work on HMM task prediction to
develop an estimate for task end time variance in Section
3.3. In Section 4, we develop the elastic re-scheduling pro-
cedure as a new form of an FJSP that is solved as an iterative
quadratic programming problem. We discuss a case study
and resulting application using the HMM and scheduler for
an adaptive multiple aspect coverage algorithm in Section 5.
Finally, we present simulation results of the entire scheduling
approach demonstrated on a network of vehicles tasked with
re-acquiring and identifying underwater targets of interest in
Section 6.

2 Problem Formulation

Consider the problem of deploying M maritime vehicles in
a region of interest to perform multiple coordinated tasks
of varying type and duration. An example of this form of
coordination under adaptation is shown in Fig. 1. In the fig-
ure, an unmanned surface vessel (USV) must deploy and
sequentially collect unmanned underwater vehicles (UUVs)
that perform adaptive survey tasks. At the same time, the
UUVs adapt track spacing due to environmental character-
istics. The adaptation of track spacing thereby increases the
overall time to execute the individual search tasks, impacting
the overall schedule. Each task has different characteristics
as to their duration and variability of actual execution time
when compared to planned execution schedule. We repre-
sent a task as belonging to vehicle m ∈ M = {1, . . . , M},
task type κ ∈ K = {dock, deploy, search,move} and
indexed by task index p ∈ {1, . . . , Pm} using the tuple

Fig. 1 Illustration of maritime scenario involving adaptive autonomy
combined with schedule constraints requiring coordination

Im,p = 〈κm,p,Lm,p,Sm,p,Em,p〉, representing the partic-
ular task type, task location set, task start time, and task end
time, respectively.

Each search task is initially planned with a pre-defined
start time Sm,p ∈ R

+ and end time Em,p ∈ R
+, where

Sm,p ≤ Em,p. We further assume that the executed start and
end times denoted by S̄m,p and Ēm,p must have the same
precedence as the planned start times. The goal of the adap-
tive re-planning and scheduling algorithm is to determine
the optimal timing and task allocation such that the overall
schedule change is minimized, while maintaining adequate
makespan and schedule precedence constraints.

Each task may be divided into a finite number of subtasks
such that

Isearchm,p =
Sm,p⋃

s=1

Isearchm,p,s , (1)

where s = {1, . . . , Sp} is an index of the subtasks of task
Isearchm,p . For search-related tasks, a subtask Isearchm,p,s may be exe-
cuted to require one of a finite set of actions a vehicle may
make based on the sensed environment. Let the environment
be characterized by a finite set of exhaustive and mutually
exclusive values denoted by E = {e1, . . . , eN }. These char-
acteristics may be both physical and/or operational features
that affect the execution of the task. In a maritime setting for
bottom type, an example of E is E = {rocky, sandy, coral}.
It is assumed that each subtask is associated with only one
type of environment. Let Ym,p,s ∈ E be a random variable
representing the sensed characteristic for a location sensed
by vehicle m during subtask s of phase p. We represent the
value a particular measurement of Ym,p,s as ym,p,s . We note
that we leverage the sensed state Ym,p,s as that for vehi-
cle action as opposed to the hidden state. This is due to
our particularly application for developing high-level sched-
ule estimates rather than individual vehicle action decisions.
We assume that there exists individual vehicle sensing and
estimation algorithms onboard each vehicle, with their own
unique method of determining state. Our interest is in the
aggregated sensing and estimates, relative to overall base-
line assumed state. We further note that the mathematical
model for sensing and estimation of subtasks is generaliz-
able to all vehicles m and search tasks p. Thus, we eliminate
indices m and p in the references to sensing random vari-
ables Ym,p,s going forward when the vehicle m and phase p
are clear. The executed end time Ēm,p,s of the search subtask
is then dependent on both the executed start time S̄m,p,s and
the time required to execute the task based on environment,

Ēm,p,s = S̄m,p,s + T (ys). (2)

Each subtask has a corresponding overall search task,
indexed Isearchm,p . The overall search task Isearchm,p has an end time
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that varies depending on the particular sequence of measure-
ments ys , s = 1, . . . , Sp if the vehicles adapt their actions
relative to the measurements. We now formulate a model for
estimating and predicting the endtime for individual search
tasks.

With these mathematical preliminaries, we now formulate
the problem to solve:

Problem 2.1 Let there exist a set of tasks I1,1, . . . , IM,Pm for
executing amulti-agent maritime search involvingM agents,
with multi-agent constraints as described in [35]. Let the
task’s planned start and end times {Sm,p, Em,p}∀p ∈ Pm
for each agent m ∈ M differ from the as-executed end
times dependent on the environmental variable ys ∈ Ys for

each subtask s ∈ Sp such that Im,p = ⋃Sp
s=1 I

search
m,p,s . Min-

imize the aggregate difference between the planned {Sm,p,
Em,p} and expected values of the executed start and end times
{E(S̄m,p), E(Ēm,p)} by choice of flexible task start times

S̄m,p

given task precedence constraints.

We refer to [35] for the full mathematical formulation of
the required scheduling constraints for Problem 2.1, how-
ever we will briefly describe them herein. A set number
of transport agents (unmanned surface vessels on our mar-
itime problem) must transport a number of service agents
(unmanned underwater vehicles) to service various areas,
such as performing maritime surveys. A number of con-
straints must be satisfied such as only docking / deploying a
single vehicle at a time, limiting number of vehicles carried
at a given time due to capacity, and every area must be ser-
viced. This leads to an NP-complete scheduling problem in
which accurate estimation of completion time for each task
is crucial to maintaining the validity and effeciency of the
schedule.

3 A HiddenMarkovModel for Uncertain Task
Duration

Scheduling multiple coordinated tasks adaptively requires
formal estimates of the mean E

(
Ēm,p

) = Êm,p and vari-
ance V AR

(
Ēm,p

)
of the executed end time for each search

task. We now develop an approach for calculating Êm,p and
V AR

(
Ēm,p

)
using a HMM. HMMs are dynamic Bayesian

networks that typically leverage time-series data to per-
form state prediction [36]. In our work, we take the unique
approach of developing an HMM in task space as opposed
to time space. That is, we use a HMM to iteratively assess
the task times for search tasks of each vehicle with respect to
the sequence of subtasks. In this manner, the dynamic nature
of the Bayesian network is not with respect to time, but with

respect to the subtasks Isearchm,p,s sequenced by the subtask series
s = 1, . . . , Sp. The approach allows us to develop a subtask
series estimate of the expected end time and relative uncer-
tainty for the search tasks within the overall schedule.

3.1 End Time Expectation for Varying Subtasks

To develop an expected value of Ēm,p, the formal definition
of expectation of the end time, in Eq. 2, is taken with respect
to the environmental measurement Ys to obtain

E
(
Ēm,p

) = E

⎛

⎝S̄m,p +
Sp∑

s=1

T (Ys)

⎞

⎠

= S̄m,p +
Sp∑

s=1

E (T (Ys))

= Êm,p (3)

thanks to the linearity of the expectation operator. In prac-
tice, Êm,p is conditioned on the predicted environment, as
well as the previously sensed environment of the system.
Although the formal conditioning is used within the devel-
opment of the posterior in the derivation of the expected end
time calculation, the conditioning is removed from the nota-
tion for clarity of the exposition. Now a running estimation
of the value of Êm,p while executing subtask Isearchm,p,s , denoted

Êm,p(s), is explained by exploiting the fact that the particu-
lar mode executed at each individual subtask indexed from
s′ = 1, . . . , s − 1 is separable from the expectation. Thus,
the running mean expected endtime takes the form

Êm,p(s) =S̄m,p +
s−1∑

s′=1

T (ys′)

+
Sp∑

s′′=s

∑

ys′′ ∈Ys′′
(T (ys′′)

×P(Ys′′ = ys′′ |Y1:s−1, A1:Sp )
)
, (4)

where P(Ys′′ = ys′′ |Y1:s−1, E1:Sp ) is the probability of task
indexed s′′ having a particular sensed environment, Y1:s−1

is the measurement history of the vehicle, and A1:Sp is the
a priori information on the environmental conditions. The
term As ∈ E represents the initial environmental information
which may be known from previous subsea surveys, expert
knowledge, or other means to create an initial estimate of
the likely environment. We now turn to the structure of the
posterior probability in the development of the HMM.
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3.2 Posterior Probabilities of Task Environment

We develop the posterior probability for each detection type,
P(Ys |Y1:s−1, A1:s), by first creating a model under which the
detection events occur from the standpoint of the autonomous
vehicle executing the subtasks. Let Bs ∈ E be a random vari-
able representing the actual environmental state under which
the vehicle executes subtask Isearchm,p,s . Then the sensed value
ys is directly dependent on Bs . We assume the probability
distribution of Bs is propagated using two factors: the previ-
ous environmental state Bs−1, and the prior knowledge of the
overall environment for the given subtask Isearchm,p,s , represented
by As .

The dependencies can be represented by a Bayes network
learned from data, exemplified in Fig. 2, where each in situ
environmental state Bs depends on the previous in situ envi-
ronmental state Bs , as well as the a priori knowledge As .
The Bayes network in Fig. 2 contains several characteristics
that are intuitive from the standpoint of standard detection
theory, while additionally containing useful extensions from
a vehicle schedule estimation standpoint. Firstly, sensing
events are not directly dependent on each other. Addition-
ally, the a priori random variable As provides amechanism to
inject beliefs about the environment from previous surveys or
expert knowledge. We choose this model under the intuition
that upon detecting an event at one location, we are likely to
continue detecting that event at the immediate location in the
future. However, the weight of the previous detection events
will revert to the prior the further in the future the estimate
is propagated.

From the HMM, individual priors and conditional prob-
ability density functions (CPDs) may be realized. Let
P(Bs |As, Bs−1) be the joint conditional probability distri-
bution based on both As and the previous true state Bs−1,
andA be the state transition matrix form of P(Bs |As, Bs−1).
Let P(Ys |Bs) be the probability distribution of sensed envi-
ronment conditioned on the in situ environmental state. From
the CPDs, the conditional probability of the next in situ envi-
ronmental state observed can be obtained recursively as

P (Ys |Y1:s−1, A1:s) = Mσ(Bs)

where σs(Bs) is the prior belief state

σs (Bs) = Aσs−1 (Bs−1) . (5)

andM is the state observation matrix. Within the state obser-
vation matrix, the i j th position of M represents P(Ys =
j |Bs = i). Using Eq. 5, the value of Êm,p(s) in Eq. 4 is
given by

Êm,p(s) = S̄m,p +
s∑

s′=1

T (ys′) +
Sp∑

s′′=s+1

T̂s′′ , (6)

where

T̂s′′ =
(
Tsearch

)�
Ms′′σ(Bs′′), (7)

and Tsearch is the vector form of T (ys′′).

3.3 Variance Calculation for Final Endtime

We now turn to calculating V AR
(
Ēm,p

)
, which is also

inherently conditioned on Y1:s and E1:Sp . Since the terms

S̄m,p + ∑s
s′=1 T (ys′) within Êm,p are constant, they do not

change the variance. As shown in [37], the variance of the
summation is given as

V AR
(
Ēm,p(s)

) =
Sp∑

s′=s+1

V AR (T (Ys′))

+ 2

Sp∑

s+1≤s′<s′′
COV (T (Ys′), T (Ys′′)) . (8)

From the definition of covariance, we have

COV (T (Ys′), T (Ys′′)) =
E (T (Ys′)T (Ys′′)) − T̂ (Ys′)T̂ (Ys′′). (9)

Fig. 2 HMM for subtask
prediction
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This allows the computation of the joint expectation
E (T (Ys′)T (Ys′)) for any twomeasurement variables Ys′ and
Ys′′ . Specifically, the joint expectation is given by Eq. 10.
Combining Eqs. 7, 9, and 10 with the properties of transient
Markov chains found in [38], the covariance is then

E (T (Ys′ )T (Ys′′ )) =
∑

ys′ ∈Ys′
ys′′ ∈Ys′′

T (ys′ )T (ys′′ )

P (Ys′ = ys′ , Ys′′ = ys′′ |A1:s , Y1:s)

=
∑

ys′ ∈Ys′
ys′′ ∈Ys′′

T (ys′ )T (ys′′ )
∑

Bs′ ,Bs′′

P (ys′ , ys′′ |Bs′ , Bs′′ , A1:s , Y1:s)

P(Bs′ , Bs′′ |A1:s , Y1:s)

=
∑

ys′ ∈Ys′
ys′′ ∈Ys′′

T (ys′ )T (ys′′ )
∑

Bs′ ,Bs′′

[P (ys′ |Bs′ , A1:s , Y1:s) P (ys′′ |Bs′′ , A1:s , Y1:s)

×P(Bs′ , Bs′′ |A1:s , Y1:s)]

=
∑

ys′ ∈Ys′
ys′′ ∈Ys′′

T (ys′ )T (ys′′ )
∑

Bs′ ,Bs′′

P (ys′ |Bs′ ) P (ys′′ |Bs′′ )

P(Bs′ , Bs′′ |A1:s , Y1:s). (10)

COV
(
T (Ys′ ), T (Ys′′ )

) = (11)
∑

ys′ ∈Ys′
ys′′ ∈Ys′′

∑

Bs′
Bs′′

T (ys′ )T (ys′′ )P
(
Ys′ = ys′ , Ys′′ = ys′′ |A1:s , Y1:s

)×

⎡

⎢⎢⎢⎣
∑

Bs′
Bs′′

γ s′
b′
s
γ s′′−s′
b′′
s

[
σ(Bs′ )ᵀHEbs′ H

−1
]

b′
s

[
HEbs′′ H

−1
]

bs′bs′′

⎤

⎥⎥⎥⎦

−
∑

ys′ ∈Ys′
ys′′ ∈Ys′′

∑

Bs′
Bs′′

T (ys′ )T (ys′′ )P
(
Ys′ = ys′ , Ys′′ = ys′′ |A1:s , Y1:s

)×

⎡

⎢⎢⎢⎣
∑

Bs′
Bs′′

σ(Bs′ )ᵀγ s′
b′
s

[
HEbs′ H

−1
]

b′
s
σ(Bs′′ )ᵀγ s′′

b′′
s

[
HEbs′′ H

−1
]

bs′′

⎤

⎥⎥⎥⎦ ,

where γ s′
b′
s
is a vector of eigenvalues of the matrix form

for P
(
Bs′ |Bs′−1, As′

)
, H is a matrix of the corresponding

eigenvectors, andEbs′ is amatrixwith 1 in the bs′ , bs′ th place,
and 0 elsewhere.

Finally, for V AR (T (Ys′)) the variance is obtained using
the standard definition, as

V AR (T (Ys′)) = (12)

E
((
Ēm,p(s

′)
)2) −

(
Êm,p(s

′)
)2

=
∑

ys′ ∈Y ′
s

⎛

⎝T (Ys′)
∑

Bs′
P(Ys′ |Bs′)σ (Bs′)

⎞

⎠
2

−
(
T̂s′

)2
(13)

In Fig. 3, we show three examples of the hidden Markov
model plotting Êm,p(s) versus task index s for a search task.
We compare Êm,p(s) to the end time calculated by simply
updating the original planned end time Em,p(s) sequentially
with how long the task took at execution. The first row con-
tains the running estimate Êm,p(s) vs subtask index s. Blue
represents the updated end time based on tasks executed and
tasks that remain as initially planned. Red represents the run-
ning estimate Em,p(s). Green represents the end time of a
perfectly-predicted search effort based on ground-truth of Bs

and resulting vehicle actions. As seen in the figure, the pre-
dicted end time is closer to the true search time at all points
within the task execution. In the second row of Fig. 3, we
show how the variance in the expected end time based on the
HMM changes as the subtasks are prosecuted. The final row
contains an illustration representing the actual task character-
istic with which the estimator develops a real-time prediction
of end time as the search proceeds through the environment.
In the first two instances, the environment is favorable to easy
tasks, and then changes to moderate (left-most experiment)
or difficult (middle experiment). The right-most experiment
has the environment randomly change to match the HMM.

4 Iterative Elastic Scheduling of Flexible
Tasks

Using the online estimates given in Eqs. 6 and 12, we now
turn to developing a framework to perform continuous re-
planning of the schedule based on the expected end time and
uncertainty of search tasks. To do so, we first develop an
ontology to describe the relative interaction between tasks.
Note that the task interaction ontology for an adaptive sched-
ule is different from tasks types, as the interaction depends
on the types as well as the relative adjacency of the tasks.
For example, while flexible tasks may have different exe-
cuted start and end times than initially planned, two flexible
tasks immediately adjacent to each other must have a one-
to-one correspondence in schedule delays of the first task.
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Fig. 3 (Top Row) Comparison of the prediction algorithm end time to
an iteratively updated plan for a task’s end time. Blue represents the
updated end time based on tasks executed and tasks that remain as ini-
tially planned. Red represents the end time based on tasks executed and
forward-prediction based on the belief states. (Middle Row) Variance
of predicted end time based on hidden Markov model. (Bottom Row)

Illustration of actual environment throughout search time proceeding
left-to-right. Blue represents easy subtasks. Yellow represents moder-
ate subtasks type. Red represents difficult. Brown represents the event
when the difficulty distribution matches distribution created by state
transition matrix of the HMM

Conversely, two flexible tasks that have a gap in between
execution may be shifted independently.

We first define cross-scheduled tasks as tasks that have
direct effects on different vehicles. For example, a docking
task is scheduled for both a search vehicle executing search
tasks, and a transport vehicle in a search vehicle - transport
vehicle system. Formally, cross-scheduled tasks are defined
as follows:

Definition 1 Tasks Im,p and Im′,p′ s.t. m 	= m′, are cross-
scheduled (Im,p, Im′,p′ ∈ Icross) if there exists implicit

constraints that Sm,p = Sm′,p′ and Em,p = Em′,p′ within
the scheduling problem.

We define coupled tasks as tasks whose corresponding
relative start times and precedence must always remain the
same within the schedule. Formally, we have

S̄m,p = Sm,p ∀m ∈ M s.t. Im,p ∈ I f i xed . (14)

Finally, we define tasks Im,p and Im′,p′ as adjacent if there
exists implicit constraints that Sm,p = Em′,p′ .
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4.1 Elasticity Parameter Calculation using Schedule
Variance

We now tie the hidden Markov model developed in
Section 3 to the re-planning of the linked tasks in our variant
of the FSJP. We do so using an elasticity parameter for use in
the cost function to minimize. The goal of the minimization
is to weight the perturbation of future tasks in an optimal
manner to minimize the overall difference between the new
schedule and the original schedule while respecting sched-
ule constraints. This is accomplished using the following cost
function:

Minimize
∑

m∈M,p∈Pm

km,p
∣∣(Sm,p+1 − Em,p

)

− (
S̄m,p+1 − Ēm,p

)∣∣2 (15)

where

km,p =
Pm∑

p=1

V AR
(
Ēm,p(s)

)
, (16)

V AR
(
Ēm,p(s)

)
is calculated in Eq. 12, and S̄m,p represent

the variables of optimization.
The cost function Eq. 15 is inspired by elasticity-based

path planning work originally developed by Shah [39], and
represents the elastic energy of the overall schedule. The
key difference is that Eq. 15 minimizes the weighted gaps
between the start of one task p and the beginning of the next
task p+1 for all vehiclesm ∈ M, while in [39], the authors
seek to minimize the difference in elasticity between maps
and sensed landmarks.

4.2 A Quadratic-programming Approach to Elastic
Scheduling

We now present a quadratic programming approach to com-
bining a number of search tasks into an optimally-delayed
end-to-end schedule.

Problem 4.1 The elastic scheduling problem is written as fol-
lows

Minimize
∑

m∈M,p∈Pm

km,p
∣∣(Sm,p+1 − Em,p

)

− (
S̄m,p+1 − Ēm,p

)∣∣2

Subject to

∀a ∈ Ms, p ∈ P

km,p =
Pm∑

p=1

V AR
(
Ēm,p(s)

)

∀a ∈ Ms, p ∈ P
S̄m,p ≤ S̄m,p+1

∀a ∈ Ms, p ∈ P s.t.

Im,p ∈ I f i xed ⇒ S̄m,p = Sm,p

∀a ∈ Ms, p ∈ P s.t.

〈Im,p, Im′,p′ 〉 ∈ Icross ⇒
S̄m,p = Sm′,p′

∀a ∈ Ms, p ∈ P s.t.

Ēm,p = Sm,p + T̂ (Ys′′)

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

The constraints Eqs. 17a and 17b define the cost func-
tion and elasticity weights, respectively. Constraint Eq. 17c
enforces precedence between task schedules. Constraint Eq.
17d enforces that fixed tasks are scheduled at their original
start time. The constraint Eq. 17e enforces that if two tasks
Im,p and Im′,p′ are cross-scheduled, their start times must
occur concurrently. Finally, Eq. 17f enforces the end time of
search tasks occur at the current expected search time based
on the current timestep’s estimate from Eq. 6. The above QP
is implemented in softwarewithin the IBMCPLEXoptimiza-
tion suite. Due to the specific construction of the objective
function and constraints, Problem Eq. 4.1 can be solved in
polynomial time. The QP constructed in Problem Eq. 4.1
can be solved in polynomial time due to 1) the lack of binary
variables, and 2) the quadratic component of

C =|kmn ,Pn

(
S̄M,PM

)2 − 2km,Pm
(
S̄m,Pm

) (
Ēmn ,Pn−1

)

+ km,Pm
(
Ēm,Pm−1

)2 + . . . +
xk1,1

(
S̄1,2

)2 − 2k1,1
(
S̄1,2

) (
Ē1,1

) + k1,1
(
Ē1,1

)2 +
− 2km,Pm

(
Sm,Pm − Em,Pm−1

)
S̄m,Pm − . . . − 2k1,1

(
S1,2 − E1,1

)
S̄1,2

+ 2km,Pm
(
Sm,Pm − Emn ,Pn−1

)
Ēmn ,Pn−1 + . . . + 2k1,1

(
S1,2 − E1,1

)
Ē1,1|
(18)
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the cost function Eq. 17a is positive semi-definite when in
matrix form. This quadratic property is formally proven in
the following proposition.

Proposition 4.2 The elastic scheduling quadratic program
found in Problem Eq. 4.1 is solvable in polynomial time.

Without loss of generality, let there exist M vehicles and
Pm tasks for each vehicle m. Expanding Eq. 17a, let C be
the terms containing an optimization variable (S̄m,p, Ēm,p).
Thus, we have the cost function C(·) found in Eq. 18. Re-
write C in quadratic form as

C =
⎡

⎢⎣
T̄m,Pm

...

T̄1,1

⎤

⎥⎦

� ⎡

⎢⎣
Km,Pm 0

0
. . . 0

0 0 K1,1

⎤

⎥⎦

⎡

⎢⎣
T̄m,Pm

...

T̄1,1

⎤

⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

−2km,Pn

(
Sm,Pn − Em,Pn−1

)

2km,Pn

(
Sm,Pn − Em,Pn−1

)

...

−2k1,1
(
S1,2 − E1,1

)

2k1,1
(
S1,2 − E1,1

)

⎤

⎥⎥⎥⎥⎥⎦

�
⎡

⎢⎣
T̄m,Pa

...

T̄1,1

⎤

⎥⎦

= T̄�QT̄ + c�T̄ (19)

for all Km,p and T̄m,p, p = 1, . . . , Pm and m = 1, . . . , M ,
where

Km,p =
[
km,Pm −km,Pm

−km,Pm km,Pm

]
(20)

and

T̄m,p =
[
S̄m,p+1

Ēm,p

]
. (21)

Clearly,Q is a block-diagonal matrix, and thus the eigenval-
ues of Q are the eigenvalues of those of the block matrices
Km,p ∀m ∈ M, p ∈ Pm . Computing the eigenvalues of
Km,p, we have

λKm,p = {
2km,p, 0

}
. (22)

Due to constraint Eq. 17b, km,p ≥ 0 ∀m ∈ M, p ∈ Pm , and
thus Q is positive-semidefinite. Thus, Eq. 4.1 can be solved
in polynomial time [40]. �


A full iterative elastic scheduler is shown in Algorithm
1. The algorithm combines the polynomial-time solvable
quadratic program found in Problem Eq. 4.1 with the HMM
for task completion time estimation. In the algorithm, line 5
queries the subtasks for each vehicle. Line 6 obtains the task

completion estimate for the subtasks from thevehicles return-
ing subtasks. Line 7 executes the elastic scheduling quadratic
program. Upon adjusting the schedule, the vehicles execute
current taskingwithin line 8. Finally, line 9 checks if the elas-
tic schedule was found to be infeasible, and if so, triggers a
full replan.

Algorithm 1 Full task allocation and sequencing algorithm.
1: procedure elasticScheduling(M, I)
2: while ∃Iactive ∈ I do
3: for m ∈ M do
4: for Im,p ∈ Iservicem do
5: Sm ← GetSubtasks

(
Im,p

)

6: Êm,p,V AR(Ēm,p)←vehicleHMM
(
Īservicem,p ,Ym,p,s ,Sm

)

7: Ŝ, I sFeasible←ElasticQPSolve
(
I,M,Êm,p,V AR(Ēm,p)

)

8: Ym,p,s ← ExecuteSubtasks(M,S)

9: if !I sFeasible then return ReplanRequired
return TasksComplete

5 A Flexible Scheduling Case Study for
Adaptive Multiple Aspect Coverage

We now describe an implimentation case study for our adap-
tive elastic scheduling techniques for inspecting a row of
discrete targets thatmust be identified, a commonproblem for
maritime search and survey. In this application, the inspec-
tion of targets occurs over a set of discrete locations s that
correspond to observation windows of the specific sub-areas
of the domain, each one of which is associated to one of the
discrete targets that must be identified. The primary goal of
the scheduler is to determine the appropriate scheduling of
the visitations of these sub-areas in order to maximize target
identification opportunities over a limited amount of time.
The ability of the system to identify a given target in loca-
tion s is improved as multiple observations are obtained at
that location. However, as a practical matter it is important
to limit the number of observations to the minimal required
to observe the target object with the required confidence.
Thus, we use the HMM framework to adaptively improve
the estimate of the required number of observations at each
successive location and thus improve the schedule perfor-
mance.

The adaptive multiple aspect coverage (AMAC) algo-
rithm is an existing specific planning algorithm that plans
these numbers of observations of each target. We utilitze the
AMAC algorithm to provide a prior schedule for this case
study; and also use the state transition matrix formed in this
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planning for on-line schedule adaptation. An illustration of
the general maritime mission using the AMAC algorithm is
found in the Top of Fig. 4.

Suppose there are a line of N targets in the region of inter-
est that are to be investigated sequentially. Let As represent
the number of observations that are made of the target in the
sub-area s in order to achieve the desired performance (i.e.
identification confidence). The required number of observa-
tions will depend upon local features which may be inferred
from examination of the target in the prior sub-area (s − 1)
as well some state characteristics of the target, which we
represent as Gs . The state Gs in this example can represent
either the target type or target pose. Thus, both As and Gs

are components of the previously defined multi-dimensional
state Es associated with the particular location s.

It is clear that As is a random variable in the range
A = {1, . . . , A} where A is the maximum number of obser-
vations that can be collected for each target location. Let
as represent a specific realization of the random variable
As . Furthermore, Gs is a random variable that represents
the value of the state component of the target in location s,
and let a specific realization of Gs be given by gs . Now the
sequence of observations {A1, . . . , AN } across all N targets
can be viewed as a Markov chain with transition probability
matrix P, where the i, j element of P is given by

pi j = P(As = j |As−1 = i), i, j ∈ {1, . . . , A} (23)

Upon completion of the visitation of all N locations,
a sample path of the Markov chain is realized. The log-
likelihood of this sample path is given by

log P(a1, ..., aN ;P) = (24)

log[P(aN |aN−1;P)P(aN−1|aN−2;P)

× . . . × P(a2|a1;P)P(a1)]

=
N∑

s=2

log P(as |as−1;P) + log P(a1)

=
N∑

s=2

A∑

i=1

A∑

j=1

I (as−1 = i, as = j) log pi j + log P(a1)

=
A∑

i=1

A∑

j=1

Ji j log pi j + log P(a1)

where Ji j is the number of transitions from state i to state j
in the sample path, and P(a1) is the initial probability of the
Markov chain. The maximum likelihood estimate (MLE) of
the transition matrix P can now be found by setting

d

dpi j
log P(a1, . . . , aN ;P) = 0 (25)

to arrive at the estimate

p̂i j = Ji j∑A
j=1 Ji j

. (26)

In other words, theMLE of Pi j is equal to the number of tran-
sitions from state As = i to state As = j divided by the total
number of appearances of state As = i in the sample path.
In a similar manner, the maximum likelihood estimate of the
transition probabilities P(As |As−1,Gs) can be computed as

P̂(As = j |As−1 = i,Gs = g) = (27)
∑N

s=2 I (as−1 = i, as = j, gs = g)
∑N

s=2
∑A

j=1 I (as−1 = i, as = j, gs = g)

where g is a specific target state such as target type or target
pose.

To determine the observations for each target that is to be
identified, we apply the AMAC algorithm. As autonomous
target recognition performance varies depending on the view-
ing angle of an imaging sensor, the AMAC algorithm adapts
the vehicle’s path such that the next viewing angle has
the highest expected information gain on target classifica-
tion. The AMAC algorithm computes the most informative
aspect angle based on the expected confidence level [41].
The expected confidence level is an estimate of confidence
level on target classification given that the next observation
is obtained at a given aspect angle.

The expected confidence level is computed based on a
probabilistic sensor model, which represents the relation-
ship between aspect angle, sensor measurements, and target
features. After the next best aspect angle is computed, the
AMAC algorithm plans a swath at the chosen aspect angle
such that the probability of detection becomes higher than
a user-chosen threshold. The target position uncertainty is
represented by a 2-dimensional Gaussian distribution, and
sensor field-of-view is represented by the probability of a
target to be detected by the sensor as a function of distance
from the sensor to a target. Considering these two conditions,
the location and length of the swath is computed to obtain
a satisfactory probability of detection. This swath planning
method is applied from the multiple aspect coverage (MAC)
algorithm, whose theoretical and experimental results are
presented in [42].

As the vehicle follows the planned swath, the sensor can
obtain measurements. Based on this observation, the AMAC
algorithm updates the target classification confidence level.
Since we are considering an application where the ground
truth is unknown, the belief on target classification is mod-
eled using a confidence level such that the vehicle is required
to obtain enough observations and achieve a desired confi-
dence level. Thus, the AMAC algorithm decides whether the
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Fig. 4 (a) Illustrative cartoon of
vehicle observation counts
dependent on target state. (b)
Example of a segment of path
generated by the AMAC
algorithm for five targets, where
the confidence level threshold is
chosen as 0.97

sensor will obtain more observations or move on to the next
target based on the updated classification confidence level.
By adapting the aspect angles and the number of observa-
tions, theAMACalgorithmcanoptimize the travel timewhile
guaranteeing that a desired confidence level will be achieved.

As an example of the AMAC algorithm and the associated
transition matrix, we ran a simulated scenario with N = 500
targets that are to be identified. In this scenario, the distance
between adjacent targets are set at 300 meters. The given

range of the sonar imaging sensor is 300 meters with 30
meters of dead-zone at the center of the field-of-view, and the
desired confidence level is set as 0.97. Each target required
a set of as ∈ {2, 3, 4} observations of the target to achieve
the required level of identification accuracy (corresponding
to the 0.97 confidence level).

A visual display of a segment of the associated vehicle
trajectory to achieve these passes is shown in Fig. 4. Of the
N = 500 targets in this scenario, N2 = 393 required two

Table 2 The empirical
probabilities of requiring As
observations for target s, given
As−1 observations are obtained
for previous target s − 1 and the
true target classification Ys , that
is, P(As |As−1, Ys)

Target true classification Gs = 0 Gs = 1
Previous contact As−1 = 2 As−1 = 3 As−1 = 4 As−1 = 2 As−1 = 3 As−1 = 4

As = 2 0.7987 0.3538 0.4091 0.9310 1 0.7333

As = 3 0.1447 0.6462 0 0.0216 0 0

As = 4 0.0566 0 0.5909 0.0474 0 0.2667
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Table 3 Average distance and
time cost vs observations

Number of observations per target 2 3 4

Average path length spent on each target (m) 428.35 718.33 972.58

Average path time cost spent on each target (min) 4.7594 7.9814 10.8064

observations, N3 = 70 required three observations, and the
remaining N4 = 37 required four observations. This led to an
empirically derived transition probability matrix P (as in Eq.
23) of the form (written in compact form) found in Table 2.
A counterpart to the probabilities are the costs associated
with each type of action, found in Table 3. Both represent
the components of the HMM found in Section 3 in our case
study for maritime search.

6 Simulation Results

The effectiveness of the elastic scheduling algorithm is
demonstrated on an autonomous maritime search task schedul-
ing problem. In the first study, the scheduler is applied to
search tasks involving the surveying of different environ-
ments. In the second study, the scheduler is applied to a group
of vehicles performing re-identification of multiple observed
targets.

Fig. 5 Simulation of elastic
schedule at multiple time
increments of one transport
vehicle and four search vehicles.
(a) Initial schedule. (b) Schedule
showing accumulated delays at
t=1300 min. (c) Schedule
showing accumulated delays at
t=2600 min
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6.1 Adaptive Scheduling of Environmental Surveys

We first present a simulation of Mt = 1 transport vehicle and
Ms = 4 search vehicles (USV andUUVs, respectively), for a
combined total ofM = 5vehicles to prosecute S = 12 search
tasks. Each search task must be visited by one of the search
vehicles. The optimized schedules were pre-solved using the
partially-decoupled scheduling algorithms found in [43]. In
the simulations, each search task consists of S = 10 subareas.
In each task, we assume three possible states of a search sub-
task of easy, moderate, and difficult. The initial belief E1:Sp
for each task p is that the subtask will require T = 49.16
minutes for easy subtasks, T = 58.99 minutes for moderate
subtasks, and T = 98.32 minutes for difficult subtasks. Ini-
tially, the expected state Esp for every subtask in each search
task is that the subtask is easy. However, the ground-truth is
that the second half of each search task consists of difficult
subtasks. Interspersed between search tasks are either move-
ment by the UUVs between nearby search areas, or docking
with the USV, a transportation action, and deployment using
the USV. Naturally, because of the complex nature of dock-
ing and deployment of UUVs, it is desireable tominimize the
changes in schedule around tasks such as these. Our elastic
scheduling algorithm successfully minimizes a formal met-
ric for change in the objective function found in Eq. 15. In
Fig. 5, we show an example of the evolution of the elastic
task schedule as the schedule evolves over time. Finally, we
show the minimum objective function value evolution over
time in Fig. 6.

Fig. 6 Minimized objective of elastic scheduling problem vs. time
increment

6.2 Adaptive Scheduling of Multiple Aspect Target
Coverage

In our second set of simulations, we show a related exper-
iment involving an adaptive multiple aspect coverage algo-
rithm for identifying underwater targets of interest. The state
transition matrix from the HMM was trained as described in
Section 5. Here M − t = 1 transport vehicle and Ms = 3
identification vehicles (USV and UUVs, respectively) were
simulated to identify the targets of interest, and then perform
actions based on the number of passes required. We refer to
this particular vehicle operation as a reacquire and identify
(RI) task. An example simulation of the end-to-end vehicle
schedule is shown in Fig. 7.

We next present the performance of both the HMM and
elastic scheduler when compared to to a greedy schedul-
ing algorithm combined with an incremental update of the
expected duration in Table 4. The particular greedy algorithm
we leverage is inspired by [44]. The comparison is made
using a Monte Carlo simulation of 40 runs of randomized
environments using Ms = 3 UUVs and Mt = 1 USV, with
varying ground-truth state data. In the Monte Carlo simula-
tion, we analyze the expected variation in expected duration
of the tasks at the beginning, middle, and end of each set
of RI tasks. When we compare the projection for each set
of RI tasks midway through the set to the end, we find that
the HMM coupled with elastic scheduler projects the end
time within 0.71% of the final end time. The greedy sched-
ule coupled with an incremental update to the expected final
time results in an estimate within only 7.45% of the final
end time of the task. Thus, the HMM - Elastic scheduler
results in a 10-fold increase in the accuracy of estimated
endtime for search tasks. For an iteration of the optimiza-
tion sequence, the HMM requires 0.0032 seconds to develop
the expected end time for all active tasks. The uncertainty
model required an average of 0.28 seconds to develop the
variance used in the costs. The elastic scheduler takes less
than one-hundredth of a second to develop the optimal elastic
solution. The overall runtime for an iteration of the sched-
uler and HMM combined was 0.693 seconds. The memory
usage per the MATLAB Profiler was 32.132 megabytes. We
believe that this is sufficiently fast for real-time operation for
a task-oriented estimation scheme, so long as the tasks are
sufficiently large. We also note that these performance num-
bers are before any code optimization for use on embedded
systems.

Finally, we show the objective function evolution over
time of the HMM - elastic scheduler when compared to the
iterative update and greedy scheduling algorithm in Fig. 8.As
seen in the figure, the HMMand elastic schedulingmaintains
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Fig. 7 Simulation of elastic
schedule at multiple time
increments of one transport
vehicle and three search
vehicles. (a) Initial schedule. (b)
Schedule showing accumulated
delays at t=160 min. (c)
Schedule showing accumulated
delays at t=340 min

a minimized elasticity objective at around 2 min4, while the
incremental update, while sliding tasks to the right, dramat-
ically increases the chosen metric for schedule differences
from the original, as-planned schedule. Maintaining a rel-
atively consistent schedule in lieu of adaptive changes to
individual agent tasks is a primary concern inmaritimeopera-
tions involving multiple vehicles. Thus, our method provides

a formal metric for those changes, and minimizes that metric
throughout the mission.

7 Conclusion

We have developed an elastic scheduling algorithm cou-
pled with a HMM approach to estimate the completion time

Table 4 Table of algorithm performance compared to a greedy scheduling algorithm combined with an incremental update to the planned start
time of each task

Initial Average Duration (min) Midway Average Duration (min) Final Average Duration (min)

Incremental Update - Greedy 50.81 49.91 53.63

HMM - Elastic Scheduler 58.18 53.27 53.65

Results from 40 randomly generated environmental situations. Bold is the proposed algorithm
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Fig. 8 Minimized objective of elastic scheduling problem vs. time
increment for both the HMM - Elastic Scheduler algorithm and the
Incremental Update - Greedy Scheduler

of search-level tasks, such as those commonly found in
maritime search planning. The elastic scheduling technique
involves a quadratic programming approach that requires
no binary variables, and can be solved in polynomial time.
Future work includes implementing the hidden Markov
model andAMAC algorithm onmaritime vehicles to provide
predictive capabilities, and coordinating multiple vehicles
using the elastic scheduler.
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